
The Enfragmo system

October 2011

CONTENTS 1

Contents

1 Introduction 2
1.1 Credits . 2
1.2 Our Project . 2
1.3 The Enfragmo System, an Overview 2

2 Tutorial 3
2.1 Graph K-Colouring . 3

2.1.1 Example Theory File . 3
2.1.2 Example Instance File . 4
2.1.3 Invoking Enfragmo . 5

2.2 Hamiltonian Cycle . 5
2.2.1 Example Theory File . 5
2.2.2 Example Instance File . 7

2.3 Weighted Latin Square . 7
2.3.1 Example Theory File . 7
2.3.2 Example Instance File . 8

2.4 Bounded Spanning Tree . 9
2.4.1 Example Theory File . 9
2.4.2 Example Instance File . 10

3 Options 11
3.1 Ground Solvers . 11
3.2 Gadgets for aggregates . 11

3.2.1 COUNT Gadgets . 11
3.2.2 MIN/MAX Gadgets . 11

4 Syntax for the Enfragmo System 12
4.1 Problem Specification Grammar 12
4.2 Instance Description Grammar 14

1 INTRODUCTION 2

1 Introduction

1.1 Credits

The project leaders are David Mitchell and Eugenia Ternovska. The primary
developers of the Enfragmo system are Amir Avani, Xiongnan (Newman) Wu,
and Shahab Tasharrofi. This manual was written by Xiongnan (Newman) Wu
and Lucas Swanson.

1.2 Our Project

Computationally hard search and optimization problems are ubiquitous in sci-
ence, engineering and business. Examples include drug design, protein folding,
phylogeny reconstruction, hardware and software design, test generation and
verification, planning, timetabling, scheduling and on and on. In rare cases,
practical application-specific software exists, but most often development of
successful methods requires hiring specialists, and often significant time and ex-
pense, to apply one or more computational approaches. Typical examples are
mathematical programming (i.e., integer-linear programming, ILP), constraint
logic programming (CLP), and development of custom-refined implementations
of methods such as simulated annealing, branch-and-bound, reduction to SAT,
etc.

One goal of the MX project is to provide another practical technology for
solving these problems, but one which would require considerably less special-
ized expertise on the part of the user, thus making technology for solving such
problems accessible to a wider variety of users. In this approach, the user gives
a precise specification of their search (or optimization) problem in a declarative
modelling language. A solver then takes this specification, together with an
instance of the problem, and produces a solution to the problem (if there is
one).

1.3 The Enfragmo System, an Overview

In our approach, search problems are formalized as model expansion, which
is the logical task of expanding a given structure by new relations. Formally,
the user is axiomatizing their problem, formalized as model expansion, in some
extension of classical logic.

At present, our focus is on problems in the complexity class NP. For this
case, the modelling language is based on classical first order logic (FO), and the
default mechanism for constructing a solver is by “grounding”: given a specifi-
cation and instance, produce a formula of propositional logic that describes the
solutions, and pass this to an engine that solves the propositional satisfiability
problem (SAT solver).

2 TUTORIAL 3

2 Tutorial

Several examples will be used to introduce the basic usage of the Enfragmo
system.

2.1 Graph K-Colouring

Graph colouring is a classic and well-studied NP-hard search problem. An
instance consists of a graph and a number K, and a solution is a proper K-
colouring of the graph. That is, we want a function mapping vertices to a set
of K colours, so that no two adjacent vertices are mapped to the same colour.

We take our instance to consist of the graph plus the set of colours, so we
have two sorts: vertices and colours. The axiomatization simply says that there
is a binary relation Colour which must be a proper colouring of the vertices. So,
in FO appropriate axioms could be:

∀ v ∃ c Colour(v, c)
∀ v ∀ c1 Colour(v, c1)⇒ ¬∃ c2 < c1 Colour(v, c2)
∀ v1 ∀ v2 ∀ c (Colour(v1, c) ∧ Colour(v2, c))⇒ ¬ Edge(v1, v2)

Solving an instance of this problem with the Enfragmo system requires cre-
ating two files that the system will use as input: a theory file containing the
problem specification and an instance file containing the instance description.
The problem specification gives the type (sort) declarations, vocabularies, and
axiomatization. The instance description gives the domains (i.e., a concrete set
for each type or sort) and interpretations of the instance predicates.

