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1 Extensions and constants

In the following, bases will be defined for each of the finite fields. Each base
(b1, b2) will be such that by + bo = 1. This identity can be verified by repeated
squaring of the defining irreducible polynomial and adding the telescoping se-
quence (verify GF(2%) before GF(22F)).

e GF(2%) is built from GF2 by adjoining a root W of 22 + z + 1.
e basis for GF(22) (W, W?), with W + W2 = 1.

w3 =1

GF(2*) = GF16 is built from GF(2?) by adjoining a root Z of 22 +x+W?2.

basis for GF(21) is (22, Z8), with Z? + Z® = 1.

1.
7t =W*Z* + wZP
2.
ZV=WZ*+WZ? =W
3.

Z' =Wz +W?Z®

e Multiplication in GF(2?%) is given by

(aZ?4bZ%)(cZ*+dZ®) = (acW?+(ad-+be+bd)W) Z? 4 ((ac+ad+be) W +bdW?) Z8.

e GF(2%) = GF256 is built from GF(2%) by adjoining a root V of 22 + z +
W Z2.

e basis for GF(28) is (V,V16) with V + V16 = 1. Let Q = WZ2.



Vi=(14+Q)V +QVie
VIi=qQv4+ovit=0

VE=QV+ 1+ Ve

e Multiplication in GF(28) is given by

(aV+bV0) (cV +dV10) = (ac+(a+b) (c+d)Q)V +(bd+(a+b) (c+d)Q)VIC.

e GF(2'%) = GF65536 is built from GF(2%) by adjoining a root T of x? +
r+WZV.

e basis for GF(219) is (T, 7%5%), with T + T%%¢ = 1. Let © = WZ?V.

1.
T? = (1+0O)T + 7%
2.
T'" =0T + 0T =0
3.

7% =0T + (14 ©)T°%%

e Multiplication in GF(2!9) is given by

(aT+bT?5%)(cT+dT?%%) = (ac+O(a+b)(c+d))T+(bd+O(a+b)(c+d))T°

e Derivation of inverse in GF(2°) and GF(28).

I show the derivation for inverse in GF(2!%). The same derivation holds
in GF(28) if you set u to Q(a + b) instead of O(a + b).

1=uac+0O(a+b)(c+d) 1=bd+6(a+b)(c+d)

setting p = O(a + b) and summing yields

1=cla+ pn)+du 0 =ac+bd

equate the c coefficients

a = cala+ p)+ dap 0=ac(a+ u)+bd(a+ p)



sum them

a=db(a+p) +ap) =d=(bla+p)+au) ta

yields

c=bda "t =bbla+p)+ap)™t  d=albla+p)+ap)?

Therefore

c=bba+ (a+b)p)™t d=alba+ (a+b)u)".

So
c=bba+ (a+0)?*0)"" d=a(ba+ (a+0)*0)""

2 Squaring and scaling

2.1 GF4 squaring and scaling
(a()W + a1W2)2 =a W + (10W2

(aoW 4+ a W2 W = (W + agWHW
= aW?+a
= (aaW? +ag(W +W?))
= aoW + (ag + a)W?
(aoW + aiW?)*’W? = (W + agW?)W?
= aoW2 + a;
= (aoW? + a1 (W + W?))
= oW+ (ag + a)W?
l1.e.
(a0,a1)* = (a1, 0a0)
(ag,a1)*W = (ag,a0+ a1)
(ag,a1)*W? = (a1,a0+ ap)

Squaring in GF4 just swaps coefficients.



2.2 GF16 squaring and scaling
2.2.1 Squaring

(CLoZQ + a1Z8)2 = agZ4 + a1Z16
ag(W?Z> + WZ%) +ai(WZ? + W2Z?)
= (agW? +aiW)Z* + (agW + aiW?)Z®

In exploded form this yields the linear transformation:
(a,b,c,d)? =(a+b+c,b+c+da+c+da+b+d)
2.2.2 Scaling
(a,b,c,d)Z* = (a+b+d,a+c+db+da+b+c+d)

(aZ? +bZ8YW Z? = (a + W) Z% + (a + )W Z5.

