
PLATO: Predictive Latency-Aware Total Ordering

Mahesh Balakrishnan, Ken Birman and Amar Phanishayee
{mahesh, ken, amar}@cs.cornell.edu

Department of Computer Science
Cornell University

Abstract

PLATO is a predictive total ordering protocol designed
for low-latency multicast in datacenters. It predicts out-of-
order arrival of multicast packets by observing their inter-
arrival times, and delays packets before passing them up to
the application only if it believes the packets to have arrived
in the wrong order. We show through experimentation on
real datacenter-style networks that the inter-arrival time of
consecutive packet pairs is an excellent predictor of out-of-
order delivery. We evaluate an implementation of PLATO
on the Emulab testbed, and show that it drives down deliv-
ery latencies by more than a factor of 2 compared to the
fixed-sequencer protocol.

1 Introduction

Total ordering is a fundamental problem in distributed
systems - in simple terms, it refers to the task of ensur-
ing that a set of nodes deliver incoming multicast messages
in the same order. The total ordering problem is defined
within the context of the group communication paradigm,
where processes communicate with each other using multi-
cast groups providing different message delivery semantics.

Total ordering protocols occupy a critical slot in the com-
munication stack of modern commercial datacenters, allow-
ing applications to distribute and replicate data and func-
tionality with strong consistency guarantees. Made pop-
ular by online e-commerce websites, datacenters are in-
creasingly the computing platform of choice for a wider
range of applications, ranging from computational finance
to mission-critical applications. Application domains tra-
ditionally centered around expensive, specialized hard-
ware and software - such as air-traffic control or mili-
tary command-and-control - have begun to migrate towards
commodity datacenters, lured as much by the cheap run-
ning costs and easy maintainability of COTS components
as by the possibilities of the scale-out paradigm - massive
scalability and very high availability.

A growing class of datacenter applications is time-
sensitive and requires low-latency delivery of multicast
messages. In some cases, timeliness is directly related to
real-world metrics - for instance, the inventory service of
an online bookseller has to reflect the latest item counts,
to prevent losses caused by overselling. Other examples
involve calculators running in financial datacenters, which
require up-to-date information on stock quotes, and track-
ing applications on military datacenters dealing in location
updates of targets. Such applications require the ability to
spread data consistently and rapidly throughout a datacenter
- mandating the need for a fast, low-latency total ordering
protocol.

In this paper, we present PLATO, an optimistic total or-
dering protocol designed for time-critical datacenter appli-
cations. The key idea behind PLATO is to delay incoming
data packets from the application only if there is a signifi-
cant likelihood that they might be out of order - and to use
a predictive scheme to determine that likelihood. PLATO
allows applications to consume most incoming data pack-
ets within a few hundred microseconds of arrival, delaying
packets to wait for ordering information only when it be-
lieves their arrival order to be inconsistent across the multi-
cast group. In line with other optimistic ordering protocols
[5, 6, 7], PLATO requires the application to have rollback
capability, allowing delivered packets to be revoked when
predictions are incorrect.

The predictor of out-of-order arrival used by PLATO is
the inter-arrival time of consecutive packet pairs into user-
space. Packet inter-arrival time is a simple yet powerful
predictor of disorder in a datacenter setting - importantly,
it is local information available at no extra cost or instru-
mentation at the receivers. To our knowledge, PLATO is
the first predictive total ordering protocol - while there is
at least one protocol that masks delay differences between
receivers to achieve total order [7], we are not aware of any
existing protocol that attempts to speculate on disorder on a
per-packet basis.

The contributions of this paper are:

• We experimentally assess the causes and extent of out-

1

of-order delivery on two datacenter-style switched net-
works - the Emulab testbed at Utah and a 252-node
cluster at Cornell University.

• We propose the usage of inter-arrival times of consecu-
tive packet pairs as a predictor of out-of-order delivery.
We motivate this predictor by experimentally observ-
ing a high correlation between low inter-arrival times
and out-of-order delivery.

• We design and implement PLATO, a predictive total-
ordering protocol that uses the above predictor to de-
cide whether arriving packets are in order or not - and
waits for extra ordering information only in the latter
case.

• PLATO is evaluated on the Emulab testbed, and
performs significantly better than the existing fixed-
sequencer protocol, slashing delivery latency by more
than a factor of 2 while incurring less than 1% roll-
backs.

In Section 2, we articulate the requirements of a time-
critical datacenter ordering protocol. In Section 3, we assess
the extent and causes of out-of-order delivery on datacenter-
style networks, and show that the inter-arrival time of pack-
ets can be an excellent predictor of disorder. Section 4 pro-
vides the design and implementation details of PLATO, and
Section 5 is the evaluation of the implementation.

