
Grounding Count Constraints
Amir Aavani, Xiongnan (Newman) Wu, David Mitchell, Eugenia Ternovska

Abstract

There are generic applications which can be used to solve a combinatorial search problem. A
common approach in these tools is to use one or more efficient general low-level solvers (such as
SAT solver or ILP solver) in background. A user specifies his/her problem in a high level language
and the specification is converted to the solver’s input language. The process of translating a high-
level language to a solver’s input language is called grounding.

In our group, we had a grounding engine whose input language was a fragment of first-order
logic (FO) extended with arithmetic. Although, the language was powerful enough to express all
NP search problems but specifying certain problems in the language was complicated. To resolve
this issue, we have added aggregates to the the syntax of engine’s input language and extended
the original grounding algorithm to be able to handle these constructs. To do so, we developed
a method which allows us to choose a particular representation for aggregates. In this paper, we
describe the six representations we have used to convert count aggregate to SAT. We compared
the performance of these encodings both theoretically and experimentally. The results show that
each of them performs the best in some cases and this motivates us to propose that automatic
methods for selecting the encoding of each constraint at grounding time may be better than any
fixed choice, and also better than having the choice made by the author of the specification. We
make a preliminary suggestion toward developing such a method.

1 Introduction

An important direction of work in constraint-based methods is the development of declarative lan-
guages for specifying or modelling combinatorial search problems. These languages provide users
with a notation in which to give a high-level specification of a problem (see e.g. ESSENCE [5]).
By reducing the need for specialized constraint programming knowledge, these languages make the
technology accessible to a wider variety of users. In our group, a logic-based framework for a spec-
ification/modelling language was proposed [9]. We undertake a research program of both theoretical
development and demonstrating practical feasibility through system development.

Our tools are based on grounding, which is the task of taking a problem specification, together with
an instance, and producing a propositional formula representing the solutions to the instance1. Our
engine’s input language is FO extended with arithmetic and aggregates. Here, we consider grounding
to propositional logic, with the aim of using SAT solvers as the problem solving engine. Note that
SAT is just one possibility. A similar process can be used for grounding from a high-level language to
e.g. cplex, various SMT and ground constraint solvers, e.g. MINION [6], etc., which is a subject of
future work. An important advantage in solving through grounding is that the speed of ground solvers
improves all the time, and we can always use the best and the latest solver available.

The ultimate goal of having a high-level language is to enable naive users to encode their problems.
For this purpose, it is necessary to enrich the language with the useful structures, such as COUNT and
SUM aggregates. Although adding these aggregates does not increase the expressive power of the
language, it makes the process of encoding of problems much easier. Currently, our grounder gets a
problem description as its input and outputs a CNF, an input to SAT solver, and translates a satisfying
assignment, if one is found, into a solution for the original problem. To extend the input language of
the grounder, we need to be able to convert the new structures to CNF.

1By instance we always understand an instance of a search problem, e.g. a graph is an instance of 3-colourability.

1

Grounding Count Constraints Aavani, Wu, Mitchell, Ternovska

This rest of this paper is organized as follows: In section 2, a detailed description of six translations
is presented. The number of clauses and Tseiten variables generated by each of those encodings are
studied in section 3. In next section, we present results of experiments that show that the performance
of SAT solvers is affected by the encoding and in section 5 we describe an algorithm which can be
used to select the best translation.

2 Encodings for Count

A count-gadget, C, is a procedure which gets a set of ground formulas, SF = { f1, · · · , fn}, and a
non-negative integer, k, as its input and outputs a set of clauses, Ck

SF
, such that in all solutions for Ck

SF

exactly k formulas out of the set SF are true. Essentially, a count-aggregate in a first order specification
can be converted to a cardinality constraints in CNF representation by introducing a new Tseiten
variable for each ground formula in the aggregate. The detailed description of how a Tseiten variable
can be created for a ground formula can be found [10]. In SAT context, cardinality constraints have
been studied for a long time and there are several encodings for cardinality constraints which support
unit propagation[8][1]. First, a high-level description of two well-known such encodings, BDD and
Sorting-Network based encodings, are presented. In the rest of this section, a modified version of
one of the existing encodings is discussed and then three translations, which are to the best of our
knowledge are new encoding and have not previously appeared in the literature, are described.