2.1.1 Example Theory File

GIVEN:

TYPES: Vtx Clr;

PREDICATES:

Edge (Vtx, Vtx)

Colour (Vtx, Clr);

FIND:

Colour;

PHASE:

SATISFYING:

// every vertex has at least one colour

!v:Vtx : ?c:Clr : Colour (v, c);

// every vertex has no more than one colour

!v:Vtx c1:Clr : (Colour (v, c1) =>

~ ?c2:Clr < c1 : Colour (v, c2));

2 TUTORIAL 4

// any two vertices of the same colour do not share an edge

!v1:Vtx v2:Vtx c:Clr :

((Colour (v1, c) & Colour (v2, c)) => ~ Edge (v1, v2));

PRINT:

Colour;
graph-colour.bT

As can be seen above, theory files are divided into four parts. The “GIVEN”
part defines the “TYPEs” and the relation symbols that are used to describe the
problem. The Enfragmo system allows for two flavours of types: enumerable
types (which are defined by the TYPES keyword.) and integer types (which are
defined by the INTTYPES keyword.). Note that the list of types and the list of
relation symbols are both terminated with a semi-colon. The “FIND” section de-
clares which of the defined relations describe the solution to the problem (these
are the “expansion predicate”). The “PHASE” section is divided into an optional
“FIXPOINT” subsection, which will be described later, and a “SATISFYING” sub-
section. The “SATISFYING” subsection contains the constraints which must be
satisfied by any solution to the problem. These constraints take the form of
ASCII representations of FO formulas. The mapping from logical symbols to
ASCII symbols is given in Table 1. The final section, “PRINT”, lists the predi-
cates you wish for Enfragmo to include in its output. A “//” at the beginning of
a line denotes that that line is a comment and will be ignored by the Enfragmo
system.

Table 1: ASCII Equivalents for Logical Symbols

Logical Symbol ∀ ∃ ∧ ∨ ¬ ⇒ ⇔

ASCII Representation ! ? & | ~ => <=>

Infix binary predicates <=, =, >, and >= are all built-in. Formally, these
are abbreviations. Only variables of the same type may be compared, and all
order operators reflect the same order as <. The language also includes bounded
quantifiers, x<y, x<=y, x>y, and x>=y, which are also formally abbreviations.
For example, !x y<x: φ is the ASCII representation of ∀ x ∀ y < x φ, which
abbreviates ∀ x ∀ y (y < x ⇒ φ).

2.1.2 Example Instance File

TYPE Vtx [1..5]

TYPE Clr [’red’, ’green’, ’blue’]

PREDICATE Edge

(1, 2) (1, 4) (1, 5) (2, 3) (2, 5) (3, 4) (3, 5)
graph-colour.bI

2 TUTORIAL 5

Instance files contain the domains of types and the extensions of instance
relations. Domains may be given as a range of integers (e.g., Vtx [1..5]) or as
an enumerated list of constant symbols (e.g., Clr [’red’, ’green’, ’blue’]).
For a range of integers the order is numerical; for an enumerated list it is as
given. Extensions of relations are given as a set of space-separated tuples, with
elements of tuples being comma-separated.

2.1.3 Invoking Enfragmo

To search for a solution to this example with the Enfragmo system, navigate to
the directory containing the Enfragmo system and run the following command:

$./Enfragmo graph-colour.bT graph-colour.bI

where “graph-colour.bT” is the name of the theory file shown above, and “graph-
colour.bI” is the name of the instance file.

2.2 Hamiltonian Cycle

Hamiltonian Cycle is another “classic” NP-hard search problem. Given a graph,
find a cycle in the graph that visits every vertex exactly once. Existence is NP-
complete.

In our Enfragmo axiomatization we use the built-in ordering < on vertices
that, together with the pair (MAX, MIN), produces a cycle that visits every
vertex once. Then we require that Map() is a permutation on the vertices that
maps to this cycle. The solver must also construct the actual set of edges, Hc(),
in agreement with this permutation.