2 The profile of a datacenter total ordering
protocol

A time-critical total ordering protocol is likely to co-exist
on nodes with other protocols, competing for bandwidth
and CPU cycles. A typical design for a datacenter appli-
cation is shown in 1.(a), where several nodes host a repli-
cated service; they are queried by other nodes via TCP/IP
or some other unicast protocol, and updated using totally
ordered multicast. For example, the replicated inventory
service mentioned earlier would receive updates from the
service responsible for processing buy transactions and be
queried by services requiring up-to-date information on the
availability of items.

The existence of other competing protocols and a time-
critical, possibly CPU-intensive application running on the
node emphasizes the need for a light-weight, low-overhead
ordering mechanism. Datacenter workloads are likely to
vary due to external factors - Christmas season for online
stores and high-activity periods for stock calculators come
to mind - and the ordering protocol should be capable of
working well at different data rates, providing timely deliv-
ery at low and intermediate throughputs while being able
to sustain bursts of high-throughput traffic. A related goal

is throughput and performance stability, typically achieved
by inducing exclusively proactive overheads and avoiding
costly reactions to failures that further destabilize the sys-
tem. Additionally, datacenters and large clusters exhibit
specific failure modes and performance trade-offs, and the
ideal ordering protocol for such settings should be able to
exploit the natural properties of the underlying hardware -
while retaining the ability to work well on many different
kinds of commodity hardware.

Of this wishlist of properties, we would like to under-
score the importance of performance at low and rapidly
varying data rates. We have argued elsewhere that the nat-
ural use of multicast in a datacenter gives rise to large num-
bers of groups with low individual data rates [1]. Imag-
ine a replicated data store where fine-grained objects are
cloned and cached on different nodes with high-level ob-
jectives such as fault-tolerance and data locality; if multi-
cast is used to update objects, each node has to belong to
as many groups as the number of objects it caches or repli-
cates, resulting in large numbers of groups that overlap in
chaotic patterns. Another example involves financial calcu-
lators that use publish-subscribe libraries to subscribe to the
latest prices for different equities, and hence belong to as
many multicast groups as the equities they are interested in.
The activity level within a single group can vary dramati-
cally, even if the overall system throughput stays constant
- the popularity of a single replicated object could expe-
rience sharp spikes, either independently or in correlation
with other objects.

To summarize the properties mentioned thus far:

• The protocol should leverage the natural properties of
the datacenter hardware,

• impose minimal and stable overheads,

• and crucially, work well at low per-group data rates
that vary sharply over time and across groups.

3 Cluster Properties

It is a well-known fact that broadcasts on LANs arrive al-
most simultaneously at all receivers, and consequently the
arrival of packets in different orders at different receivers
is a very rare event. Multiple protocols have leveraged this
property to provide optimistic delivery of broadcast mes-
sages to the application [5, 6]. In this paper, we extend this
observation to IP Multicast [2] within datacenters.

Datacenters are typically heterogenous agglomerations
of smaller homogenous clusters, interconnected by high-
capacity switches. Intuitively, out-of-order delivery in
switched networks occurs in two forms: swaps and packet
loss. Swaps occur due to disparities in the distances be-
tween senders and receivers. Consider the simple case of

E

D

C

B

A

K
er

ne
l B

uf
fe

r

Order of arrivals into
user-space

t

H

Loss Induced Disorder:
Kernel Buffer Overflows
F and G are dropped
App sees H after E !

A B C D E H

E

D

C

F G

G

F
Replicated Shopping Cart ServiceInventory Service

Replica 1

Inventory Service
Replica 2

Catalog Service
Replica 1

Catalog Service
Replica 2

Query

Query Update 1

Receiver 1

Sender 1

Switch Switch
Receiver 2

Sender 2

Receives Sender
1's message after

Sender 2's message

Receives Sender 2's
message after

Sender 1's message

Replicated Warehousing Service

Update 2

Updates to
Inventory Service

are Totally
Ordered

Figure 1.

two senders and two receivers illustrated in Figure 1.(b),
where one sender is very close to one receiver and rela-
tively far from the other one, and the other sender is placed
close to the second receiver and far away from the first one.
Nearly simultaneous multicasts from the two senders will
arrive at different orders at the two receivers.

Packet loss in a datacenter almost never occurs within
the networking fabric; more commonly, it is the end-host
kernel that gets overwhelmed by the rate of incoming traffic
and drops packets [1]. Figure 1.(c) illustrates how kernel
buffer overflows trigger out-of-order delivery - the receiver
delivers the packets immediately before and after the loss
burst in consecutive order.

