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Abstract. In this paper, we present the Enfragmo system for specifying and solv-
ing combinatorial search problems. It supports natural specification of problems
by providing users with a rich language, based on an extension of first order logic.
Enfragmo takes as input a problem specification and a problem instance and pro-
duces a propositional CNF formula representing solutions to the instance, which
is sent to a SAT solver. Because the specification language is high level, Enfragmo
provides combinatorial problem solving capability to users without expertise in
use of SAT solvers or algorithms for solving combinatorial problems. Here, we
describe the specification language and implementation of Enfragmo, and give
experimental evidence that its performance is comparable to that of related sys-
tems.

1 Introduction

Computationally hard search and optimization problems are ubiquitous in science, en-
gineering and business. Examples include drug design, protein folding, phylogeny re-
construction, hardware and software design, test generation and verification, planning,
timetabling, scheduling and so on. In rare cases, practical application-specific software
exists, but most often development of successful solution methods requires specialists
to apply technology such as mathematical programming of constraint logic program-
ming systems, or develop custom-refined implementations of general algorithms, such
as branch and bound, simulated annealing, or reduction to SAT.

One goal of development of the Enfragmo system [1] is to provide another practical
technology for solving combinatorial search problems, but one which would require
considerably less specialized expertise on the part of the user, thus making technology
for solving these problems accessible to a wider variety of users. In this approach, the
user gives a precise specification of their search (or optimization) problem in a high-
level declarative modelling language. A solver then takes this specification, together
with an instance of the problem, and produces a solution to the problem (if there is
one).

A natural formalization of search problems in general is as model expansion (MX)
[2], which is the logical task of expanding a given structure by new relations. Formally,
users axiomatize their problems, formalized as model expansion, in some extension
of classical logic. A problem instance, in this formalization, is a finite structure, and
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solutions to the instance are expansions of this structure that satisfy the specification
formula. At present, our focus is on problems in the complexity class NP. For this case,
the specification language is based on classical first-order logic (FO). Fagin’s theorem
[3] states that the problems which can be axiomatized in the existential fragment of
second order logic (∃SO) are exactly those in NP, and thus the problems which can be
axiomatized as FO MX are exactly the NP search problems.

Enframgo’s operation is based on grounding, which is the task of producing a
variable-free first-order formula representing the expansions of the instance structure
which satisfy the specification formula – in other words, the solutions for the instance.
The ground formula is mapped to a propositional CNF formula, which is sent to a SAT
solver. For any fixed FO formula, grounding can be carried out in polynomial time, so
grounding provides a universal polytime reduction to SAT for problems in NP. (Devel-
oping grounding to other languages, for example to use SMT solvers, is a promising
direction which we have begun exploring.) An important advantage in solving through
grounding and transformation to SAT, or other standard ground language, is that the
performance of ground solvers is constantly being improved, and we can always select
from the best solvers available.

Many interesting real-world problems cannot be conveniently expressed in pure FO
MX, in particular if their natural descriptions involve arithmetic or inductive proper-
ties. Examples of the former include Knapsack and other problems involving weights
or costs, while examples of the latter include the Traveling Salesman problem and other
problems involving reachability. To address these issues, Enfragmo’s specification lan-
guage includes a limited use of inductive definitions, and extends classical first order
logic with arithmetic and aggregate operators. The authors of [2] emphasized the im-
portance of having inductive definitions in a specification language. In the case of arith-
metic, care must be exercised to avoid increasing the expressive power of the language
beyond NP, which would prevent polytime grounding to SAT. A theoretical investiga-
tion of the issues involved appears in [4–6]. Extension of the basic grounding algorithm
of Enfragmo to arithmetic terms, including aggregate operators, is described in [7].

2 Specification Language

The specification language of the Enfragmo system is based on multi-sorted classical
first-order logic extended with inductive definitions, arithmetic functions, and aggregate
operators. We will illustrate the language with two examples, and give brief discussions
of some major features. The examples use the actual ASCII input representation. The
mapping from logical symbols to ASCII symbols used is given in Table 1. For the
full description of the input language, please refer to the Enfragmo manual, which is
available from [1].