2.2.1 Example Theory File

GIVEN:

TYPES: Vtx;

PREDICATES:

Edge (Vtx, Vtx)

EdgeCom (Vtx, Vtx) SuccLoop (Vtx, Vtx)

Map (Vtx, Vtx) Hc (Vtx, Vtx);

FIND:

Map, Hc;

PHASE:

FIXPOINT (EdgeCom SuccLoop) :

// define the commutative edge relation

INFLATE { g1:Vtx g2:Vtx :

EdgeCom (g1, g2) <=>

(Edge (g1, g2) | Edge (g2, g1)) }

2 TUTORIAL 6

// define the looping successor relation

INFLATE { m1:Vtx m2:Vtx :

SuccLoop (m1, m2) <=>

(SUCC[Vtx] (m1, m2) | (MAX[Vtx] = m1 & MIN[Vtx] = m2)) }

;

SATISFYING:

// map the first map vertex to the first graph vertex

Map (MIN[Vtx], MIN[Vtx]);

// every map vertex is mapped to exactly one graph vertex

! m:Vtx : ? g1:Vtx : (Map (m, g1) &

! g2:Vtx : (Map (m, g2) => g1 = g2));

// every graph vertex is mapped to by exactly one map vertex

! g:Vtx : ? m1:Vtx : (Map (m1, g) &

! m2:Vtx : (Map (m2, g) => m1 = m2));

// successive map vertices are only mapped to

// graph vertices that share an edge

! m1:Vtx m2:Vtx g1:Vtx :

((Map (m1, g1) & SuccLoop (m1, m2)) =>

? g2:Vtx : (Map (m2, g2) & EdgeCom (g1, g2)));

// every edge shared by graph vertices mapped to by

// successive map vertices is part of the hamiltonian cycle

! m1:Vtx m2:Vtx g1:Vtx g2:Vtx :

(((Map (m1, g1) & Map (m2, g2)) & SuccLoop (m1, m2)) =>

Hc (g1, g2));

// every edge in the hamiltonian cycle is shared by

// graph vertices mapped to by successive map vertices

! g1:Vtx g2:Vtx : (Hc (g1, g2) =>

? m1:Vtx m2:Vtx :

((Map (m1, g1) & Map (m2, g2)) & SuccLoop (m1, m2)));

PRINT:

Hc;
ham-cycle.bT

This example illustrates the use of the bi-conditional to define abbrevia-
tions (e.g. “!g1:Vtx: !g2:Vtx<g1: (EdgeCom(g1,g2) <=> (Edge(g1,g2) |

Edge(g2,g1)))”). The predicates EdgeCom and SuccLoop are not strictly nec-
essary to find a solution to the problem, but they do clarify the axiomatization
somewhat. Also shown in this example are the order-relevant built-in functions:
MIN[type] and MAX[type] and the built-in SUCC[type](x, y) binary relation.
MIN[type] and MAX[type] refer respectively to the least and greatest elements
in the domain of the specified type. SUCC[type](x, y) is true if and only if the

2 TUTORIAL 7

element x is succeeded by the element y in the domain of the specified type, as
reflected by the order of <.

2.2.2 Example Instance File

TYPE Vtx [1..5]

PREDICATE Edge

(1, 2) (1, 3) (1, 5) (2, 4) (2, 5) (3, 4) (3, 5)
ham-cycle.bI

2.3 Weighted Latin Square

A Latin Square (or Quasigroup) is an n by n matrix with elements in {1,. . . ,n},
where every row and every column has every possible element. In the Weighted
Latin Square Problem, an instance is the set {1,. . . ,n} plus a weight for every
position in the matrix and a maximum weight. The task is to construct a Latin
Square with the additional constraint that for every row, the sum of the weights
of each cell in that row multiplied by the element in that row is less than the
given maximum weight. i.e.,

∀ row :

n∑
col=1

(wt (row, col) · elem (row, col)) < max weight

where wt(row, col) is the weight of a position in the matrix and elem(row, col)
is the element at that position.

2.3.1 Example Theory File

GIVEN:

INTTYPES: Num Weight;

PREDICATES:

cell (Num, Num, Num);

FUNCTIONS:

weight (Num, Num):Weight

max_weight ():Weight;

FIND:

cell;

PHASE:

SATISFYING:

// every position has exactly one element

! row:Num col:Num : ? elem1:Num :

2 TUTORIAL 8

(cell(row, col, elem1) & ! elem2:Num :

(cell(row, col, elem2) => elem2 = elem1));

// in every row every element appears in exactly one column

! row:Num elem:Num : ? col1:Num :

(cell(row, col1, elem) & ! col2:Num :

(cell(row, col2, elem) => col2 = col1));

// in every column every element appears in exactly one row

! col:Num elem:Num : ? row1:Num :