3.1 Experiments

We ran simple experiments on two datacenter-style
switched networks to evaluate the extent of out-of-order de-
livery of multicast messages. The first of these is the Em-
ulab testbed at Utah [9], which is a heterogenous collec-
tion of several smaller clusters connected by Cisco 6500
series switches; Figure 2 shows the topology of the test-
bed (redrawn from information on www.emulab.net) - inter-
node one-way ping latencies range from 100 to 300 mi-
croseconds, depending on the location of the nodes and how
loaded the network is. The second network is a homogenous
rack-style cluster of 252 1.3 Ghz nodes at Cornell Univer-
sity, comprising of 14 racks of 18 blade-servers each, inter-

connected via a 3-level hierarchy with HP Procurve 4000M
switches at the leaves and HP Procurve 6108 switches in the
interior - the network diameter is around 60-100 microsec-
onds.

Our experiment involved placing a receiver and a sender
each on two different parts of the network separated by mul-
tiple switches, and multicasting data at different rates to
measure the frequency of out-of-order deliveries. We ran
this experiment in four scenarios - Cornell3 and Cornell5:
the Cornell cluster, with the 1.3 Ghz sender-receiver pairs
separated by three switches and five switches, respectively,
Emulab3: the Emulab testbed, where one sender-receiver
pair consists of 3 Ghz nodes and the other sender-receiver
pair is made up of 2 Ghz nodes three switches away, and
Emulab2: the Emulab testbed, where one pair consists of
3 Ghz nodes and the other of 850 Mhz nodes two switches
away. Figure 2 outlines the placement of these four scenar-
ios.

Figure 3 shows the percentage of swaps and losses in
these four scenarios, as we increase the multicast receive
rate in the group. We measure simple swaps by comparing
receiver logs after the experiment and locating consecutive
packets which are delivered in inverted orders at the two
receivers. As expected, the higher the rate of multicasts,
the higher the probability of a swap occurring - for the Cor-
nell cluster 5-switch scenario, the percentage of consecutive
packet pairs which are swaps rises from 1% at 800 packets
per second to 4% at 4000 packets per second. For the Em-

Cisco 6509

Cisco 6509Cisco 6509

Cisco 6509

Cisco 6513

1 Gb
8 Gb

4 Gb

4 Gb

100 Mb

100 Mb

100 Mb

600 Mhz

850 Mhz

850 Mhz 2 Ghz

Emulab3 test scenario:
3 switches of separation
One-way ping latency:

~110 microseconds
H

P
 P

ro
cu

rv
e

40
00

M

H
P Procurve

4000M

HP Procurve 6108

100 Mb 100 Mb
1 Gb 1 Gb

Cornell3 test scenario:
3 switches of separation
One-way ping latency:

~70 microseconds

Emulab2 test scenario:
2 switches of separation
One-way ping latency:

~100 microseconds

H
P

 P
ro

cu
rv

e
40

00
M

H
P

 P
rocurve

4000M

HP Procurve 6108

100 Mb 100 Mb
1 Gb 1 Gb

1.3 Ghz

1 Gb Cornell5 test scenario:
2 switches of separation
One-way ping latency:

~60 microseconds

4 Gb

1.3 Ghz

HP Procurve 6108

1 Gb
1.3 Ghz

1.3 Ghz

3 GHz

850 Mhz

100 Mb

Figure 2. Clusters

ulab 3-switch scenario, the percentage of swaps rises from
0.7% at 800 packets a second to around 3.2% at 4000 pack-
ets per second. In these graphs, we do not show the fre-
quency of more complex swap events, where a sequence of
packets is swapped with another sequence - we observed a
very small percentage (< 0.0001%) of these on the Cornell
cluster, and none of them on the Emulab testbed.

Figure 3 also shows that packet loss increases with re-
ceive throughput, albeit less smoothly - the Cornell 5-switch
scenario loses more packets at 2000 packets a second than
at 2400 packets a second, and the Emulab 3-switch scenario
exhibits more loss at 3200 packets per second than at 3600
packets per second. Our hypothesis for this uneven increase
in packet loss is that the inter-arrival time of packets inter-
acts with the OS thread scheduling mechanisms in complex
ways - at intermediate rates, the receive thread is occasion-
ally context-switched out and loses packets while it’s not
running, whereas at very high rates the receive thread is
continuously dequeueing packets off the socket and hence
is rarely context-switched out.

With this experiment, we established that out-of-order
delivery does occur in switched datacenter-style networks.
Next, we explore the feasibility of using the inter-arrival
time of consecutive packets into user-space as a predictor of
both swaps and packet loss. Since swaps occur when mul-
ticasts are nearly simultaneous, it is natural to hypothesize

that a swap would involve two packet arrivals that are very
close to each other - in this case, we expect the arrival times
of packets into user-space to reflect the actual timing of the
multicasts. Since packet loss occurs when kernel buffers
overflow, we’d expect to observe a sequence of very low
user-space inter-arrival times immediately prior to the loss
burst, as the receive thread rapidly empties packets from the
full kernel buffer. Recall that we explained these scenarios
in Figure 1.