We may use Ck
S instead of Ck

SF
where S = {x1, · · · ,xn} is a set of Tseiten variables and SF =

{ f1, · · · , fn} is a set of ground formulas such that xi is the Tseiten variable created by grounding
algorithm for fi.

2.1 Count-Gadget Through BDDs (DP)

A set of clauses encoding a cardinality constraint can be constructed based on a BDD representation
of the constraint. We adopt the algorithm described in [4]. Each BDD node is an if-then-else gate. So,
the constraint |x1, · · · ,xn|= k can be described using (n− k+1)× k such nodes.

The idea we used is similar to that of BDD circuits. We inductively define Fc
r ’s variables using

the following relations:

Fc
r =

{
> if r and c are both zero
⊥ r = 0 and c > 0

and
Fc+1

r+1 = (Fc
r ∧ xr+1)∨ (Fc+1

r ∧¬xr+1)

And the other inductive case is F0
r+1 = F0

r ∧¬xr+1
Intuitively, in each assignment, M, which M |= Fc

r we have |{xi|M |= xi, i ≤ r}| = c. i.e., in
all the assignments satisfying Fc

r , out of the first r input variables, exactly c of them are true. The
way F variables are described is very similar to how one fills the arrays in ”dynamic programming”
approaches.

Prop. 1. If an assignment satisfies Fk
n , it satisfies exactly k formulas out of {x1, · · · ,xn}. So, Fk

n can
be used as the output of C({x1, · · · ,xn},k).

Sometimes, we refer to the result of a gadget as answer produced by that gadget.

Ex. 1. An answer to C({x1, · · · ,x3},1) can be produced using this method as:

F1
3 = (x3∧ (¬x2∧¬x1))∨ (¬x3∧ ((x2∧¬x1)∨ (¬x2∧ x1)))

2

Grounding Count Constraints Aavani, Wu, Mitchell, Ternovska

2.2 Count-Gadget Using Sorting-Networks (SN)

A sorting network is a circuit with n input wires and n output wires consisting of a set of comparators
with two input wires and two output wires. A comparator compares its two inputs and outputs the
greater one into its first output wire and puts the smaller one on its second output wire. Each output
of a comparator is used as an input to another comparator except those used as output wires of the
sorting network itself[2]. A comparator element can be defined as a circuit with two input wires, f1
and f2, and two output wires, o1 and o2, where o1 = f1∨ f2 and o2 = f1∨ f2.

If the input to a sorting network contains Z zeros and O ones, the first O outputs of the sorting net-
work are guaranteed to contain one and the rest of wires contain zeros. Therefore, it can be concluded
that there are exactly i ones in the input iff the value of i-th output wire is one while the i+1-th output
wire is zero.

Prop. 2. Let x1, · · · ,xn be variables assigned to the input wires of a sorting network and o1, · · · ,on be
the output wires. The output of the Count-Gadget which uses the sorting network is:

Ck
S =

¬o1 k=0
ok∧¬ok+1 k < n
on k = n

2.3 Modification in Count-Gadget Through BDD (DP2)

In the encoding presented in 2.1, to describe Fc+1
r+1 we need to create two new Tseiten variables and

nine clauses. With a little modification in the meaning of the F’s variable, we can reduce the number
of auxiliary Tseiten variables and clauses.

