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Abstract. The concept of redundancy and simplification has been an
ongoing theme in Harald Ganzinger’s work from his first contributions
to equational completion to the various variants of the superposition
calculus. When executed by a theorem prover, the inference rules of
logic calculi usually generate a tremendously huge search space. The
redundancy and simplification concept is indispensable for cutting down
this search space to a manageable size. For a number of subclasses of first-
order logic appropriate redundancy and simplification concepts even turn
the superposition calculus into a decision procedure. Hence, the key to
successfully applying first-order theorem proving to a problem domain is
to find those simplifications and redundancy criteria that fit this domain
and can be effectively implemented.
We present Harald Ganzinger’s work in the light of the simplification and
redundancy techniques that have been developed for concrete problem
areas. This includes a variant of contextual rewriting to decide a subclass
of Euclidean geometry, ordered chaining techniques for Church-Rosser
and priority queue proofs, contextual rewriting and history-dependent
complexities for the completion of conditional rewrite systems, rewriting
with equivalences for theorem proving in set theory, soft typing for the
exploration of sort information in the context of equations, and constraint
inheritance for automated complexity analysis.

1 Introduction

Theorem proving methods such as resolution or superposition aim at deducing a
contradiction from a set of formulae by recursively deriving new formulae from
given ones according to some logic calculus. A theorem prover computes one of
the possible inferences of the current set of formulae and adds its conclusion to
the current set, until a contradiction is found, or until a “closed” (or “saturated”)
set is reached, where the conclusion of every inference is already contained in
the set.

Usually the inference rules of the calculus generate an infinite search space.
For any serious application of saturation theorem provers, it is therefore in-
dispensable to cut down the search space, and preferably, to turn undirected



search into goal-directed computation. Simplification and redundancy detection
are the key techniques to reduce the search space of a saturation-based prover.
Abstractly stated, a redundant formula is a formula that is known to be unnec-
essary for deriving a contradiction and can be discarded, and a simplification is
a process that makes a formula redundant, possibly by adding other (simpler)
formulas. To be useful in practice, however, these abstract properties have to
be approximated by concrete simplifications and redundancy criteria that fit
the given problem domain and can be effectively and preferably also efficiently
implemented. The importance of efficiency should not be underestimated here:
current theorem provers can easily spend more than 90 % of their runtime on
simplification and redundancy detection.

The concept of redundancy and simplification has been an ongoing theme in
Harald Ganzinger’s work from his first contributions to equational completion in
the mid 1980’s to the various variants of the superposition calculus. We give ex-
amples of the work of Harald Ganzinger, his students, and members of his group,
that illustrate simplification and redundancy techniques and their application for
concrete problem areas. This includes a variant of contextual rewriting to de-
cide a subclass of Euclidean geometry, ordered chaining techniques for Church-
Rosser and priority queue proofs, contextual rewriting and history-dependent
complexities for the completion of conditional rewrite systems, rewriting with
equivalences for theorem proving in set theory, soft typing for the exploration
of sort information in the context of equations, and constraint inheritance for
automated complexity analysis.

2 Preliminaries

We start this section by briefly summarizing the foundations of first-order logic,
term rewriting, and refutational theorem proving. For a more detailed presenta-
tion we refer to [2] and [9].

We consider terms and formulas over a set of function symbols Σ, a set of
predicate symbols Π, and a set of variables X, where Σ, Π, and X are disjoint.
Every function and predicate symbol comes with a unique arity n ≥ 0. The set of
terms over Σ and X is the least set containing x whenever x ∈ X, and containing
f(t1, . . . , tn) whenever each ti is a term and f ∈ Σ has arity n. The set of atoms
over Π, Σ, and X contains P (t1, . . . , tn) whenever each ti is a term and P ∈ Π
has arity n. We assume that Π contains a binary predicate symbol ≈ (equality),
written in infix notation. An atom t ≈ t′ is also called an equation. Formulas are
constructed from atoms and the constants > (true) and ⊥ (false) using the usual
connectives ¬, ∨, ∧, ⇒, ⇔ and the quantifiers ∀ and ∃. Throughout this survey
we assume that function and predicate symbols are declared appropriately such
that all syntactic objects (terms, atoms, etc.) are well-formed.

The set of variables occurring in a syntactic object Q is denoted by Var(Q).
If Var(Q) is empty, then Q is called ground. We require that there exists at least
one ground term.
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A literal is either an atom A (also called a positive literal) or a negated atom
¬A (also called a negative literal). A clause is either the symbol ⊥ (empty clause)
or a disjunction of literals. We identify clauses with finite multiset of literals. The
symbol [¬] A denotes either A or ¬ A. Instead of ¬ t ≈ t′, we sometimes write
t 6≈ t′. If no explicit quantifiers are specified, variables in a clause are implicitly
universally quantified.

A substitution σ is a mapping from X into the set of terms over Σ and X.
Substitutions are homomorphically extended to terms, and likewise to atoms,
literals, or clauses. We use postfix notation for substitutions and write tσ instead
of σ(t); σσ′ is the substitution that maps every x to (xσ)σ′. A syntactic object
Q′ is called an instance of an object Q, if Qσ = Q′ for some substitution σ. For
a set N of clauses, the set of all ground instances of clauses in N is denoted
by N̄ . A substitution that maps the variables x1, . . . , xn to the terms t1, . . . , tn,
respectively, is denoted by {x1 7→ t1, . . . , xn 7→ tn}.

An interpretation A for Σ and Π consists of a non-empty set U , called the
domain of A, and a mapping that assigns to every n-ary function symbol f ∈ Σ
a function fA : Un → U and to each n-ary predicate symbol P ∈ Π an n-ary
relation PA ⊆ Un. An A-assignment α is a mapping from the set of variables X
into the domain of A. Assignments can be homomorphically extended to terms
over Σ and X. An atom P (t1, . . . , tn) is called true with respect to A and α if
(α(t1), . . . , α(tn)) ∈ PA, otherwise it is called false.

The extension to arbitrary formulas happens in the usual way. In particular,
a negative literal ¬A is true with respect to A and α if and only if A is not true,
and a clause C is true with respect to A and α if at least one of its literals is
true. An interpretation A is a model of a formula, if it is true with respect to A
and α for every A-assignment α. It is a model of a set N of formulas, if it is a
model of every formula in N . If A is a model of N , we also say that it satisfies
N . A set of formulas is called satisfiable if it has a model. Obviously every set
of formulas containing ⊥ is unsatisfiable.

In refutational theorem proving, one is primarily interested in the question
whether or not a given set of universally quantified clauses is satisfiable. For
this purpose we may confine ourselves to term-generated interpretations, that
is, to interpretations A where every element of U is the image of some ground
term.3 We may even confine ourselves to Herbrand interpretations, that is, to
term-generated interpretations whose domain is the set of ground terms, and
where every ground term is interpreted by itself: A set of clauses has a model,
if and only if it has a term-generated model, if and only if it has a Herbrand
model.