To validate our hypotheses, we examined distributions
of inter-arrival times for consecutive packet pairs. We are
interesting in two metrics of the distributions:

• The time representing the 95th percentile of inter-
arrival times of swapped packet pairs, and

• the percentage of all consecutive packet pairs -
swapped or not - whose inter-arrival times fall within
this limit.

Figure 4 shows this data in six settings: the top three
graphs are for different throughputs, in the Cornell3 sce-
nario, and the bottom three are for a single throughput set-
ting of 1200 packets per second, for the Cornell5, Emu-
lab2 and Emulab3 scenarios. The top half of each graph
shows the histogram for the inter-arrival time intervals for
swapped packet pairs, and the vertical line in each graph
is the 95th percentile of these intervals. The bottom half

 0

 1

 2

 3

 4

 5

 6

 4
00

0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Emulab3

swaps
total losses

 0

 1

 2

 3

 4

 5

 6
 4

00
0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Emulab2

swaps
total losses

 0

 1

 2

 3

 4

 5

 6

 4
00

0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Cornell5

swaps
total losses

 0

 1

 2

 3

 4

 5

 6

 4
00

0

 3
60

0

 3
20

0

 2
80

0

 2
40

0

 2
00

0

 1
60

0

 1
20

0

 8
00

 4
00

lo
ss

es
 a

nd
 s

w
ap

s
%

receive throughput

Cornell3

swaps
total losses

Figure 3. Disorder Characterization

shows the inter-arrival time for all packet pairs, and as the
vertical line continues down into this half, it indicates the
percentage of inter-arrival times of all packet pairs that lie
within it. The two metrics mentioned are stated on top of
each distribution graph.

Why are we interested in knowing the percentage of all
packet pairs that fall within the 95th percentile of swapped
pair inter-arrival times? In the Cornell3 400 packet graph
(top, left), 95% of all swaps and 14% of all packets have
inter-arrival times of less than 128 microseconds. Hence,
if we use an inter-arrival threshold of 128 microseconds to
detect swaps - by raising a ‘red flag’ (we will elaborate later
on what exactly this entails) whenever two packets arrive
within that threshold time of each other - we would end up
catching 95% of all swaps, and suspect 14% of all packet
pairs of being swaps.

Figure 5 shows how the two metrics mentioned above
vary with throughput, for the four different scenarios; this
gives us a better understanding of how data rate affects the
quality of prediction that can be obtained by observing the
inter-arrival times. In the graph, the 95th percentile of inter-
arrival times of swaps stays almost constant for all the sce-
narios - however, the percentage of all packet pairs that fall
inside it goes up significantly as throughput rises. To con-
tinue using the metaphor of a ‘red flag’, a fixed threshold
would catch all swaps, irrespective of throughput; however,
it would also suspect a much higher percentage of all packet
pairs of being swaps.

Next, we perform a very similar analysis of losses. Here,
we measure the minimum inter-arrival time of the last five
packet pairs immediately preceding a loss burst event. The
rationale here is that the ‘red flag’ in this case gets raised
when we observe a sequence of low inter-arrival times. Fig-
ure 6 shows this data; note that for certain throughput-
scenario pairings we did not observe enough loss to com-
pute a percentile, and we have not plotted these on the
graph.

The data presented thus far leads us to formulate the fol-
lowing heuristic for detecting disorder, parameterized by a
threshold ∆ - if the inter-arrival time between two pack-
ets at a receiver is less than ∆, it is reasonably probable
that the packets have arrived in different order at other re-
ceivers; if the time is greater than ∆, it is highly improbable
that the packets are delivered in different order at other re-
ceivers.

This heuristic fits swap-induced disorders precisely -
and, in our particular implementation of it, also suffices to
catch loss-induced disorder; this will become clear once we
describe our design.

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell3, 400

128 micro-s (14% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell3, 1200

130 micro-s (25% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell3, 2000

131 micro-s (36% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Cornell5, 1200

125 micro-s (26% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Emulab2, 1200

173 micro-s (29% of all)

swaps
all

95th %ile swaps

75

50

25

0

75

50

25

 0 200 400 600 800 1000

%
 o

f p
ac

ke
ts

 re
ce

iv
ed

inter-arrival time in microseconds

Emulab3, 1200

134 micro-s (26% of all)

swaps
all

95th %ile swaps

Figure 4. Histograms of Packet Inter-arrival Times

 0

 50

 100

 150

 200

 250

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

m
ic

ro
-s

ec
on

ds

throughput (# of 1k packets per second)

95th %ile of inter-arrival times for swapped packet pairs

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

 0

 20

 40

 60

 80

 100

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

%

throughput (# of 1k packets per second)