Let use Fc
r to mean that in every assignment, M, that satisfies Fc

r we have c ≤ |{xi : 1 ≤ x ≤ r :
M |= xi}|, i.e., among the first r variables, at least c of them are true in every model that satisfies Fc

r .
The following inductive relations describe Fc

r :

Fc
r =

{
> c = 0
⊥ r = 0 and c > 0

and
Fc+1

r+1 = (Fc
r ∧ xr+1)∨Fc+1

r

Prop. 3. Let S = {x1, · · · ,xn} and k be the inputs to the gadget and Fk
n be as described above. The

following can be an answer to Ck
S:

Ck
S =

{
Fk

n ∧¬Fk+1
n k < n

Fk
n k = n

2.4 Count-Gadget using Divide-and-Conquer method (DC)

The idea is to divide the variables in set S = {x1, · · · ,xn} into two set S1 = {x1, · · · ,x n
2
} and S2 =

{x n
2+1, · · · ,xn}, and then find the conditions describing how many variables from each subset is true.

In next step, appropriate conditions would be merged, creating the condition about the set S. More
formally, let Dc

(s,e) be the Tseiten variable which is true in a assignment M iff |{xi : s ≤ i ≤ e∧M |=
xi}| = c. So, Dc

(1,n) is the necessary and sufficient condition for having exactly c variables evaluated

3

Grounding Count Constraints Aavani, Wu, Mitchell, Ternovska

as true out of set S . Dc
(s,e) can be described inductively as follows:

Dc
(s,e) =

⊥ c > e− s+1
xs c = 1 and s = e
¬xs c = 0 and s = e

and

Dc
(s,e) =

c∨
i=0

Di
(s,(s+e)/2)∧Dc−i

((s+e)/2+1,e)

Prop. 4. Let S = {x1, · · · ,xn} and k be the inputs to the gadget described above. Dk
(1,n) is an answer

to Ck
S. It can be proved that this encoding supports full unit-propagation.

2.5 Binary Encoding for Count-Gadget

In this part, we present two translations to CNF for cardinality formula by using binary encodings.
As we will see in next section, the number of auxiliary variables are reduced dramatically but unfor-
tunately, neither of those two encodings support full unit-propagation.

Let K = dlogke be the number of bits we need to represent k in binary format. The idea is to use
K binary variables to represent the number of xi’s whose value is true in the model.

We can use either incrementers or adders to describe cardinality constraints in CNF.

2.5.1 Incrementer Based Count-Gadget(BDP)

Let’s assume we have an encoding for a circular incrementer which has the following property. The
incrementer gets K variables, IK = {i1, · · · , iK} as its input and outputs K variables, OK = {o1, · · · ,ok}
such that:

1. If the integer value represented by 〈i1, · · · , iK〉 is equal to 2K−1, all oi’s are false.

2. Otherwise, the integer represented by 〈o1, · · · ,ok〉 is the successor of the integer represented by
〈i1, · · · , ik〉.

To encode the cardinality constraint with parameters S = {x1 · · · ,xn} and k, we use n arrays, Nr,
each having K +1 variables. Given a consistent assignment M, Nr’s have the following properties:

1. M |= Nr[K +1] iff 2k ≤ |{xi : 1≤ i≤ r&M |= xi}|.

2. M 6|= Nr[K + 1] and m is the integer represented by 〈Nr[1] · · ·Nr[K]〉 under assignment M iff
m = |{xi : 1≤ i≤ r&M |= xi}|.

Nr arrays, r ≥ 1, satisfy the following relations:

Nr−1[K +1]∨ (xr ∧
K∧

i=1

Nr−1[i])⇒ Nr[K +1]

¬xr⇒
K∧

i=1

(Nr[i]⇔ Nr−1[i])

xr⇒ Nr = INC(Nr−1[1..K])

and N0 = 〈⊥, · · · ,⊥〉.