As long as we restrict ourselves to term-generated models we may think of a
non-ground clause as a finite representation of the set of all its ground instances:
A term-generated interpretation is a model of a clause C if and only it is a model
of all ground instances of C.

When one uses the equality symbol ≈ in a logical language, one is com-
monly interested in interpretations A in which ≈A is not an arbitrary binary

3 Recall that we require that there is at least one ground term.
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relation but actually the equality relation on the domain of A. We refer to such
interpretations as normal. If we want to recover the intuitive semantics of the
equality symbol while working with Herbrand interpretations, we have to encode
the intended properties of the equality symbol explicitly using the equality ax-
ioms reflexivity, symmetry, transitivity, and congruence. If N is a set of clauses,
then an interpretation that is a model of N and of the equality axioms is called
an equality model of N . A set of clauses has a normal model, if and only if it
has a term-generated normal model, if and only if it has an equality Herbrand
model. If N and N ′ are sets of clauses and every equality Herbrand model of N
is a model of N ′, we say that N entails N ′ modulo equality and denote this by
N |= N ′.

For simplicity, we will usually assume that equality is the only predicate sym-
bol. This does not restrict the expressivity of the logic: A predicate P different
from≈ can be coded using function symbols p and true, so that P (t1, . . . , tn) is to
be taken as an abbreviation for p(t1, . . . , tn) ≈ true. Under these circumstances,
every Herbrand interpretation is completely characterized by the interpretation
≈A of the equality predicate. For any set EA of ground equations there is exactly
one Herbrand interpretation A in which the equations in EA are true and all
other ground equations are false. We will usually identify A and EA. A positive
ground literal A is thus true in EA, if A ∈ EA; a negative ground literal ¬ A is
true in EA, if A /∈ EA.

In the rest of the paper, we will almost exclusively work with (equality)
Herbrand interpretations and models, or more precisely, with the set EA of
equations corresponding to a Herbrand interpretation A. For simplicity, we will
usually drop the attribute “Herbrand”.

We describe theorem proving calculi using inference rules of the form

I C1 . . . Cn

D1

...
Dm

and reduction rules of the form

R C1 . . . Cn

D1

...
Dm

Both kinds of rules are used to derive new formulas D1, . . . , Dm (conclusions)
from given formulas C1, . . . , Cn (premises) that are contained in some set N ;
an application of an inference rule adds the conclusions to N ; an application
of a reduction rule replaces the premises by the conclusions in N . (The list of
conclusions can be empty; in this case the reduction rule simply deletes the
premises.)
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To prove the completeness of calculi, we have to construct Herbrand in-
terpretations and to check whether a given equation is contained in such an
interpretation. Rewriting techniques are our main tool for this task. The rest
of this subsection serves mainly to fix the necessary notation; for more detailed
information about rewrite systems we refer the reader to [2].

As usual, positions (also known as occurrences) of a term are denoted by
strings of natural numbers. t[t′]o is the result of the replacement of the subterm
at the position o in t by t′. We write t[t′] if o is clear from the context.

A binary relation → is called a rewrite relation, if it is stable under substi-
tutions and contexts, that is, if t1 → t2 implies t1σ → t2σ and s[t1]o → s[t2]o
for all terms t1, t2, and s, and for all substitutions σ.

A rewrite rule is a pair (t, t′) of terms, usually written as t → t′. A rewrite
system is a set of rewrite rules. If R is a rewrite system, then the rewrite relation
→R associated with R is the smallest rewrite relation containing t →R t′ for
every rule t→ t′ ∈ R.

For a binary relation →, we commonly use the symbol ← for its inverse
relation, ↔ for its symmetric closure, →+ for its transitive closure, and →∗ for
its reflexive-transitive closure (and thus↔∗ for its reflexive-symmetric-transitive
closure).

A binary relation → is called noetherian (or terminating), if there is no
infinite chain t1 → t2 → t3 → · · · . We say that t is a normal form (or irreducible)
with respect to → if there is no t′ such that t → t′; t is called a normal form
of s if s →∗ t and t is a normal form. We say that → is confluent if for every
t0, t1, t2 such that t1 ←∗ t0 →∗ t2 there exists a t3 such that t1 →∗ t3 ←∗ t2. A
terminating and confluent relation is called convergent.

A transitive and irreflexive binary relation � is called an ordering. An order-
ing on terms is called a reduction ordering, if it is a noetherian rewrite relation.
Well-known examples of reduction orderings are polynomial orderings, lexico-
graphic path orderings (LPO), recursicve path orderings (RPO), and Knuth-
Bendix orderings (KBO) [2].

A well-founded ordering on a set S generates a well-founded ordering on finite
multisets over S. We use this construction to lift a term ordering � to a literal
and a clause ordering: We assign the multiset {s, t} to a positive literal s ≈ t
and the multiset {s, s, t, t} to a negative literal s 6≈ t. The literal ordering �L
compares these multisets using the multiset extension of �. The clause ordering
�C compares clauses by comparing their multisets of literals using the multiset
extension of �L. (The subscripts L and C are often omitted.)

We use the symbol � to denote the reflexive closure of an ordering �. If
(S0,�) is an ordered set, S ⊆ S0, and s ∈ S0, then S≺s is an abbreviation for
{ t ∈ S | t ≺ s }.

3 CEC – Conditional Equational Completion

After having worked on compiler generation and abstract data types for about
ten years, Harald Ganzinger started to work on term rewriting and completion
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of algebraic specification in the mid 1980’s. From 1986 to 1990, most of his
work [21, 22, 20, 27, 24, 23] centered around the CEC system, serving both as a
testbed to evaluate the usefulness of theoretical results and as an inspiration for
further developments.

Knuth-Bendix completion [34] is a method that attempts to convert a set of
equations into an equivalent convergent rewrite system. The completion proce-
dure is based on two main operations. The first one is orientation: Equations
s ≈ t are turned into rewrite rules s → t if s is larger than t according to some
reduction ordering �. The second one is critical pair computation: If two rewrite
rules s → t and l → r overlap, that is, if a non-variable subterm u of s at the
position o can be unified with l, these two rewrite rules generate a new equation
(s[r]o)σ ≈ tσ (where σ is the most general unifier of u and l). These two main
operations are supplemented by techniques to simplify (or discard) equations
and rules.

The CEC (“Conditional Equational Completion”) system [13], implemented
in Prolog by Hubert Bertling, Harald Ganzinger and Renate Schäfers, generalizes
Knuth-Bendix completion to conditional equations of the form

u1 ≈ v1 ∧ . . . ∧ un ≈ vn ⇒ s ≈ t.