% of all packet pairs corresponding to 95th %ile of swaps

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

Figure 5. Variation of Swap metrics with throughput

 0

 50

 100

 150

 200

 250
 1

50
0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

m
ic

ro
-s

ec
on

ds

throughput (# of 1k packets per second)

95th %ile of min inter-arrival time of 5 pairs before a loss burst

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

 0

 20

 40

 60

 80

 100

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

%

throughput (# of 1k packets per second)

% all packet pairs corresponding to 95th %ile

(Cornell3)
(Cornell5)
(Emulab2)
(Emulab3)

Figure 6. Variation of Loss metrics with throughput

4 The Design of a Predictive Ordering Proto-
col

To embed the heuristic presented above into a practical
protocol, we need to examine the design space of total or-
dering algorithms. Defago, et al. [3] provide an analytical
comparison of total ordering protocols, dividing them into
five broad categories - fixed-sequencer, moving-sequencer,
privilege-based, communication history, and destinations
agreement - and conclude that for the non-uniform version
of total ordering (where the delivery order at failed nodes
does not matter), fixed-sequencer has the least latency and
the second-highest throughput. The paper states that the
moving-sequencer algorithm has slightly higher through-
put than fixed-sequencer, but is more complicated to imple-
ment. Accordingly, we focus on the fixed-sequencer algo-
rithm, both as a performance benchmark to compare against
and as a starting point for our own design.

In the fixed-sequencer algorithm, a single receiver - the
sequencer - periodically multicasts sequencing messages,
establishing the correct order of delivery for the rest of
the group. While most theoretical discussions of fixed-
sequencer present the algorithm as sending out a single se-
quencing message for every received data message, in prac-
tice the sequencer can send out an ordered list of multiple
received data messages in every sequencing message, al-
lowing it to tune the overhead imposed by sequencing. If
the sequencer sends one sequencing message for every k
received data messages, one out of every k + 1 messages in
the group is pure sequencing overhead; we call k the trade-
off parameter.

Armed with this basic understanding of the operation of
the fixed-sequencer protocol, it becomes apparent that in
most cases, messages are delayed unnecessarily while the
receiver waits for ordering information from the sequencer.
An ideal total ordering algorithm would delay only those

packets which are received in different orders at different
receivers, and deliver all other messages immediately to the
application. This observation leads us towards a redesign of
the fixed-sequencer protocol, where receivers wait for se-
quencing messages before delivering packets to the applica-
tion only if they suspect them of arriving in the wrong order.
What is needed is a decision mechanism that can be applied
on a per-packet basis to selectively wait for sequencing in-
formation, and this is precisely the heuristic described in the
previous section.

For a predictive mechanism to be a viable option, the
application should provide some form of rollback capability
to the protocol. We assume that the application provides the
protocol with hooks that allow packets to be revoked once
they are delivered, causing a rollback if the application has
already consumed the packet. Since application rollbacks
are likely to be very expensive, we aim at having a very low
percentage of them - typically, one out of every thousand
packets. Note that a packet revocation will only trigger an
application rollback if the application has already consumed
the packet.

4.1 PLATO: Design and Implementation

The basic idea behind PLATO is extremely simple: If
two consecutive packets arrive within ∆ of each other, they
are suspected of arriving in incorrect order and further in-
formation is awaited from the sequencer node before they
are delivered to the application.

A trivial implementation of this idea would involve de-
laying packets for ∆ time and delivering them to the appli-
cation if no other packet arrives within that time. However,
∆ is likely to be in the tens or hundreds of microseconds,
making an efficient implementation of this algorithm dif-
ficult if not impossible on commodity platforms - context
switching granularity is typically in the milliseconds, and

varies greatly over time and across hardware.
As a result, PLATO does not delay packets before pass-

ing them up to the application - instead, it tags each packet
with a timestamp Tm before which it should not be used
by the application, equal to ∆ microseconds after its ar-
rival time. Instead of sleeping for ∆ microseconds and then
waking up and delivering the packet to the application if no
other packet arrives within that time-span, it just delivers
the packet to the application and resumes listening on the
socket. If another packet arrives within ∆ microseconds,
we revoke the last packet from the application instantly -
since we are within the ∆ envelope, we can be sure that
the packet has not been consumed by the application, and
hence the revocation does not trigger a potentially expen-
sive application-level rollback. An important metric for the
protocol, then, is the frequency with which a revocation of a
packet occurs after the corresponding time Tm has passed.

PLATO has three hooks into the application - optdeliver,
which takes a data packet as a parameter and is called to
optimistically deliver packets which may later be revoked;
revoke, which takes a packet descriptor as a parameter and
is called to revoke packets previously optdeliver-ed to the
application, and confirm, which is called with the packet de-
scriptor of a previously optdeliver-ed packet when the final
ordering of that packet is known.