4

Grounding Count Constraints Aavani, Wu, Mitchell, Ternovska

Prop. 5. Let S = {x1, · · · ,xn} and k be the inputs to the gadget described above and K = dlogke. If k
has a binary representation like dk1 · · ·kKe, the following is an answer to Ck

S:

¬Nn[K +1]∧
K∧

i=1

(Nn[i]⇔ ki = 1)

2.5.2 Count-Gadget Using Binary Adder(BDP)

Adders can be used to encode the cardinality constraints. Let’s assume we have an encoding for an
adder which has the following property. The incrementer gets two arrays, each containing K variables,
I = {i1, · · · , iK}, I′ = {i′1, · · · , i′K} as its input and outputs a pair 〈OK ,Over f low〉 where Ok is an array
of K variables, OK = {o1, · · · ,ok} and Overflow is a single variable (flag) such that (if nI and nI′ are
the integer corresponding two the two Boolean arrays I and I′, respectively):

1. if nI +nI′ < 2K , the Overflow would be false and the O array would have the binary representa-
tion of nI +nI′ .

2. if nI+nI′ ≥ 2K , the Overflow would be true and the O array would have the binary representation
of (nI +nI′) mod 2K .

To encode the cardinality constraint with parameters S = {x1 · · · ,xn} and k, we use about 2n
arrays2, Ne

s , each having K + 1 variables. Given a consistent assignment M, Ne
s ’s have the following

properties:

1. M |= Ne
s [K +1] iff 2k ≤ |{xi : 1≤ i≤ r&M |= xi}|.

2. M 6|= Ne
s [K + 1] and m is the integer represented by 〈Ne

s [1] · · ·Ne
s [K]〉 under assignment M iff

m = |{xi : 1≤ i≤ r&M |= xi}|.

Ne
s arrays, e > s, satisfy the following relations:

〈Ne
s [1..K],Ne

s [K +1]〉= ADD(N(s+e)/2
s [1..K],Ne

(s+e)/2+1[1..K])

N(s+e)/2
s [K +1]∨Ne

(s+e)/2+1[K +1]⇒ Ne
s [K +1]

and Ns
s [1]⇔ xs,

∧K
i=2¬Ns

s [i].

Prop. 6. Let S = {x1, · · · ,xn} and k be the inputs to the gadget described above and K = dlogke. If k
has binary representation like dk1 · · ·kKe, the following is an answer to Ck

S:

¬Nn
1 [K +1]∧

K∧
i=1

(Nn
1 [i]⇔ ki = 1)

2We will determine the exact number in next section

5

Grounding Count Constraints Aavani, Wu, Mitchell, Ternovska

3 Size of Generated CNF

In this section, In this section, we describe the CNF formulas generated by each gadget in terms of
several measures, namely, number of clauses, number of variables, number of literals, average clause
size and depth of CNF. By depth of a CNF, we mean the depth of corresponding Boolean circuit.The
results are summerized in Table 1.

In DP method, to describe Fc
r one needs to introduce and describe all F i

j ’s where 0 ≤ i ≤ c and
0≤ j ≤ r. In most cases, describing each F i

j needs disjunction of two conjunctions. The normal way
of expressing such a thing in CNF is to introduce a new variable for each conjunction and expressing
F i

j based on the two new variables.

Prop. 7. To convert a cardinality constraint with n input variables whose result should be m, Cm
{x1,··· ,xn},

to CNF, DP method uses 2nm auxiliary variables and generates 9nm clauses. There are 21nm liter-
als used in corresponding CNF. Depth of the circuit resulting from the generated CNF would be
2min(c,r).

The second approach, SN, is based on creating a sorting network for n variables. There is not
any efficient construction for sorting network which uses θ(n logn) comparators, but there are some
which need θ(n log2 n) comparators and have a good performance in practice, for example ”Bitonic
Sorters”[11] and ”Insertion and Selection Networks”. Each comparator can be described in CNF by
introducing two auxiliary variables, for its output, and using 6 clauses describing the relation between
inputs and outputs.

Prop. 8. To convert a cardinality constraint with n input variables whose result should be m, Cm
{x1,··· ,xn},

to CNF, SN method uses 2n log2 n auxiliary variables and generates 6n log2 n clauses. There are
14n log2 n literals used in corresponding CNF. Depth of the circuit resulting from the generated CNF
would be log2 n.

In first look, one may think that DC method to describe Sc
{x1,··· ,xn} needs to create n2c D’ variables.