(a,b,c,d)WZ? = (a+c+d,b+c,a+b+c+da+c)

2.2.3 Squaring and square-scaling

(a,b,¢,d)> = (a+b+c,b+c+da+c+da+b+d)
(a,b,¢,d)*WZ? = (a,a+b,a+b+c+d,b+d)

2.3 GF256 squaring and scaling
2.3.1 Squaring
Recall Q = WZ2. Then

(agV +a,V9? = a2V? 4 a3V

ag(L+QV +adQV' +aiQV +af(1+ Q)V'E
(a2(1+ Q) +aiQ)V + (a2Q +ai (1 + Q))V1e
(a2 + (a3 + a)Q)V + (a3 + (aj + a])Q) V1O
(a2 + (ag + a1)*Q)V + (a3 + (ao + a1)?’Q)V*e

This leads to the linear transformation

(a0, al,a2,a3, a4, ab,ab,a?)? = (h0, hl, h2, h3, h4, h5, h5, h7)



where

h0 = al+a2+ad
hl = a0+a2+a3+ad+ad
h2 = al+ad+ab+ab+ a7
h3 = a0+ ab+a7
h4 = a0+ ab+ab
h5 = a0+al+ad+ab+a7
h6 = a0+al+a2+ a3+ ad
h7T = al+a3+ad

We can compute this with 14 XORs at depth 3:

14 gates

8 inputs

a0 al a2 a3 a4 ab a6 a7
8 outputs

hO h7 hl h6 h2 h4 h5 h3
begin

T1 = a0 + ab
T2 = al + a4
T3 = a6 + a7
T4 = T2 + T3
T6 = a2 + a3
T6 = T1 + T
hO = a2 + T2
h7 = a3 + T2
hl = a4 + T6
h6 = al + T6
h2 = ab + T4
hd = a6 + T1
hb = a0 + T4
h3 = a7 + T1
end

2.3.2 Scaling

For multiplication in GF(216) T need to scale by V in GF(28) (because © =
WZ?V = QV). We can use

Vi=(14+Q)V +QV1e

and
VIT=QV + Qv =Q.



Then
(aV + a, V'OV (aoV? +a V7

= (ao —+ ((l() —+ (ll)Q)V —+ (ao —+ al)QVlﬁ.

3 Mapping the solution to other representations

Consider constructing GF(2!) from GF(2) by adjoining a root A of p(z) =
20 + 2% + 23 + 2+ 1. T will call this the target representation and the previous
one the tower representation.

We can look for A using the algebra developed in the previous sections.
There are sixteen possible values. I will pick

A

(1000100001001000)
WZ2VT + WZ2VIST + W2 Z2v 256 4 W 72y 167256

This gives us linear transformations between the two representations. The
transformation from target to tower is given by the matrix

OO ORHOFHRFHRORRFRRROHRRMF
OO O RO EFEFOFEFOODOOOHH
R PR PO R EFPROORFRFOR
R OrR OO R OR PP OODOOO R
—_ —_— OO OFROHOFH,OOR KRR
— O OO RFRORRFRKEFRREFEREFROOOHH
OO OHrHR OO, PR OO, RFERFROR
— O O0OO0OR R HFOOOKRMFREFEOO M
—_ O = O MFEFEFOOOO MO
OO O RO OOOoOOOFHFF=H
O OO RO R OFMEMEORFMFEOOR
R R R PRP OO, PR OO0OO0OO RO
—H O, O R KFEEFERFREFHREORFKROO R
_H OO OO, F OOOFRFEFEOOR
OO OO RO, OO RFRRFERFEO
OR PR PP OORFRORFHRORFRROHR

The rows of the matrix are the powers (0 through 15) of A. A vector v in
the target representation is mapped to a vector in the tower representation by
computing vA.



The inverse of A is

O OO0 A 1T OO0 OO — O
OO OO OO A O~ — O
— O A 1 OO " O OO
— OO A 4400000 —A -0
OO OO OO0 HOODOODODO —HOO
OO A O 00— - — 00O
— OO A 1 OO OO A m—m— O —O
OO A OO A A A" O A OO
OO0 A" A 1O O 100000
— OO OO OO0 HA A OOO OO
O 4 410010000000 +H A
O 1 00 A 10000000+ A
OO OO = O~ —— O
—H OO = A A A OO~ OO
A A O A A A A OO A A~ O~ O
_0111110110101110
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A vector v in the tower representation is mapped to a vector in the target

representation by computing vA~!.