As shown in Figure 7, PLATO processes packets through
a simple pipeline consisting of two queues - a pending
queue, which consists of packets being conservatively with-
held from the application, and a suspicious queue, which
consists of packets already sent up to the application for
which sequencing information has not yet arrived, and
which can consequently be revoked from the application.
Packets in the pending queue are marked suspected of be-
ing out-of-order and will not be delivered to application un-
til sequencing information arrives for them; or, they are not
suspected but are stuck in the queue behind one or more
suspected packets. If no out-of-order arrivals occur, data
packets travel through the pending queue to the suspicious
queue, and then onto the application; if they do occur, the
arrival of sequencing information can cause packets to be
transplanted from the middle of one queue to the other, or
to the application, violating queue FIFO order.

In addition, PLATO maintains a sequencing queue,
which buffers sequencing information - this queue comes
into play only if we receive sequencing information for a
data packet which we have not yet received, and hence have
to queue up all subsequent sequencing information until that
data packet arrives and can be delivered to the application.

We now describe PLATO in terms of two simple events
- the arrival of a data packet, and the arrival of a sequenc-
ing packet. When a data packet is received, PLATO tags it
immediately with the arrival time. If ordering information
for the data packet has already arrived from the sequencer,

the packet is optdeliver-ed to the application and immedi-
ately confirm-ed, with no further processing. If not, the ar-
rival time is compared with the previous data packet’s ar-
rival time, and the difference checked against ∆.

If the difference is less than ∆, the packet is tagged as
suspected, and added to the pending list. Now we need to
locate the previous data packet in the PLATO pipeline and
prevent it from being used by the application. There are
three possibilities -

1. It is in the pending queue and has not been optdeliver-
ed to the application, in which case we can tag it as
suspected.

2. It is the last packet in the suspicious queue and has
been optdeliver-ed to the application, in which case we
revoke it from the application and move it from the tail
of the suspicious queue back to the head of the pending
queue. Note that it is necessarily the last packet in the
suspicious queue and cannot be in the middle, since it
was the last packet to be received.

3. It is in neither the suspicious nor the pending queues,
in which case it has already been sequenced and con-
firm-ed to the application. Nothing more has to be
done in this case.

If the difference is more than ∆, the packet’s fate de-
pends on the contents of the pending queue. If the pending
queue is non-empty - i.e, there are packets ahead of the cur-
rent packet which are tagged suspected and are awaiting or-
dering information - then we need to add this packet to the
end of the pending queue. If the pending queue is empty,
then we can optdeliver the packet and add it to the end of
the suspicious queue.

The second part of the protocol concerns its behavior
when a sequencing packet is received. In its practical imple-
mentation, a sequencing packet contains a list of data packet
descriptors - sorted by the order of arrival at the sequencer
node. We iterate over this list of descriptors, and for each
of them we locate the corresponding data packet within the
PLATO pipeline (if we can’t locate it in the pipeline, we
buffer the descriptor - and all descriptors following it in
this and subsequent sequencing packets - in the sequenc-
ing queue until we receive the data packet). Once we locate
the data packet, we perform one of the following actions:

1. If the packet is in the pending queue, we remove it and
optdeliver and confirm it to the application. We also
dequeue all the packets from the suspicious queue, re-
voke them from the application, tag them as suspected
and move them back to the head of the pending queue;
these are packets incorrectly delivered to the applica-
tion ahead of the currently sequenced packet.

D

optdeliver(A)
optdeliver(E)
optdeliver(B)
optdeliver(D)

B E A

A

E

D

B

C

TC-TD<DELTA

TE-TA>DELTA

Seq Msg
Order: ABCD

D

B

revoke(D)
setsuspect(D)
setsuspect(C)

E A

C

E

revoke(E)
setsuspect(E)

confirm(A, B, C, D)

suspicious

suspicious

suspicious

pending

pending

pending

Underlined packets in
pending are suspected

t

s X YKernel Buffer

P
LA

TO

ev
en

t h
an

dl
er

B E A

D Cpending queue

suspicious queue

‘s’ is a sequencing packet
with the order ‘ABCD’

Application

optdeliver(DataPacket) revoke(PacketDescriptor) confirm(PacketDescriptor)

Application hooks

Figure 7. The PLATO Pipeline

2. If the packet is in the suspicious queue, we remove
it and confirm it to the application. In this case, we
have to dequeue all packets ahead of it in the suspi-
cious queue, revoke them, tag them as suspected and
move them back to the head of the pending queue.

4.2 Implementation and other Details

PLATO is implemented as an event-driven system with
two threads, one running at high priority dequeueing pack-
ets off the socket and pushing them into the event queue,
and the other servicing the queue and processing events.
The implementation is written in Java - for our experiments,
we use Java’s System.nanoTime() method for determining
the current system time at microsecond precision; this may
not be universally portable, but is implemented on most
modern platforms.