But there is an implementation which creates just (n−1)c of D variables3.

Prop. 9. The relations between the D variables can be presented using nc2 auxiliary variables and
3nc2 clauses. In the generated CNF file has 5nc2 literals. Also, this encoding needs more variables
and literals, but the depth of the corresponding circuit is logn which is smaller than both previous
methods.

The modification in DP reduces the number of auxiliary variables and clauses by a constant factor.

Prop. 10. To convert a cardinality constraint Cm
{x1,··· ,xn}, to CNF, DP2 method uses nm+1 auxiliary

variables and generates 6nm+ 1 clauses. There are 14nm+ 2 literals used in corresponding CNF.
Depth of the circuit resulting from the generated CNF would be 2min(c,r).

Adders and incrementers can be encoded by circuits, and so in CNF, very easily. ”Ripple carry
adder” and ”Carry skip adder”[3] are two well-known circuits which adds two binary digits. Although
every adder can be used as an incrementer, an incrementer can be implemented more efficiently from
scratch, too. In this analysis, we have used the most naive encodings, i.e., circuits, for adders and
incrementers.

There is an implementation for a parallel K-bit incrementer with a constant depth which needs
θ(K2) clauses, θ(K2) literals and K auxiliary variables. To describe a count-aggregate using BDP, n
incrementers and some other clauses need to be generated.

3That implementation is a normal recursive procedure

6

Grounding Count Constraints Aavani, Wu, Mitchell, Ternovska

Table 1: Comparison among the # of Clauses, # of Auxiliary Variables, # of Literals and Depth of
CNF generated by each gadget, for constraint in the form of Cm

{x1,··· ,xn}
Encoding # of Clauses # of Auxiliary Vars # of Literals Depth

DP 9nm 2nm 21nm 2min(n,m)
DP2 6nm nm 14nm 2min(n,m)
DC 3nc2 nc2 5nc2 logn
SN 6n log2 n 2n log2 n 14n log2 n log2 n

BDP θ(n log2 m) θ(n logm) θ(n log2 m) n
BDC θ(n logm) θ(n logm) θ(n log2 m) logm logn

Prop. 11. The number of clauses, variables and literals can be estimated by θ(nK2), nK and nθ(K2),
respectively. Depth of corresponding circuit would be n.

There is an encoding of an K-bit by K-bit adder in CNF which generates θ(K) clauses, θ(K2)
literals using θ(K) auxiliary variables. Depth of corresponding circuit is K.

Prop. 12. The BDC approach uses, roughly speaking, n adders. So, the BDC generates θ(nK)
clauses,, θ(nK) auxiliary variables and θ(nK2) literals. Depth of corresponding circuit is K logn as
there are at most logn sequential adders in the encoding.

In table 1, the information about these six gadgets are presented.

4 Experiments

To compare the performance of gadgets, we have used three different problems which can be encoded
using count. We generated a set of random instances for each problem.

1. Blocked N-queens: A blocked N-queens problem asks for placing N queens in the non-blocked
cells of an N×N board, where some of its cells are already blocked, such that none of them are
able to capture any other using the standard chess queen’s moves, I.e. no two queens share the
same row, column, or diagonal.

2. Rectangle Coloring: In rectangle coloring problem, we are asked to color each cell of an N by
M rectangle such that there are a certain number of black cells in each row and each column.
If one can forces some cells to be white, the problem would be an NP-complete problem 4. In
fact, given N, M, a partial coloring of the cells and two arrays of integers, R = {r1, · · · ,rn} and
C = {c1 · · · ,cm}, the problem asks for finding a coloring of the cells such that there are ri black
cells in the i-th row and ci black cells in the i-th column.

3. Randomly Generated Cardinality Formulas: Given a set of variables S = {x1, · · · ,xn} and a set
of constraints C = {C1, · · · ,cm} in the following format, the problem asks to find an assignment
satisfying all the m constraints.

Ci : |Si|= ki

where Si ⊂ S and 0≤ ki ≤ |Si|.