An Enfragmo specification consists of four main sections, delineated by keywords.
The GIVEN: section defines the types and vocabulary used in the specification. The
FIND: section identifies the vocabulary symbols for which the solver must find inter-
pretations, that is, the functions and relations which will constitute a solution. Interpre-
tations of the remaining vocabulary symbols are given by the problem instance. The
third part consists of one or more PHASE: sections, each of which contains an optional
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Table 1. ASCII Equivalents for Logical Symbols

Logical Symbol ∀ ∃ ∧ ∨ ¬ → ↔

ASCII Representation ! ? & | ˜ => <=>

GIVEN:
TYPES: Vtx Clr;
PREDICATES: Edge(Vtx,Vtx), Colour(Vtx,Clr);

FIND: Colour;
// expansion predicate(s) are listed under FIND
//(instance predicates are those that are not expansion)

PHASE:
SATISFYING:
// every vertex has at least one colour
!v:Vtx : ?c:Clr : Colour(v,c);
// no vertex has more than one colour
!v:Vtx c:Clr : Colour(v,c) => ˜?c2:Clr < c : Colour(v,c2);
// no two vertices of the same colour are adjacent
!u:Vtx v:Vtx c:Clr : Colour(u,c) & Colour(v,c)=> ˜Edge(u,v);

PRINT: Colour; // solution can be printed

Fig. 1. Enfragmo specification of K-colouring.

FIXPOINT: part, which provided an inductive definition, followed by a SATISFYING:
part, which consists of a set of sentences in the extended first order logic. If there are
multiple PHASE: sections, the define a sequence of expansions. One way such a se-
quence can be used is to carry out a kind of pre-processing or post-processing, which
may support more convenient axiomatizations or more efficient solving. An example
is provided in the section on inductive definitions below. Finally, the PRINT: section
identifies relations that are to be displayed, if a solution is found.

Example 1 (Graph K-Colouring). Graph colouring is a classic and well-studied NP-
hard search problem. The task is to colour vertices of a given graph using colours from
a given set of K colours, so that no two adjacent vertices have the same colour. To
axiomatize this problem, we introduce two sorts, vertices and colours. The axiomatiza-
tion says that there is a binary relation Colour which must be a proper colouring of the
vertices. The corresponding Enfragmo specification is given in Figure 1.

Arithmetic and Aggregates Enfragmo specifications have two kinds of types: integer
types and enumerated types. Terms of integer types may use the arithmetic functions +,
−, ∗, andABS(·), which have their standard meaning for the integers. Arithmetic terms
also include the aggregate operators maximum, minimum, sum, and cardinality. In the
following, if φ(x̄) is a formula with free variables x̄, then φB[ā] denotes the truth value
of φ in structure B when the variables x̄ denote the domain elements z̄, and similarly
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for terms t(x̄). The aggregate terms are defined, as follows, with respect to a structure
B in which the formula containing the term is true.
Maxx̄{t(x̄, ȳ) : φ(x̄, ȳ); dM} denotes, for any instantiation b̄ for ȳ, the maximum

value obtained by tB[ā, b̄] over instantiations ā for x̄ for which φB[ā, b̄] is true, or
dM (the default value) if there are none.

Minx̄{t(x̄, ȳ) : φ(x̄, ȳ); dm} is defined dually to Max.
Sumx̄{t(x̄, ȳ) : φ(x̄, ȳ)}, denotes, for any instantiation b̄ for ȳ, the sum of all values
tB[ā, b̄] over instantiations ā for x̄ for which φB[ā, b̄] is true.

Countx̄{φ(x̄, ȳ)} denotes, for any instantiation b̄ for ȳ, the number of tuples ā for
which φB[ā, b̄] is true.

Example 2 illustrates use of arithmetic terms, including sum and count aggregates.

Example 2 (A Knapsack Problem Variant). Consider the following variation of the
knapsack problem: We are given a set of items (loads) L = {l1, · · · , ln}, each with
an integer weight W (li), and m knapsacks K = {k1, · · · , km}. The task is to put the n
items into the m knapsacks, while satisfying the following constraints. 1) Certain items
must go into preassigned knapsacks, as specified by the binary instance predicate P ;
2)H of them knapsacks are high capacity, and can hold items with total weight CapH ,
while the remainder have capacity CapL; 3) No knapsack may contain two items with
weights that differ by more than D. Each of CapH , CapL and D is an instance func-
tion with arity zero, i.e. a given constant. An Enfragmo specification for this problem is
given in Figure 2. Q is the mapping of items to knapsacks that must be constructed.