In previous approaches to completion of conditional equations, one had only
considered reductive equations e, that is, conditional equations where the left-
hand side s of the conclusion is larger than every other term occurring in e
and, in particular, contains all variables of e. It is clear that this condition is
quite restrictive and in fact makes most applications of conditional equations
impossible. CEC, on the other side, does not require reductivity, and in fact
even permits conditional equations containing extra variables, that is, variables
that appear in the conditions or in the right-hand side of the conclusion, but not
in the left-hand side.

One method CEC uses to deal with such conditional equations is to declare
them as non-operational [20, 23]. This is the predecessor of a technique that
should later become known as selection of negative literals in the superposition
calculus: Instead of computing overlaps with the term s of a conditional equation
Γ ⇒ s ≈ s′, conditional rewrite rules are superposed on one selected equation
of Γ , yielding new conditional equations. If the resulting conditional equations
can be proved to be convergent, then the non-operational conditional equation
is also convergent; it is irrelevant for the computation of normal forms (unless
the specification is extended).

Moreover, CEC makes it possible to use quasi-reductive conditional equations
in a Prolog-like manner. A conditional rewrite rule u1 ≈ v1 ∧ . . . ∧ un ≈
vn ⇒ s→ t is called quasi-reductive [24], if it is deterministic, that is, Var(t) ⊆
Var(s)∪

⋃n
j=1(Var(uj)∪Var(vj)) and Var(ui) ⊆ Var(s)∪

⋃i−1
j=1(Var(uj)∪Var(vj))

for every 1 ≤ i ≤ n, and if ujσ � vjσ for 1 ≤ j ≤ i implies sσ �st ui+1σ and
ujσ � vjσ for all 1 ≤ j ≤ n implies sσ � tσ.4 Intuitively, this condition

4 �st is the transitive closure of the union of � and the strict subterm ordering.
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means that the instantiation of s yields the instantiation of u1, normalizing any
instantiated ui and matching the result against vi yields the instantiation of
ui+1, and normalizing every ui yields the instantiation of t.

CEC also implements rewriting and completion modulo AC to deal with
associative and commutative operators. An interesting feature from the user
perspective is the ability to specify the term ordering incrementally during the
completion process.

In contrast to an automated theorem prover, a completion procedure like
CEC may fail if it encounters a conditional equation that can neither be ori-
ented nor discarded. Powerful techniques for simplifying critical pair peaks are
therefore extremely important for a successful completion procedure, and CEC
contains a large repertoire of such techniques. A conditional equation Γ ⇒ s ≈ s′
can be eliminated if there exists a proof of Γ ⇒ s ≈ s′ that is simpler than
Γ ⇒ s ≈ s′ itself. Rewriting in contexts is a method to simplify conditional
equations, where skolemized oriented condition equations are employed to reduce
terms in the conclusion. CEC also uses non-reductive equations Γ ⇒ s→ s′ for
simplification: if Γσ is a subset of ∆, then sσ → s′σ is available to simplify
∆ ⇒ t ≈ t′. Finally, CEC makes it possible to make the complexity of a condi-
tional equation history-dependent: complexities of input formulas can be arbi-
trarily chosen, whereas the origin of a derived conditional equation determines
the complexity of the latter [21].

The completeness proof for the procedure implemented in CEC extends
the proof ordering technique of Leo Bachmair, Nachum Dershowitz and Jieh
Hsiang [4]: while Bachmair, Dershowitz and Hsiang use linear proofs and define
an ordering on them as the multiset extension of the ordering of proof steps, one
needs now tree-like proofs, represented as proof terms, which are compared using
an RPO with an ordering on proof operators as precedence. As in [4], completion
inferences lead to smaller proof terms.

CEC has been used, for instance, for the correctness proof for a code generator
(Giegerich [29]) and for semi-functional translation of modal logics (Ohlbach [43]).
It is able to deal with order-sorted specifications [24], including specifications
with non-sort-decreasing rules, for which the procedure of Gnaedig, Kirchner
and Kirchner [30] fails. Other examples include the specification of a maximum
function over a total ordering, including the transitivity axiom [23].

4 Saturate

Among all techniques developed to deal with equality in first-order theorem
proving, the paramodulation calculus of George Robinson and Larry Wos [47]
has been the most influential. The paramodulation rule embodies the ideas of
the resolution calculus and the operation of “replacing equals by equals” that
is fundamental for term rewriting. Whenever a clause contains a positive literal
t ≈ t′, the paramodulation rule permits to rewrite a subterm t occurring in
some literal [¬] A[t] of another clause to t′. For non-ground clauses, equality is
replaced by unifiability, so that the resulting rule is essentially a combination of

7



non-ground resolution and Knuth-Bendix completion.5

I D′ ∨ t ≈ t′ C ′ ∨ [¬] s[w] ≈ s′

(D′ ∨ C ′ ∨ [¬] s[t′] ≈ s′)σ

where σ is a most general unifier of t and w.6

Both resolution and completion are (or can be) subject to ordering restric-
tions with respect to some syntactical ordering � on atoms or terms: In the
Knuth-Bendix completion procedure,7 only overlaps at non-variable positions
between the maximal sides of two rewrite rules produce a critical pair. Similarly,
the resolution calculus remains a semidecision procedure if inferences are com-
puted only if each of the two complementary literals is maximal in its premise. It
is natural to ask whether paramodulation may inherit the ordering restrictions
of both its ancestors. More precisely: Let a paramodulation inference between
clauses D = D′ ∨ t ≈ t′ and C = C ′ ∨ [¬] s[w] ≈ s′ be given as above, and
let � be a reduction ordering that is total on ground terms. Does the calculus
remain refutationally complete if we require, as in completion, that (i) w is not
a variable, (ii) tσ 6� t′σ, (iii) (s[w])σ 6� s′σ, and, as in ordered resolution, that
(iv) (t ≈ t′)σ is maximal in Dσ, and (v) (s[w] ≈ s′)σ is maximal in Cσ ?

A first result in this direction was obtained by Gerald Peterson [44], who
showed the admissibility of restrictions (i) and (ii). It was extended to (i), (ii),
(iii) for positive literals, and (v) by Michaël Rusinowitch [48], and to (i), (ii),
(iv), and (v) by Jieh Hsiang and Michaël Rusinowitch [31]. The final answer was
given by Leo Bachmair and Harald Ganzinger [5–7]: All five restrictions may
be imposed on the paramodulation rule (which is named superposition then),
however, an additional inference rule becomes necessary to cope with certain
non-Horn clauses: either the merging paramodulation rule, which appeared first
in (Bachmair and Ganzinger [5, 6]), or the equality factoring rule, which is due
to Robert Nieuwenhuis [36]. The resulting inference system is the basis of the
superposition calculus; it consists of the rules superposition, equality resolution
(i. e., ordered resolution with the reflexivity axiom), and either equality factoring
or ordered factoring and merging paramodulation.