4An instance of set cover problem can be reduced to an instance of this problem

7

Grounding Count Constraints Aavani, Wu, Mitchell, Ternovska

The sat solver used to solve all the instances is MiniSat version 2.0. Instances are generated randomly
as follows:

1. Blocked N-queens: For each n, 4≤ n≤ 40, 100 different random instances are used.

2. Rectangle Coloring: For all n and m, such that 4≤ n≤ 30, and 4≤m≤ n, 100 different random
instances are created. The R and C arrays are selected such that ∑i ri = ∑i ci. And then, we fix
the color of some cells of the board to either white or black.

3. Randomly Generated Cardinality Formulas: For each n and m, from 4 to 50, 100 different
random instances are generated. For creating an instance, given n and m, we produce m pairs of
〈Si,ki〉 satisfying the condition described in problem statement.

Figure 1: Number of times each gadget performs the best (or it is one of the best if there is a tie).

As it is discussed previously, there is not a well-defined measure for determining the best encod-
ing. On an instance, we say a gadget performs the best if the amount of cpu-time, in milliseconds,
sat-solver needs to solve the CNF created using that gadget is minimum. For each instance, we ranked
all the four gadgets and count how many times each was the winner.

The values in Figure 1show that there is no gadget which outperforms the other one.

5 Automatic Gadget Selection

As the experimental results in previous section show, each gadget performs better in a certain case
which depends on n and k. When a user develops a specification for a certain problem, he/she may not

8

Grounding Count Constraints Aavani, Wu, Mitchell, Ternovska

know about the properties of instances. For example, consider the following encoding for ”blocked n
queen”:

∀r : #c(B(r,c)∧Q(r,c)) = 1 (1)

∀c : #r(B(r,c)∧Q(r,c)) = 1 (2)

∀n : #r(B(r,r+n)∧Q(r,r+n)) = 1 (3)

∀n : #r(B(r,r−n)∧Q(r,r−n)) = 1 (4)

∀n : #c(B(c,c+n)∧Q(c,c+n)) = 1 (5)

∀n : #c(B(c,c−n)∧Q(c,c−n)) = 1 (6)

It can be the case that for some of rows there are very few un-blocked cells while for some others,
there are many un-blocked cells. Consider the square coloring problem described in previous section.
Something similar may happen for that problem, too. The results in table 1 suggest that using the same
gadget to encode all the cardinality formula is not a good idea. There are other problems for which a
user can not specify the best gadget with out observing the contents of the instance data.

Having an algorithm which can automatically select the best gadget can be very helpful. The main
challenge in the way is that how one defines the best gadget. Is it the one which produces the least
number of clauses? Or the one with smaller search space is better? One can argue that the running
time of SAT solver on the generated CNF is the most important factor while the others may suggest
the maximum amount of memory used by SAT solver as the most important parameter? Some efforts
are done in order to estimate the running time of SAT solvers like, [7]. In the setting described here,
we can not use such cost functions as we need an estimation for running time before starting the SAT
solving phase.

It is hard to select the best gadget for a cardinality formula as soon as we meet one. There may be
several cardinality formulas with the same set of variables. Making local choices separately may not
achieve the best performance in this case. Assume we have a cardinality formula |x1, · · · ,xn|= k, and
we make a local choice to use ”Sorting Network” gadget. We may have another cardinality formula
with the same set of variables |x1, · · · ,xn| = k′, and we decide to use DP Gadget. We create a lot of
redundant clauses by running different gadgets on formulas with the same set of variables. It would be
good if we could group formulas with the same set of variables and select a suitable gadget for them.
Then, we need to run the appropriate gadget only once to generate CNF for cardinality formulas with
the same set of variables5.

To achieve this, we can postpone generating CNF for the cardinality formulas and use a new
Tseiten variable to represent the result of each such cardinality formula. At the end, we have the
list of all the cardinality formulas and their corresponding Tseiten variables, 〈vi, |{xi

1 · · · ,xi
ni
}| = mi〉

where for all structure M:
M |= vi⇔M |= |{xi

1, · · · ,xi
ni
}|= mi

By sorting the list, the cardinality formulas can be grouped such that those who have the same set
of variables are placed in the same group. And using the table 1 one can decide which gadget may
perform the best.