(cell(row1, col, elem) & ! row2:Num :

(cell(row2, col, elem) => row2 = row1));

// the sum of the weight products on each line is

// less than the maximum weight

! row:Num : max_weight() >

SUM { col:Num elem:Num ;

elem * weight (row, col);

cell (row, col, elem) };

PRINT:

cell;
wlsquare.bT

The weighted latin square example introduces another aspect of the GIVEN

part of a theory file: function definitions. Function definitions are similar to
relation definitions, except that function definitions end with a return type. For
example, the line “weight (Num, Num, Num):Weight” defines a function that
takes three Num arguments and returns an element of the Weight domain. Func-
tions without arguments (such as “max_weight ():Weight”) can be used to
define constant functions. Arithmetic operations, which work as one would ex-
pect, are also demonstrated in this example. Only variables of integer flavoured
types can be used as part of arithmetic operations. If a variable of a non-integer
type needs to be used as part of arithmetic operations, it must be casted to
integers by an INTEGER operator. E.g. INTEGER{x}, where x is the vari-
able needs to be casted. This example makes use of SUM aggregate function to
calculate the sum of multiplied weights of a given row. This function has the fol-
lowing syntax: “SUM {<vars to count>; <term to be summed>; <condition to-
satisfy>}”, where “<vars to count>” is a standard variable declaration state-

ment, “<term to be summed>” is a proper term, and “<condition to satisfy>”
is a FO formula. In the example, SUM {col:Num elem:Num; elem * weight

(row, col); cell (row, col, elem)} returns 0 plus the sum of all values of
elem * weight (row, col) across all instantiations col and elem for which
the predicate cell (row, col, elem) is true.

2.3.2 Example Instance File

2 TUTORIAL 9

TYPE Num [1..3]

TYPE Weight [1..54]

FUNCTION weight

(1, 1: 4)

(1, 2: 2)

(1, 3: 6)

(2, 1: 1)

(2, 2: 2)

(2, 3: 3)

(3, 1: 2)

(3, 2: 1)

(3, 3: 4)

FUNCTION max_weight (:30)

wlsquare.bI

As can be seen above, extensions of functions are similar to those of relations,
with the return value separated from the arguments by a colon symbol (:).

2.4 Bounded Spanning Tree

A spanning tree of a graph is a sub-graph that is a tree and visits every vertex.
In this version of the problem, an instance consists of a directed graph and
a bound K, and we require a directed spanning tree in which no vertex has
out-degree larger than K. Existence is NP-complete.

2.4.1 Example Theory File

GIVEN:

TYPES: Vtx;

INTTYPES: Num;

PREDICATES:

Edge (Vtx, Vtx) Map (Vtx, Vtx) Bstedge (Vtx, Vtx);

FUNCTIONS:

K ():Num;

FIND:

Map, Bstedge;

PHASE:

SATISFYING:

// every traversal vertex is mapped to

// exactly one graph vertex

! t:Vtx : ? g1:Vtx : (Map (t, g1) &

2 TUTORIAL 10

! g2:Vtx : (Map (t, g2) => g2 = g1));

// every graph vertex is mapped to

// by exactly one traversal vertex

! g:Vtx : ? t1:Vtx : (Map (t1, g) &

! t2:Vtx : (Map (t2, g) => t2 = t1));

// the first traversal vertex is mapped to

// the graph vertex that is the root of the tree

! g1:Vtx : (Map (MIN[Vtx], g1) =>

~ ? g2:Vtx : Bstedge (g2, g1));

// every graph vertex that is not the root

// has at least one parent in the tree

! g1:Vtx : (~ Map (MIN[Vtx], g1) =>

? g2:Vtx : Bstedge (g2, g1));

// the traversal vertex mapped to any graph vertex comes before the

// traversal vertices mapped to any children of that graph vertex

! g1:Vtx g2:Vtx : (Bstedge (g2, g1) =>

! t1:Vtx : (Map (t1, g2) =>

~ ? t2:Vtx <= t1 : Map (t2, g1)));

// every parent graph vertex shares an edge

// with every one of its children

! g1:Vtx g2:Vtx : (Bstedge (g2, g1) => Edge (g2, g1));

// every graph vertex has no more than one parent

! g1:Vtx g2:Vtx : (Bstedge (g2, g1) =>

~ ? g3:Vtx < g2 : Bstedge (g3, g1));

// every graph vertex has out-degree less than or equal to the bound

! g1:Vtx : K() >= COUNT { g2:Vtx; Bstedge (g1, g2) };

PRINT:

Bstedge;

bstree.bT

This example introduces the COUNT aggregate function. This function has the
following syntax: “COUNT {<vars to count>; <condition to satisfy>}”, where
“<vars to count>” is a standard variable declaration statement and “<cond-
ition to satisfy>” is a FO formula. In the example COUNT {g2:Vtx; Bstedge

(g1, g2)} returns the number of distinct values of g2 for which the predicate
Bstedge (g1, g2) is true.