The “model construction” technique developed by Bachmair and Ganzinger
to prove the refutational completeness of superposition is based on an earlier idea
by Zhang and Kapur [56]. Let N be saturated and let N̄ be the set of all ground
instances of clauses in N . We inspect all clauses in N̄ in ascending order and
construct a sequence of interpretations, starting with the empty interpretation.
If a clause C ∈ N̄ is false in the current interpretation IC generated by clauses
smaller than C and has a positive and strictly maximal literal A, and if some

5 Essentially the same rule (usually restricted to equational unit or Horn clauses)
occurs in narrowing calculi (Fay [18]) used for theory unification.

6 We use the letters I andR to distinguish between inference rules, whose premises are
kept after the conclusions have been added to the given set of clauses, and reduction
rules, whose premises are replaced by the conclusions.

7 Or rather: in its unfailing variant (Bachmair [3]), which is a semidecision procedure
for unit equational logic.
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additional conditions are satisfied, then a new interpretation is created extending
the current one in such a way that A becomes true. We say that the clause is
productive. Otherwise, the current interpretation is left unchanged. One can
then show that, if N is saturated and does not contain the empty clause ⊥,
then every clause C is either true in IC or productive, so that every clause of N
becomes true in the limit interpretation IN (also known as the perfect model of
N).

The model construction method is the foundation of general notion of re-
dundancy [7]. Essentially, every ground formula C that is true in IC is useless
to show that a set of formulas is not saturated. We call such formulas weakly
redundant. Unfortunately, a formula that is weakly redundant in a set of for-
mulas N may lose this property if we compute inferences from formulas in N
and add the conclusions to N . For this reason, it is usually better to work with
(strong) redundancy: Let N̄≺C be the set of all formulas in N̄ that are smaller
than C. We say that the formula C is (strongly) redundant with respect to N
if N̄≺C |= C, and that an inference with conclusion C is redundant with re-
spect to N if N̄≺D |= C, where D is the maximal premise of the inference.8

Non-ground formulas and inferences are called redundant, if all their ground
instances are redundant. Usual strategies for resolution-like calculi such as tau-
tology deletion or clause subsumption are encompassed by this definition, just
as the simplification steps and critical-pair criteria [3] that can be found in com-
pletion procedures. Superposition can also be enhanced by selection functions,
so that hyperresolution-like strategies become applicable.

The Saturate system [26] has been the first superposition-based theorem
prover. The implementation was originally started by Robert Nieuwenhuis and
Pilar Nivela and later continued by Harald Ganzinger. Written in Prolog, it
lacks the inference speed of later superposition provers, such as E, Spass, or
Vampire; it is still remarkable, though, for the huge number of calculi it uses,
such as constraint superpostion, chaining, and lazy CNF transformation, and
the sophisticated redundancy checks and simplification techniques enabled in
this way. In the rest of this section we present four concrete applications of these
simplification techniques.

4.1 Automatic Complexity Analysis

The automated complexity analysis technique of David Basin and Harald Gan-
zinger [12] is based on the concept of order locality. A set of clauses (without
equality) is called local with respect to a term ordering � if, for every ground
clause C, N |= C implies that there is a proof of C from those instances of N
in which every term is smaller than or equal to some term of C. As a special
case, defining � as the subterm ordering yields the notion of subterm locality
that had been previously investigated by David McAllester [35].

8 Note that “redundancy” is called “compositeness” in [7]. In later papers the standard
terminology has changed.
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If the ordering � has the property that for every ground term there are only
finitely many smaller terms, then locality with respect to � implies complexity
bounds for the decision problem N |= C. More precisely, if for every clause of size
n there exist O(f(n)) terms that are smaller than or equal to some term in the
clause and that can be enumerated in time g(n), and if a set N of Horn clauses
is local with respect to �, then N |= C is decidable in time O(f(m)k + g(m)),
where m is the size of C. The constant k depends only on N , it is at most
the maximum of the number of variables of each clause in N . For instance, one
obtains polynomial complexity bounds if one takes the subterm ordering as �;
a Knuth-Bendix ordering yields exponential bounds and a polynomial ordering
doubly exponential bounds.

Order locality is closely related to saturation with respect to ordered reso-
lution: If N is a saturated set of clauses with respect to an atom ordering �′,
then N is local with respect to some term ordering �, provided that certain
compatibility requirements for � and �′ are satisfied.

The Saturate system [26] has been used both to prove saturation (and
hence locality) and to transform sets of clauses into equivalent saturated and
local sets. Formulas like the transitivity axiom show up rather frequently in such
clause sets, and for such clauses, inheritance of ordering constraints is useful to
show saturation. The technique is due to Nivela and Nieuwenhuis [41]: In contrast
to a normal clause C, which can be taken as a representative of all its ground
instances, a constrained clause Θ ‖ C represents only those ground instances of
C that satisfy the constraint Θ, where Θ may be a conjunction of ordering and
equality literals between terms or atoms. In particular, a clause whose constraint
Θ is unsatisfiable is redundant, since it does not represent any ground instance.

Both the ordering restrictions of an inference and the constraints of its
premises are propagated to its conclusion, so we obtain inference rules like the
following for constraint resolution:

I Θ1 ‖ D ∨ A Θ2 ‖ C ∨ ¬B
Θ1 ∧ Θ2 ∧ A = B ∧ Θ ‖ D ∨ C

Here, Θ1 and Θ2 are the constraints of the premises which are propagated to
the conclusion, A = B is the equality constraint of the inference, and Θ is the
ordering constraint of the inference stating that the literals A and B are (strictly)
maximal in their respective clauses.

Examples of theories that have been successfully saturated using the Satu-
rate system are the congruence closure axioms, the theory of tree embedding,
and the theory of partial orderings.

4.2 Church–Rosser Theorems for the λ-Calculus

The λ-calculus, originally conceived by Alonzo Church and Stephen Kleene [33,
16] around 1935, is a model of computability that is based on the notions of
function definition, function application, and recursion. It operates on λ-terms,
which are the closure of a given set of variables x, y, . . . under application (t1 t2)
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and abstraction λx.t. A notion of variable substitution is defined recursively
over the term structure. Since free variables in a substituted expression must
not be bound after substitution, renaming of variables may become necessary.
The result of replacing x in t by s this way is denoted by t[s/x].