Inductive Definitions Enfragmo supports a limited use of inductive definitions. In
the current implementation, the open predicates [2] in a definition must be instance
predicates, or have been constructed explicitly in a previous Phase: section. Even this
limited form has proved to be very useful in practice. These definitions can be used to
efficiently compute useful information, such as a bound or partial solution, which can
be used later to help solve a problem more efficiently. For example, Graph Colouring
can be solved more efficiently by having inductive definitions in an initial group of
phases compute a maximal clique in the graph, and pre-assign distinct colours to the
vertices in that clique. (A further improvement might be to construct a maximal clique
containing a vertex of maximum degree.) Then a final phase can construct a colouring
of the graph restricted by the pre-computed colouring of the large clique. Use of these
inductive definitions can also support writing of natural axiomatizations, by allowing
the introduction of defined terms without incurring a performance penalty.

3 Implementation

Enfragmo’s input is a problem specification, stated in the language described in Sec-
tion 2, together with a description of an instance. (The syntax for specifying instances is
described in the manual. Eventually, instances may be retrieved by queries to a database
or other source.) The phases in the specification are solved one-by-one, in the order
written. For each phase, any predicates defined by an inductive definition are computed,
and then the satisfying phase is solved by grounding. This in turn involves three stages:
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GIVEN:
TYPES: Item Knaps;
INTTYPES: Weight ItemCount;
PREDICATES: P(Item, Knaps) Q(Item, Knaps);
FUNCTIONS:
W(Item): Weight
Cap_H(): Weight
Cap_L(): Weight
D(): Weight
H(): ItemCount;

FIND: Q;
PHASE:
SATISFYING:
// Q is a function mapping items to knapsacks
!l:Item : ?k:Knaps : Q(l, k);
!l:Item k1:Knaps k2:Knaps : Q(l, k1) & Q(l, k2) => k1 = k2;
// Q agrees with the pre-assignment P
!l:Item k:Knaps : P(l, k) => Q(l, k);
// The total weight in each knapsack is at most Cap_H
!k:Knaps: SUM{l:Item; W(l); Q(l, k)} <= Cap_H();
// At most H knapsacks have total weight greater than Cap_L
COUNT{k:Knaps; SUM{l:Item; W(l); Q(l, k)} > Cap_L()} <= H();
// Items in a knapsack differ in weight by at most D
!k:Knaps l1:Item l2:Item : Q(l1, k) & Q(l2, k)

=> ABS(W(l1) - W(l2)) <= D();
PRINT: Q;

Fig. 2. Enfragmo specification for Knapsack variant.

1) grounding each formula with respect to the instance to produce a ground FO formula
representing the solutions; 2) the ground formula is transformed to a propositional CNF
formula; 3) a SAT solver is called on the CNF formula; 4) if the SAT solver reports a
satisfying assignment, it is mapped back to a description of a solution in the vocabulary
of the specification.

Grounding Enfragmo computes a grounding of a formula bottom up, in a process anal-
ogous to bottom up evaluation of a database query using the relational algebra. Here,
an extension of the relational algebra is used, in which an formula is associated with
each tuple. A tuple contains domain elements, and the associated formula is (equiva-
lent to) a ground instance of a sub-formula of the specification formula, with variables
instantiated by constants denoting the domain elements in the tuple. An “answer” to a
sub-formula of the specification formula is an extended table representing all instan-
tiations of the sub-formula. Similarly, and answer to a terms is a set of triples, each
consisting of an instantiation of the arguments, a value the term may denote, and a for-
mula. Details can be found in [7] and [8]. The answer for a sentence consists of an
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empty tuple associated with a formula that is a grounding of the sentence with respect
to the instance.

Efficiency of this grounding method requires using suitable data structures. For effi-
ciency, all formulas in computed answers are represented in a dag which is constructed
as the operations of the algebra are applied. Next we briefly describe some aspects of
the implementation of tables representing answers.

In the tables representing answers to formulas, it is natural have non-existence of a
tuple correspond to associating the formula False with the tuple. However, negating a
sparse table with this convention produces a very dense table in which many tuples are
associated with the formula True. To help keep tables sparse, we employ two kinds of
tables, one in which absence of a tuple corresponds to False, and one where it corre-
sponds to True. Details on design and performance of True/False tables are given in [8].
It is often the case that, in an answer for a sub-formula, the instantiated formulas are
independent of the instantiations of some of the free variables. In this case, the table ex-
plicitly records only the partial instantiations that are needed. This method is described
in [9] and [8] as tables with “hidden variables”.