PLATO runs a link reliability layer that uses sender-
based sequencing and negative acknowledgments to request
unicast retransmissions of lost packets. Node failure is or-
thogonal to the protocol as it is presented, and any scheme
that works to handle such faults in fixed-sequencer proto-
cols should work equally well here. Also, while we have
presented PLATO as a modification of fixed-sequencer, we
could equally well have modified a moving-sequencer algo-
rithm with similar results.

5 Performance Evaluation

To evaluate PLATO, we ran it in the Emulab 3-switch
setting - recall that this involves a 3 Ghz sender-receiver
pair and a 2 Ghz sender-receiver pair on the Utah Emulab
testbed, with three switches separating them. Our first ex-
periment was aimed at observing the impact of the ∆ pa-
rameter on the performance of the protocol. Figure 8 plots
delivery latency against the left y-axis as we run PLATO at
increasing values of ∆. The left sub-graph shows perfor-
mance at 400 packets per second, and the right sub-graph
at 1600 packets per second, at two different values of k -
the trade-off parameter (from Section 4). The horizontal
fixed lines in these graphs show the performance of fixed-
sequencer ordering for the same trade-off parameter, and
consequently for the same overhead. The bars at the bot-
tom of these graphs - plotted against the right y-axis - show
the fraction of packets that are rolled back. We see from
these graphs that the higher the value of ∆, the higher the
delivery latency and lower the fraction of rollbacks - also,
PLATO always out-performs fixed-sequencer for the corre-
sponding value of k.

Next, we examine PLATO’s performance in the presence
of changing throughput levels. In Figure 9, we start out
with 2 senders sending 200 packets/second each, and add
2 more senders 20 seconds into the experiment sending at
750 packets/second each for a total of 10 seconds - hence,
the data rate in the group jumps from 400 packets per sec-
ond to 1900 packets per second between time t = 20 and

 0

 5000

 10000

 15000

 20000

 25000

 0 5
0

 1
00

 1
50

 2
00

 0

 0.1

 0.2

 0.3

 0.4

 0.5

de
liv

er
y

la
te

nc
y

(m
ic

ro
-s

ec
on

ds
)

fr
ac

tio
n

of
 ro

llb
ac

ks

DELTA (microseconds)

DELTA vs (delivery_latency and fraction of rollbacks); tput = 400

latency (k = 10)
rollbacks (k = 10)
fixed seq (k = 10)

latency (k = 20)
rollbacks (k = 20)
fixed seq (k = 20)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5
0

 1
00

 1
50

 2
00

 0

 0.1

 0.2

 0.3

 0.4

 0.5

de
liv

er
y

la
te

nc
y

(m
ic

ro
-s

ec
on

ds
)

fr
ac

tio
n

of
 ro

llb
ac

ks

DELTA (microseconds)

DELTA vs (delivery_latency and fraction of rollbacks); tput = 1600

latency (k = 10)
rollbacks (k = 10)
fixed seq (k = 10)

latency (k = 20)
rollbacks (k = 20)
fixed seq (k = 20)

Figure 8. ∆ vs Delivery Latency: 400 packets/second (left) and 1600 packets/second (right)

t = 30. On the left y-axis of these graphs, we plot 1-second
moving averages every 10 milliseconds, of the delivery la-
tencies achieved by PLATO and fixed-sequencer. As we can
see from the graphs, PLATO’s delivery latency remains con-
stant throughout the experiment, whereas fixed-sequencer’s
delivery latency varies drastically with the data rate. The
bars at the bottom of the graphs is a 1-second moving frac-
tion of rollbacks, plotted against the right y-axis. Note that
for a higher value of k, delivery latencies are much higher
for both protocols - since the latency to receiving ordering
information from the sequencer node is higher.

Figure 10 shows how delivery latency and rollback frac-
tion are affected by the data throughput, for a particular
value of ∆. As the throughput goes up, the latency to receiv-
ing a sequencing packet goes down for a particular value
of the trade-off parameter k, and consequently delivery la-
tency drops. There is no real trend for rollbacks at this par-
ticular setting of ∆ - all the values are within a tenth of
a percent; however, for lower values of ∆ we observe the
fraction of rollbacks going up with throughput.

In Figure 11, we replace the static ∆ parameterization
of PLATO by a simple adaptive scheme. We multiply the
current value of ∆ by 1.5 when a rollback occurs and the
current 1-second moving fraction of rollbacks is more than
0.01. Conversely, we multiply ∆ by .9 every 100 millisec-
onds or 1000 packets, whichever occurs first, if the moving
fraction of rollbacks is less than 0.01. In Figure 11 we show
that this simple mechanism gives good performance - for
comparison, this setting is similar to the k = 10 scenario in
Figure 9, during the traffic spike.