The calculus comes with conversion rules which capture when two λ-terms de-
note the same function: α-conversion models that the actual names of bound vari-
ables do not matter; β-conversion (λx.t)s↔β t[s/x] corresponds to function ap-
plication; and η-conversion covers extensional equality of functions: λx.(tx)↔η t
unless x is free in t. In order to ease the management of variables when manip-
ulating λ-terms, Nicolaas Govert de Bruijn [15] suggested to consider, instead
of x, y, . . . , natural numbers in a fixed order, thereby getting rid of names al-
together, and of α-conversion as well. The remaining conversions, if applied in
left-to-right direction only, constitute reduction systems. A key property of the
λ-calculus is that β-reduction →β enjoys a Church–Rosser theorem: Any two
↔∗β-convertible terms are →∗β-reducible to a common successor. The same ap-
plies to →η, and to the union of the two reduction systems.

Tobias Nipkow [39] formalized this family of Church–Rosser theorems within
the Isabelle/HOL system [40], which is a proof assistant for higher-order logic.
Though interactive, Isabelle also features automation of subproofs via a term
rewriting engine and a tableaux prover for predicate logic. Nipkow reported that
the success of the latter depended on the right selection of lemmas supplied
as parameters. For arithmetic goals arising from de Bruijn indices, he added
a special tactic based on Fourier–Motzkin elimination. The proof development
followed the lines of [15, Chapter 3], with an excursus to the approach of [51]
via parallel reductions.

Each of the propositions that Nipkow showed with Isabelle/HOL encapsu-
lates a single induction or is already deductive, at least modulo the arithmetic
reasoning in the background; and in the former case the induction scheme was
explicitly given. Therefore the question whether these propositions could be
demonstrated automatically with a first-order theorem prover constituted a real
challenge, and would set a landmark for the applicability of such systems if an-
swered in the affirmative. This is what Harald Ganzinger and his student Sebas-
tian Winkel set out for at the end of the 1990’s. Their key idea was to integrate
a fragment of arithmetic into the first-order axiomatization itself. They used a
Peano-style formulation, postulated a total ordering, and related the latter to
the successor and to the predecessor operation. Such theories fall into the domain
of the chaining calculus [8], which specializes resolution and superposition for
transitive resolution, and which is implemented in the Saturate system [26].
Notably Saturate managed to prove all the propositions, within the scope of
some minutes.

Just to give an impression of the kind of reasoning in this domain, the first-
order axiomatization on top of the approximation of numbers is shown now.
A variable with de Bruijn number i is denoted by var(i); furthermore abs(s)
denotes an abstraction, and app(s, t) an application. In formalizing substitutions,
a function lift(t, i) is needed that increments all free variables in t that are greater
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than i or equal to i. Saturate is supplied with a case-split definition according
to the structure of t. This definition corresponds to the usual recursive one, but
its semantics for Saturate is purely first-order. All variables are universally
quantified.

¬(i < k) ∨ lift(var(i), k) ≈ var(i)
¬(k ≤ i) ∨ lift(var(i), k) ≈ var(s(i))

lift(app(s, t), k) ≈ app(lift(s, k), lift(t, k))
lift(abs(s), k) ≈ abs(lift(s, succ(k)))

In a similar fashion, Saturate is provided with a definition of subst(t, s, k),
which shall amount to t[s/k]. Note that within t[s/k], all free variables of t above
k are decremented, for application within β-reduction and η-reduction.

¬(k < i) ∨ subst(var(i), s, k) ≈ var(pred(i))
subst(var(k), s, k) ≈ s

¬(i < k) ∨ subst(var(i), s, k) ≈ var(i)
subst(app(t, u), s, k) ≈ app(subst(t, s, k), subst(u, s, k))
subst(abs(t), s, k) ≈ abs(subst(t, lift(s, 0), succ(k)))

One of the inductive propositions that Nipkow proved in Isabelle about sub-
stitution is the identity t[i/i] = t[i/i + 1]. As to Saturate, Harald Ganzinger
and Sebastian Winkel first introduced a predicate for the induction hypothesis:

P(t, i) ≡ ¬(0 ≤ i) ∨ subst(t, var(i), i) ≈ subst(t, var(i), succ(i))

Then Saturate was able to discharge the conjunction of the following proof
obligations in a single run, which correspond to the base case respectively the
two step cases of the induction:

P(var(j), i)
¬P(t, k) ∨ P(abs(t), i)

¬P(t, i) ∨ ¬P(u, i) ∨ P(app(t, u), i)

The following clauses correspond to the base case respectively the two step
cases of the induction:

P(var(j), i)
¬P(t, k) ∨ P(abs(t), i)

¬P(t, i) ∨ ¬P(u, i) ∨ P(app(t, u), i)

In the end Saturate discharged the conjunction of these proof obligations in
a single run, retaining no more than 57 clauses as non-redundant. The standard
parameter setting was employed.

Transitivity and other ordering axioms play a vital role in the problem de-
scription. Transitive relations are known to be detrimental to the efficiency of
standard theorem provers. Saturate contains an implementation of the chain-
ing calculus (Bachmair and Ganzinger [8]) with makes it possible to avoid explicit
inferences with transitivity axioms.
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Given a transitive relation R and a well-founded ordering � on ground terms
and literals, the chaining calculus has the following inference rules:

I C ∨ R(s, t) D ∨ R(u, v)

(C ∨ D ∨ R(s, v))σ

I C ∨ R(t, s) D ∨ ¬R(u, v)

(C ∨ D ∨ ¬R(s, v))σ

I C ∨ R(s, t) D ∨ ¬R(v, u)

(C ∨ D ∨ ¬R(s, v))σ

where, for all rules, σ is an mgu of t and u. Moreover, the chaining rules are
equipped with ordering restrictions similar to the superposition calculus; in par-
ticular the inferences only need to be performed if positive R-literals are strictly
maximal in the respective premises, negative R-literals are maximal in the re-
spective premises, and sσ 6� tσ and vσ 6� uσ.

In order to assess the merits of the chaining calculus for this proof problem,
one may want to compare the 57 clauses kept by Saturate with the corre-
sponding number for a theorem prover like Spass that implements the standard
superposition calculus without chaining. With default setting and the same re-
duction ordering, Spass has to develop 947 non-redundant clauses until a proof
is found. If splitting is turned off, then this number reduces to 342. Seemingly
the presence of the two intertwined transitive relations < and ≤ is a menace to
Spass. If the axiomatization is rephrased in terms of < only, then with a set-of-
support strategy and increased variable weight one gets down to 184 clauses.

Via http://isabelle.in.tum.de/dist/library/HOL/Lambda the proof de-
velopment within Isabelle is available. The Saturate distribution can be ob-
tained from http://www.mpi-inf.mpg.de/SATURATE/Saturate.html and con-
tains all the mentioned first-order proof formulations.

4.3 Lazy CNF Transformation

Practically all automated theorem provers in use today are based on clausal logic.
The input is preprocessed to obtain clause normal form (CNF), this includes the
replacement of equivalences by conjunctions of implications and the elimination
of existential quantifiers by Skolemization.