2.4.2 Example Instance File

TYPE Vtx [1..5]

TYPE Num [1..2]

3 OPTIONS 11

PREDICATE Edge

(1, 2) (1, 4) (1, 5) (2, 3) (2, 5) (3, 4) (3, 5)

FUNCTION K (:2)
bstree.bI

3 Options

3.1 Ground Solvers

Currently, we support two kinds of ground solvers. One is MiniSat SAT solver
and the other one is MXC SAT solver. The default ground solver type is “In-
ternalMXC”. To select the MiniSat SAT solver, run the Enfragmo system with
following command:

$./Enfragmo theoryfile instancefile --GroundSolverType InternalMiniSat

3.2 Gadgets for aggregates

Users can select different gadgets for different aggregate operators.

3.2.1 COUNT Gadgets

Currently, we support four COUNT gadgets. They are “DC” gadget, “DP”
gadget and “SN” gadget. 1 The default COUNT gadget is the “DC” gad-
get. The “CountMode” option can be used to select different COUNT gadgets.
E.g. to use the “SN” COUNT gadget, run the Enfragmo system with following
command:

$./Enfragmo theoryfile instancefile --CountMode SN

When MXC ground solver is in use, users can select “CARD” mode. In this
case, no gadget will be selected and the COUNT aggregates will be directly
handled by the MXC SAT solver.

3.2.2 MIN/MAX Gadgets

Currently, we support two MIN/MAX gadgets. They are “DC” gadget and
“DP” gadget. The default gadget for MIN and MAX aggregate is the “DP”
gadget. To use the “DC” gadget, run the Enfragmo system with following
command:

$./Enfragmo theoryfile instancefile --MinOrMaxMode DC

1Details of gadgets can be found in ...URL of the paper.......

4 SYNTAX FOR THE ENFRAGMO SYSTEM 12

4 Syntax for the Enfragmo System

4.1 Problem Specification Grammar

<theory_file> ::= <given_part> <find_part> <phase_part> <print_part>

<given_part> ::= GIVEN : <types_decl> ; <funcs_decl> ;

| GIVEN : <types_decl> ; <preds_decl> ;

| GIVEN : <types_decl> ; <preds_decl> ; <funcs_decl> ;

<types_decl> ::= TYPES : <identifier_list> ; INTTYPES : <identifier_list>

| TYPES : <identifier_list>

| INTTYPES : <identifier_list>

<identifier_list> ::= | <identifier_list> <identifier>

<preds_decl> ::= PREDICATES : <preds_list>

<a_pred_DCL> ::= <identifier> (<IdentifierListSeparatedByComma>)

<preds_list> ::= | <a_pred_DCL> <preds_list>

<IdentifierListSeparatedByComma> ::= <identifier>

| <IdentifierListSeparatedByComma> , <identifier>

<funcs_decl> ::= FUNCTIONS : <funcs_list>

<funcs_list> ::= | <func_DCL> <funcs_list>

<func_DCL> ::= <identifier> () : <identifier>

| <identifier> (<IdentifierListSeparatedByComma>) : <identifier>

<find_part> ::= FIND : <identifier_list> ;

<phase_part> ::= <a_phase> | <a_phase> <phase_part>

<a_phase> ::= PHASE : <fixpoint_part> <satisfying_part>

<fixpoint_part> ::= | FIXPOINT (<identifier_list>) : <inflation_part> ;

<inflation_part> ::= <an_inflation> | <inflation_part> <an_inflation>

<an_inflation> ::= INFLATE <inflate_description>

<an_inflate_description> ::= { <var_DCL> : <identifier> (<IdentifierListSeparatedByComma>) <=>