A simple term is a term whose denotation can be computed (with respect to an in-
stance), just using the assignments to its free variables. For example,W (l) in Example 2
is a simple term. The formula for each tuple in an answer to a simple term is either True
or False. A term which is not simple is called complex. The Count aggregate used in
Example 2 is a complex term, because its value depends on the expansion predicate Q
(the solution). To represent the answer to a complex term occurring as an argument to
sub-formula φ, we have two data-structures: 1) A hash-map which maps each value o
which term tmay denote to a table which is an answer to the formula t(x̄) = o, and 2) A
table which can be viewed as being the answer to the formula φ(x̄, y) : t(x̄) = y. Meth-
ods for efficiently constructing the answers to complex terms, such as terms containing
nested count and sum aggregates, are examined in [7] and [10].

CNF Transformation The set of answers for the sentences of a specification are then
transformed to a propositional CNF formula. As usual, this is done using a refinement
of Tseitin’s polytime transformation to CNF [11]. Refinements include re-writing the
formula into negation normal form, so negations occur only on atoms; flattening nested
conjunctions and disjunctions; and in some cases merging of identical sub-formulas.

4 Experimental Evaluation

In this section, we compare the performance of Enfragmo to other grounding-based
systems. A set of NP-hard of problems were chosen from [12]. We excluded problems
for which all instances in the collection are easy. We also excluded problems where the
sum aggregate is central, as the current implementation of sum in Enfragmo is prelim-
inary and does not perform well. (We are currently studying better methods for sum.
For example, see [13]). The other solvers are Clingo (v 3.0.3) [14], DLV (v 2010-10-
14) [15], and IDP (v 2.20) [16]. For each system, we used specifications provided by
the system authors, obtained from [12]. The experiments were run on an Intel Xeon
L5420 quad-core 2.5 GHz processor, with a timeout of 600 seconds. All specifications,
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instances, and scripts used for the experiments can be downloaded from [1]. The results
are given in Table 2. The entry n/t indicates that n instances were solved, each within
the 600 second timeout, in a total time of t seconds. The time t includes the time for all
the runs that timed out.

Table 2. Performance comparison of Enfragmo and other systems. The entry n/t means that n
instances were solved in total time of t seconds. The 600-second timeouts are included in the
times. The best result for each problem is in bold.

Problem # of Instances Clingo DLV IDP Enfragmo

GraphColoring 29 9/12400 8/13398 9/12199 27/6965

HamiltonianPath 29 29/1.6 20/6856 29/2.1 29/308

SchurNumbers 29 29/889 18/8273 28/1452 29/643

BlockedNQueens 29 29/165 28/9870 29/896 29/1278

ConnectedDominatingSet 20 20/969 13/6190 17/3258 19/2038

DisjunctiveScheduling 10 10/1174 5/3581 10/1008 10/421

Total 146 126/15601 92/48170 122/18818 143/11656

Table 2 shows that Enfragmo was able to solve almost all the instances in the col-
lection, and performed the best on three of the six problems. Enfragmo also performed
the best by the aggregate measures of total number of instances solved and total time
spent.

5 Conclusion

We presented the Enfragmo system for modelling and solving combinatorial search
problems. It provides users with a convenient way to specify and solve computation-
ally hard problems, in particular search problems whose decision versions are in the
complexity class NP. The performance of the Enfragmo system is comparable to that of
related systems.

References

1. http://www.cs.sfu.ca/research/groups/mxp/.
2. Mitchell, D., Ternovska, E.: A framework for representing and solving NP search problems.

In: Proc. AAAI. (2005) 430–435
3. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. Complex-

ity of Computation (1974) 43–74
4. Ternovska, E., Mitchell, D.: Declarative programming of search problems with built-in arith-

metic. In: Proc. of IJCAI. (2009) 942–947



8

5. Tasharrofi, S., Ternovska, E.: Built-in arithmetic in knowledge representation languages. In:
NonMon at 30 (Thirty Years of Nonmonotonic Reasoning). (October 2010)

6. Tasharrofi, S., Ternovska, E.: PBINT, a logic for modelling search problems involving arith-
metic. In: Proc. LPAR-17, Springer (October 2010) LNCS 6397.

7. Aavani, A., Wu, X.N., Ternovska, E., Mitchell, D.G.: Grounding formulas with complex
terms. In: Canadian AI, the 24th Canadian Conference on Artificial Intelligence. (2011)
13–25
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