Very often it is useful to already exploit properties at the formula level via
appropriate deduction mechanisms. Consider the following example: Suppose we
have an equivalence P ⇔ (Q ∧Q′), where P , Q, Q′ are propositional formulas.
Translation to CNF yields the three clauses P ⇒ Q, P ⇒ Q′, Q ∧ Q′ ⇒ P . If
P � Q,Q′ and C is a clause R ∨R′ ∨ P , then the two resolution steps deriving
R∨R′∨Q and R∨R′∨Q′ from C constitute a simplification of C: C follows from
the three smaller clauses Q ∧Q′ ⇒ P , R ∨R′ ∨Q and R ∨R′ ∨Q′. This fact is
somewhat hidden within the set of clauses, though, whereas it was rather obvious
considering the original equivalence. The situation is even worse if one side of
the equivalence contains additional quantified variables, which are skolemized
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away during the clausification of one of the two directions of the equivalence.
For example,

∀A.∀B.(A ⊆ B ⇔ ∀x.(x ∈ A ⇒ x ∈ B))

is turned into
¬A ⊆ B ∨ ¬ x ∈ A ∨ x ∈ B

f(A,B) ∈ A ∨ A ⊆ B
¬ f(A,B) ∈ B ∨ A ⊆ B.

To overcome this problem, Harald Ganzinger and Jürgen Stuber [28] intro-
duced a variant of the superposition calculus with equivalences between formulas
and lazy quantifier elimination. Its positive superposition rule

I D ∨ u ≈ v C ∨ s[u′] ≈ t
(D ∨ C ∨ s[v] ≈ t)σ

where σ is a most general unifier of u and u′ is applicable both to term equations
and to equivalences, that is, equations between formulas. This allows reasoning
with equivalences as they usually arise from definitions in a natural way: If the
larger side of an equivalence is an atomic formula, it can be used in a positive
superposition; such an inference is a simplification for instance if D is empty and
u′σ = u. If the larger side of an equivalence u ≈ v is not atomic, the equivalence
can be eliminated using rules like

R C ∨ u ≈ v
C ∨ u ≈ ⊥ ∨ v ≈ >

R C ∨ u ≈ v
C ∨ u ≈ > ∨ v ≈ ⊥

whose results are then simplified by tableau-like expansion rules such as

R C ∨ (u1 ∧ u2 ≈ >)

C ∨ u1 ≈ >
R C ∨ (u1 ∧ u2 ≈ >)

C ∨ u2 ≈ >
.

Bound variables are encoded by de Bruijn indices, so a formula ∃x∀y f(x, y) ≈ y
is written as (∃ ∀ (p(2, 1) ≈ 1)) ≈ >, and quantified formulas are handled by γ
and δ expansion rules

R C ∨ (∃u ≈ >)

C ∨ u(f(x1, . . . , xn)) ≈ >

where x1, . . . , xn are the free variables in u and f is a fresh Skolem function, and

R C ∨ (∀u ≈ >)

C ∨ u(z) ≈ >

where z is a fresh variable. Since de Bruijn indices may be replaced by arbitrarily
large terms, they must have greater precedence than all other function symbols
in the recursive path ordering used to compare terms and formulas.

The calculus is implemented in the Saturate system [26]. In applications
like set theory, that are dominated by complex definitions, the number of in-
ferences that Saturate performs can be several orders of magnitude smaller
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compared to more conventional provers, such as Vampire, or E. Motivated by
the experiments with Saturate, in Spass a definition detection and expan-
sion algorithm has been integrated that can simulate the above reasoning for
many practical cases [1]. The fact that many equivalence transformations are
now simplifications reduces the search space significantly; for certain examples
the derivation of Saturate is completely deterministic and terminates after few
steps whereas other provers do not find a solution within any reasonable time
limit.

4.4 Priority Queues

Runtime result checking is a method to ensure software reliability that has been
proposed by Hal Wasserman and Manuel Blum [52]. In this approach, a checker
program runs in parallel to the program to be checked and monitors its inputs
and outputs. The checker either confirms correctness of the program’s output or
reports an error. It does not verify the correctness of the program, though; in
fact it does not look into the program code at all. It only verifies that the output
was correct on a given input.

A priority queue is a data structure that maintains a set of real numbers under
the operations insert element and delete and return minimal element. It can be
implemented in such a way that each operation needs logarithmic time. A checker
for priority queues has been developed by Ulrich Finkler and Kurt Mehlhorn [19].
It runs in parallel to the original priority queue algorithm and associates a lower
bound with every member of the priority queue. The lower bound of an element
e is defined as the maximum of all values that the priority queue returned as
minimal since e was inserted. In the case that the priority queue would return
a non-minimal element, the lower bound of the current minimal element will be
greater than the element itself. When this element will be retrieved, the checker
will report an error. The checker is time-efficient, but an off-line checker; this
means that, when the priority queue is incorrectly implemented, i.e. returns a
non-minimal element, this error will not be noticed immediately, but only at the
moment when one of the smaller elements is returned in a later step.

A formal correctness proof for Finkler’s and Mehlhorn’s priority queue checker
has been given by Ruzica Piskac using the Saturate system. She showed that,
if during the run of the priority queue the checker does not report any error
until the queue is empty, then all returned minimal elements are correct [45].
The verification was done in two stages: in the first stage the correctness of the
algorithm used for the checker was proved, while in the second stage a frame-
work following more closely the concrete implementation and data structures
was developed (de Nivelle and Piskac [42]).

The problem description defining the behavior of priority queues and of the
checker contained more than 50 formulas (cf. Figure 1). In order to find the
proof, Saturate needed some additional lemmas (which again needed to be
proved by the theorem prover, sometimes making further lemmas necessary). At
the end more than 80 lemmas were used for the complete proof.
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quasi-ordered set with bottom element:

p1 ≤ p2 ∧ p2 ≤ p3 ⇒ p1 ≤ p3.
p1 ≤ p2 ∨ p2 ≤ p1.
p ≤ p.
bottom ≤ p.
(p1 < p2)⇔ (p1 ≤ p2 ∧ ¬p2 ≤ p1).

priority queues:

¬contains pq(create pq, p).

contains pq(insert pq(pq , p1), p2)⇔ (contains pq(pq , p2) ∨ p1 ≈ p2).

remove pq(insert pq(pq , p), p) ≈ pq .

¬p1 ≈ p2 ∧ contains pq(pq , p2)
⇒ remove pq(insert pq(pq , p1), p2) ≈ insert pq(remove pq(pq , p2), p1).

contains pq(pq , p) ∧ (∀p1.contains pq(pq , p1)⇒ p ≤ p1)
⇒ find min pq(pq , p) ≈ p.

contains pq(pq , p) ∧ (∀p1.contains pq(pq , p1)⇒ p ≤ p1)
⇒ remove min pq(pq , p) ≈ remove pq(pq , p).

lower bounds:

¬contains s(create s, p).

contains s(assign s(s,pair(p1, r)), p2)
⇔ (contains s(s, p2) ∨ p1 ≈ p2).