<FO_formula> }

<inflate_description> ::= <an_inflate_description>

| <inflate_description> <an_inflate_description>

4 SYNTAX FOR THE ENFRAGMO SYSTEM 13

<satisfying_part> ::= | SATISFYING : <satisfying_rules>

<satisfying_rules> ::= <FO_formula> ; | <satisfying_rules> <FO_formula> ;

<FO_formula> ::= (<FO_formula>) | <unitary_formula>

| <FO_formula> <connective> <unitary_formula>

<unitary_formula> ::= (<FO_formula>)

| <quantifier> <var_DCL> : <FO_formula>

| <quantifier> <a_var_DCL> <ord_operator> <term_nodes> : <unitary_formula>

| <unitary_formula> <binary_operator> <unitary_formula>

| ~ <unitary_formula>

| <atomic_formula>

<atomic_formula> ::= <relation_formula>

| SUCC [<identifier>] (<term_nodes> , <term_nodes>)

| <ord_relation> | TRUE | FALSE

<relation_formula> ::= <identifier> (<args>)

<ord_relation> ::= <term_nodes> <ord_operator> <term_nodes>

<min_func> ::= MIN [<identifier>]

<max_func> ::= MAX [<identifier>]

<size_func> ::= SIZE [<identifier>]

<abs_func> ::= ABS (<term_nodes>)

<func_ref> ::= <identifier> (<args>) | <identifier> ()

<var_DCL> ::= <a_var_DCL> | <var_DCL> <a_var_DCL>

<a_var_DCL> ::= <identifier> : <identifier>

<args> ::= <term_nodes> | <args> , <term_nodes>

<term_nodes> ::= <a_term_node> | (<term_nodes>) | <term_nodes> + <term_nodes>

| <term_nodes> * <term_nodes> | <term_nodes> - <term_nodes>

<a_term_node> ::= <var_ref> | <min_func> | <max_func> | <abs_func>

| <func_ref> | <size_func> | <aggregate> | <int_term_node>

<aggregate> ::= COUNT { <var_DCL> ; <FO_formula> }

| MIN { <var_DCL> ; <term_nodes> ; <FO_formula> ; <term_nodes> }

| MAX { <var_DCL> ; <term_nodes> ; <FO_formula> ; <term_nodes> }

| SUM { <var_DCL> ; <term_nodes> ; <FO_formula> }

4 SYNTAX FOR THE ENFRAGMO SYSTEM 14

<var_ref> ::= <identifier>

<int_term_node> ::= <int_number> | INTEGER { <term_nodes> }

<arit_operator> ::= + | * | -

<quant_part> ::= <quantifier> <var_DCL>;

<quantifier> ::= ? | !

<binary_operator> ::= & | ’|’ (or)

<ord_operator> ::= < | <= | > | >= | =

<connective> ::= & | ’|’ (or) | => | <=>

<print_part> ::= | PRINT : <predicates>

<predicates> ::= | <predicates> <identifier>

<identifier> ::= [a-zA-Z][0-9a-zA-Z_]+

4.2 Instance Description Grammar

<instance_file> ::= <type_parts> <pred_parts> <func_parts>

<type_parts> ::= <a_type_part> | <type_parts> <a_type_part>

<a_type_part> ::= TYPE <identifier> <range>

<range> ::= [continous_values]

<continous_values> ::= <integer>..<integer>

<discrete_values> ::= <a_discrete_value>

| <discrete_values>, <a_discrete_value>

<a_discrete_value> ::= <integer> | <string>

<pred_parts> ::= | <pred_parts> <a_predicate_part>

<a_predicate_part> ::= PREDICATE <identifier> <predicate_values>

<predicate_values> ::= | <a_predicate_value>

| <predicate_values> <a_predicate_value>

<a_predicate_value> ::= (<discrete_values>)

4 SYNTAX FOR THE ENFRAGMO SYSTEM 15

<func_parts> ::= | <func_parts> <a_function_part>

<a_function_part> ::= FUNCTION <identifier> <function_values>

<function_values> ::= <a_function_value>

| <function_values> <a_function_value>

<a_function_value> ::= (<func_args>:<func_return_value>)

<func_args> ::= | <discrete_values>

<func_return_value> ::= <integer> | <string>

<identifier> ::= [a-zA-Z][0-9a-zA-Z_]+

<string> ::= ’[0-9a-zA-Z_]+’

<integer> ::= [0-9]+