6 Conclusion & Future Works

In this paper, we presented six encodings for count aggregate (cardinality constraints) and analyzed
their CNF output files. Based on the theoretical analyze presented in section 3, it can be expected that

5Although we did not describe how this is possible but it is not hard to modify the described gadgets to do so

9

Grounding Count Constraints Aavani, Wu, Mitchell, Ternovska

there are certain values for n and k such that each gadget outperforms the other gadgets. Considering
the fact that the first four gadgets supports full unit-propagation, it sounds logical to expect a trend
like the following for a fixed value of n:

1. For small value of k, k� n: DP (DP2) performs the best.

2. By increasing the value of k, after a certain point, DC outperforms DP.

3. When k is large enough, around n, SN becomes the best encoding.

The result of experiments confirms this claim.
We also addressed the need of having an algorithm which automatically selects the best gadget

based on a certain cost function. The experiments show that different gadgets have different perfor-
mances which are a support for this idea.

We have not implemented BDP and BDC gadgets yet, and implementing them and comparing
their performance with the SN is the next step in our work list.

References
[1] BAILLEUX, O., AND BOUFKHAD, Y. Efficient CNF encoding of Boolean cardinality constraints. Lecture

notes in computer science (2003), 108–122.
[2] BATCHER, K. Sorting networks and their applications. In Proceedings of the April 30–May 2, 1968,

spring joint computer conference (1968), ACM, pp. 307–314.
[3] BRUCE, J., THORNTON, M., SHIVAKUMARAIAH, L., KOKATE, P., AND LI, X. Efficient adder circuits

based on a conservative reversible logic gate. In Proc. IEEE Computer Society Annual Symposium on
VLSI (2002), Citeseer, pp. 83–88.

[4] EÉN, N. SAT Based Model Checking. PhD thesis, 2005.
[5] FRISCH, A. M., GRUM, M., JEFFERSON, C., HERNANDEZ, B. M., AND MIGUEL, I. The design of

ESSENCE: a constraint language for specifying combinatorial problems. In Proc. IJCAI’07 (2007).
[6] GENT, I., JEFFERSON, C., AND MIGUEL, I. Minion: A fast, scalable, constraint solver. In ECAI 2006:

17th European Conference on Artificial Intelligence, August 29-September 1, 2006, Riva del Garda, Italy:
including Prestigious Applications of Intelligent Systems (PAIS 2006): proceedings (2006), Ios Pr Inc,
p. 98.

[7] HAIM, S., AND WALSH, T. Online estimation of sat solving runtime. Lecture Notes in Computer Science
4996 (2008), 133–138.

[8] MARQUES-SILVA, J., AND LYNCE, I. Towards robust CNF encodings of cardinality constraints. Lecture
Notes in Computer Science 4741 (2007), 483.

[9] MITCHELL, D., AND TERNOVSKA, E. A framework for representing and solving NP search problems.
In Proc. AAAI’05 (2005).

[10] MOHEBALI, R. A method for solving np search based on model expansion and grounding. Master’s
thesis, Simon Fraser University, 2006.

[11] PATERSON, M. Improved sorting networks with O (log N) depth. Algorithmica 5, 1 (1990), 75–92.

10

	Introduction
	Encodings for Count
	Count-Gadget Through BDDs (DP)
	Count-Gadget Using Sorting-Networks (SN)
	Modification in Count-Gadget Through BDD (DP2)
	Count-Gadget using Divide-and-Conquer method (DC)
	Binary Encoding for Count-Gadget
	Incrementer Based Count-Gadget(BDP)
	Count-Gadget Using Binary Adder(BDP)

	Size of Generated CNF
	Experiments
	 Automatic Gadget Selection
	Conclusion & Future Works