¬pair in s(create s, p, r).

pair in s(assign s(s, pair(p1, r1)), p2, r2)
⇔ (pair in s(s, p2, r2) ∨ (p1 ≈ p2 ∧ r1 ≈ r2)).

remove s(assign s(s, pair(p, r)), p) ≈ s.
¬p1 ≈ p2 ∧ contains s(s, p2)
⇒ remove s(assign s(s, pair(p1, r)), p2)

≈ assign s(remove s(s, p2), pair(p1, r)).

lookup s(assign s(s, pair(p, r)), p) ≈ r.
¬p1 ≈ p2 ∧ contains s(s, p2)

⇒ lookup s(assign s(s, pair(p1, r)), p2)
≈ lookup s(s, p2).

update s(create s, p) ≈ create s.

r < p2
⇒ update s(assign s(s, pair(p1, r)), p2)

≈ assign s(update s(s, p2),pair(p1, p2)).

p2 ≤ r
⇒ update s(assign s(s, pair(p1, r)), p2)

≈ assign s(update s(s, p2),pair(p1, r)).

Fig. 1. Excerpt of the problem description.
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Six of the formulas to be proved make heavy use of ordering axioms, and, as
in Sect. 4.2, the chaining inference rule was crucial for the success of Saturate
for these formulas. Being implemented in Prolog, Saturate is in general much
slower than provers like Spass, Vampire, or E. In those cases, however, where
the chaining rule makes it possible to avoid explicit inferences with the transi-
tivity axiom, Saturate can be orders of magnitude faster. We have repeated
the experiments with the same lemmas using Spass, version 3.0, where chaining
is not implemented. The running times of both theorem provers are shown in
Figure 2.

benchmark Saturate Spass

lemma not min elem not check 00:07.98 03:31.46
lemma not ok persistence 00:03.24 −
lemma contains s I remove 00:06.50 −
remove min 02 1 00:03.55 03:08.31
tmp not check 02 00:02.92 −
tmp not check 03 00:04.50 59:21.52

Fig. 2. Table shows time in format min:sec that Saturate and Spass spent on the
problem. The symbol “−” indicates that a prover did not terminate after two hours of
running.

All the experiments with Saturate were done using the standard settings.
It includes tautology deletion, forward subsumption, forward and backward re-
duction, and simplification by totality resolution.

5 Spass

The development of the theorem prover Spass started in 1994 (Weidenbach et
al. [55, 54]). Using memory-efficient data structures and specific indexing tech-
niques, Spass has been the first high speed implementation of the superposition
calculus, followed by E [49] and Vampire [46]. Spass also features an advanced
CNF transformation module, equivalence-based definition extraction and expan-
sion technology, a large collection of simplification methods, a special treatment
of monadic predicates (“sorts”), and a tableau-like splitting rule for dealing with
clauses that can be written as disjunctions of variable-disjoint subclauses.

5.1 Euclidean Geometry

Philippe Balbiani [10, 11] introduced a convergent and terminating conditional
term rewriting system for a subtheory of Euclidean geometry. Lacking a power-
ful general proof procedure, Balbiani developed a Prolog-based proof procedure
just in order to establish the properties of this term rewriting system. Christof
Brinker and Christoph Weidenbach showed that Spass plus a specific form of
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contextual rewriting can also be used to produce a complete system for the
Balbiani rule set [14].

The conditional equations in Figure 3 formalize properties of Euclidean geom-
etry on the basis of straight lines, indicated by the letter d, and points, indicated
by the letter p. For convenience, uppercase variable letters represent points and
lowercase variable letters straight lines (sets of points). Then d(X,Y ) formalizes
the line through X and Y and in case X = Y an arbitrary but fixed line through
X, fdp(x,X) the line parallel to x through X, fpd(X,x) the projection from X
to x, fdd(x, y) the perpendicular in the intersection of x and y and, in case x
and y are parallel, an arbitrary but fixed perpendicular on y, and p(X,x) the
perpendicular from X on x.

d(X,Y) ≈ d(Y,X) (RGO0)
fdp(x, fpd(X, x)) ≈ x (RGO1)
fpd(X, fdp(x,X)) ≈ X (RGO2)
fdd(y, fdd(x, y)) ≈ y (RGO3)
fdp(p(X, x),X) ≈ p(X, x) (RGO4)
fdd(p(X, x), x) ≈ p(X, x) (RGO5)
fpd(X, d(X,Y)) ≈ X (RGO6)

p(fpd(X, x), fdd(y, x)) ≈ x (RGO7)

fpd(fpd(X, x), x) ≈ fpd(X, x) (RGO8)
fpd(X, p(X, x)) ≈ X (RGO9)

fdp(fdp(x,X),X) ≈ fdp(x,X) (RGO10)
fdp(d(X,Y),X) ≈ d(X,Y) (RGO11)
fdd(fdd(x, y), y) ≈ fdd(x, y) (RGO12)
fdd(x, p(X, x)) ≈ x (RGO13)

p(X, fdd(x, fdp(y,X))) ≈ fdp(y,X) (RGO14)
p(X, fdd(x, p(X, y))) ≈ p(X, y) (RGO15)
p(X, fdd(x, d(X,Y))) ≈ d(X,Y) (RGO16)
p(fpd(X, fdd(x, y)), y) ≈ fdd(x, y) (RGO17)
p(fpd(X, p(Y, x)), x) ≈ p(Y, x) (RGO18)
p(fpd(X, x), p(Y, x)) ≈ x (RGO19)
p(X, p(Y, fdp(x,X))) ≈ fdp(x,X) (RGO20)
p(X, p(Y, p(X, x))) ≈ p(X, x) (RGO21)
p(X, p(Y, d(X,Z))) ≈ d(X,Z) (RGO22)

fpd(X, x) 6≈ fpd(Y, x) ⇒ d(fpd(X, x), fpd(Y, x)) ≈ x (RGO23)

X 6≈ fpd(Y, fdp(x,X)) ⇒ d(X, fpd(Y, fdp(x,X))) ≈ fdp(x,X) (RGO24)
X 6≈ fpd(Y, p(X, x)) ⇒ d(X, fpd(Y, p(X, x))) ≈ p(X, x) (RGO25)
X 6≈ fpd(Y, d(X,Z)) ⇒ d(X, fpd(Y, d(X,Z))) ≈ d(X,Z) (RGO26)

Fig. 3. Euclidean Conditional Rewrite System

In its general form, Contextual Rewriting is the reduction rule between a
clauses C and D from a clause set N given below. The term NCτ for a substi-

18



tution τ grounding C denotes the set of all ground clauses generated from N by
instantiating variables with ground terms from the range of τ that are smaller
than Cτ .