6 Related Work

A plethora of total ordering protocols exists in literature
- we would like to point the reader to [4], which offers an
excellent and thorough survey of this body of work, along

 0

 5000

 10000

 15000

 20000

 25000

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 0

 0.002

 0.004

 0.006

 0.008

 0.01
de

liv
er

y
la

te
nc

y
(m

ic
ro

-s
ec

on
ds

)

fr
ac

tio
n

of
 ro

llb
ac

ks

throughput (# of 1k packets per second)

throughput vs (delivery_latency and fraction of rollbacks); DELTA = 160

latency (k = 10)
rollbacks (k = 10)

fixed seq latency (k = 10)
latency (k = 20)

rollbacks (k = 20)
fixed seq latency (k = 20)

Figure 10. Throughput vs Delivery Latency

-2000

 0

 2000

 4000

 6000

 8000

 10000

 10 15 20 25 30
 0

 0.02

 0.04

 0.06

 0.08

 0.1

M
ic

ro
se

co
nd

s

Fr
ac

tio
n

of
 R

ol
lb

ac
ks

Time (seconds)

DELTA=Adaptive, K=10

Delivery Latency
DELTA

Rollbacks

Figure 11. Setting ∆ Adaptively

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40 45
 0

 0.01

 0.02

 0.03

 0.04

 0.05

D
el

iv
er

y
L

at
en

cy
 (M

ic
ro

se
co

nd
s)

Fr
ac

tio
n

of
 R

ol
lb

ac
ks

Time (seconds)

DELTA=140, k=10

Fixed-Sequencer
PLATO

Rollbacks

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40 45
 0

 0.01

 0.02

 0.03

 0.04

 0.05

D
el

iv
er

y
L

at
en

cy
 (M

ic
ro

se
co

nd
s)

Fr
ac

tio
n

of
 R

ol
lb

ac
ks

Time (seconds)

DELTA=140, k=20

Fixed-Sequencer
PLATO

Rollbacks

Figure 9. Traffic spikes up from 200 packets/sec to 1900 packets/sec between 20 and 30 seconds.

with very useful categorizations. The particular subclass of
ordering protocols that our work is closest to are the opti-
mistic algorithms [5, 6, 8].

Sousa, et al. propose a solution for WANs where re-
ceivers observe network distances and delay packets appro-
priately to achieve a total ordering [7]. While this work is
close in spirit to our own, it targets a completely different
networking environment and uses a technique that works
very well in the wide-area but may not be quite as useful in
switched networks.

7 Conclusion

Low-latency data replication is a fundamental need for
an emerging class of datacenter applications. PLATO is a
total-ordering protocol designed for such settings - it tar-
gets the traffic patterns commonly observed in these ap-
plications and exploits the characteristics of the underlying
hardware. We experimentally show that out-of-order deliv-
ery occurs to a reasonable degree on switched datacenter-
style networks, and that the inter-arrival time of consecutive
packet pairs is a powerful predictor of disorder.

8 Acknowledgments

We thank Danny Dolev for his valuable comments,
Saikat Guha for a key discussion of protocol implementa-
tion, Mike Hibler for his quick responses on Emulab topol-
ogy, and Art Munson and Einar Vollset for their feedback.

References

[1] M. Balakrishnan and K. Birman. Reliable multicast for
time-critical systems. In Proceedings of the 1st Work-

shop on Applied Software Reliability (WASR 2006),
2006.

[2] S. E. Deering and D. R. Cheriton. Multicast routing in
datagram internetworks and extended lans. ACM Trans.
Comput. Syst., 8(2):85–110, 1990.

[3] X. Défago, A. Schiper, and P. Urbán. Comparative
performance analysis of ordering strategies in atomic
broadcast algorithms. IEICE Trans. on Information and
Systems, E86-D(12):2698–2709, December 2003.

[4] X. Défago, A. Schiper, and P. Urbán. Total order broad-
cast and multicast algorithms: Taxonomy and survey.
ACM Computing Surveys, 36(4):372–421, December
2004.

[5] B. Kemme, G. Alonso, F. Pedone, and A. Schiper.
Processing transactions over optimistic atomic broad-
cast protocols. In 19th IEEE International Conference
on Distributed Computing Systems (ICDCS’99), 1999.

[6] F. Pedone and A. Schiper. Optimistic atomic broadcast.
In DISC, pages 318–332, 1998.

[7] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Opti-
mistic total order in wide area networks. In SRDS, page
190, 2002.

[8] P. Vicente and L. Rodrigues. An indulgent uniform to-
tal order algorithm with optimistic delivery. In SRDS,
pages 92–101, 2002.

[9] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proc. of the
Fifth Symposium on Operating Systems Design and Im-
plementation, pages 255–270, Boston, MA, Dec. 2002.
USENIX Association.