Let C = C ′ ∨ s ≈ t, D = D′ ∨ [¬] u[s′]p ≈ v be two clauses in N . The reduc-
tion

R C ′ ∨ s ≈ t D′ ∨ [¬] u[s′] ≈ v
C ′ ∨ s ≈ t

D′ ∨ [¬] u[tσ]p ≈ v

where (i) sσ = s′, (ii) sσ � tσ, (iii) D � Cσ, (iv) τ is a Skolem substitution
replacing the variables in Cσ and D by new Skolem constants, (v) NCτ |=
D′′τ ∨ ¬Aτ for all negative equations A in C ′σ where D′′ are the negative
equations in D′, and (vi) NCτ |= ¬Aτ ∨D′′′τ for all positive equations A in C ′σ
where D′′′ are the positive equations in D′ is called contextual rewriting.

This general form of contextual rewriting can be effectively computed, but
is very expensive. For example, given the Skolem constants for Cσ and D there
are exponentially many possibilities in the number of variables to instantiate a
clause from NC by these constants. Furthermore, Harald Ganzinger implemented
the rule in the Saturate system [41] and his experiments showed that the
complexity shows up in practice. There were examples where the prover spent
hours on the applicability of a single contextual rewriting application of the
above form.

A detailed study of Balbiani’s conditional rewrite system and proof procedure
yielded that considering the context NCτ is not necessary for termination of the
saturation process. It is sufficient to study contextual rewriting with respect to
the involved clauses and standard reduction of the generated clauses D′′τ ∨¬Aτ
and ¬Aτ ∨D′′′τ . The result is the local contextual rewriting rule.

Let C = C ′ ∨ s ≈ t, D = D′ ∨ [¬] u[s′]p ≈ v be two clauses in N . The reduc-
tion

R C ′ ∨ s ≈ t D′ ∨ [¬] u[s′] ≈ v
C ′ ∨ s ≈ t

D′ ∨ [¬] u[tσ]p ≈ v

where (i) sσ = s′, (ii) sσ � tσ, (iii) D � Cσ, (iv) τ is a Skolem substitution
replacing the variables in Cσ and D by new Skolem constants, (v) |= D′′τ ∨¬Aτ
for all negative equations A in C ′σ where D′′ are the negative equations in D′,
and (v) |= ¬Aτ ∨ D′′′τ for all positive equations A in C ′σ where D′′′ are the
positive equations in D′ is called Local Contextual Rewriting.

The applicability of local contextual rewriting can be decided in polynomial
time9, because the semantic tautology checks for |= D′′τ∨¬Aτ and |= ¬Aτ∨D′′′τ
can be decided by the well-known congruence closure algorithm [17].

We get the Semantic Tautology Rule

R C

9 If the used ordering ≺ is decidable in polynomial time.
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if |= C for free, because we need to decide semantic tautologies for the applica-
bility of local contextual rewriting anyway.

Now with these two extra rules local contextual rewriting and semantic tau-
tology deletion the Balbiani system can be finitely saturated. Spass needs less
than one second to generate the saturated system consisting of 40 conditional
equations. Except for the commutativity of d(X,Y ), all clauses have a single
maximal oriented equation containing all variables in the left-hand side of the
equation. Therefore, the saturated system can be effectively used to decide any
ground query, i.e., universally quantified conjecture.

5.2 Soft Typing

The general redundancy notion of superposition is given with respect to the
perfect, minimal (Herbrand) model IN , generated by a (saturated) clause set
N . Any clause C that is true in the perfect model generated by all clauses of the
actual clause set N smaller than C, written IC |= C, is weakly redundant (see
Section 4). One consequence of this result is that actually any clause C that is
implied by smaller clauses from N can be deleted, i.e., if N≺C |= C then C can
be deleted. This is the foundation for most of all practically used redundancy
and simplification notions, e.g., rewriting or subsumption.

The model-based redundancy notion has two problems in practice. First, it is
dynamic. As long as the set N is not saturated and new clauses are derived the
interpretation IN changes and therefore, clauses must not be deleted but can
only be blocked for inferences (see Section 4). Second, the properties IN |= C
and IC |= C are undecidable in general, because they constitute a second-order
property by considering validity in a minimal model of a set of first-order clauses
N .

One solution to this problem is to define an upper approximation I ′N of IN
that is (i) stable under inferences in N and for which (ii) the problem I ′N |= C
becomes decidable. An (Herbrand) interpretation I ′N is an upper approximation

of IN , written IN ⊆ I ′N , if for all predicates P : P IN ⊆ P I
′
N and the two

interpretations agree on the interpretation of all function symbols. Then such an
approximation can be used to simplify reasoning on N . A first application is the
detection and deletion of redundant clauses. Consider a clause ¬A1∨. . .∨¬An∨C
out of a clause set N such that for any grounding substitution σ the atoms Aiσ
are false: I ′N 6|= A1σ ∧ . . . ∧ Anσ. Then the clause ¬A1 ∨ . . . ∨ ¬An ∨ C is a
tautology and can be deleted. This technique is called soft typing. There are
applications where soft typing is key to finitely saturate a clause set [25].

In order to obtain effectively an upper approximation I ′N the idea is to ac-
tually approximate the clause set N by a (consistent) clause set N ′ such that
eventually IN ⊆ IN ′ and N ′ belongs to a decidable clause class. This way, a
second application is to prove properties of N by considering N ′. If Φ is a uni-
versally closed conjunction of atoms and N ′ |= Φ, then N |= Φ. Thus, if Φ
is provable from N ′, which is decidable by construction, then we need not to
consider validity with respect to N , which is undecidable, in general.
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So we need to find an expressive, decidable sublanguage of first-order clause
logic that can serve as the range class for an approximation. Monadic Horn
clause sets are a natural and powerful candidate [37, 32, 53]. There exist several
decidability results and we will show in this section that there also exist natural
and powerful approximations into the class. Monadic Horn clause classes are
typically used to describe sorts or types and serve as a theoretical basis in other
contexts like programming languages or abstract interpretation, supporting the
name soft typing.

The theoretical background for the application of approximation functions
given below was developed by Harald Ganzinger, Christoph Meyer, and Christoph
Weidenbach [25]. It was implemented by Enno Keen via the dfg2dfg tool, part
of the Spass distribution since 2001. All rules can be applied separately but
exhaustively and can be actually composed to obtain different overall approxi-
mations. Note that application of the rules may turn a consistent clause set into
an inconsistent one due to the upper approximation of predicates. So checking
consistency of the approximated clause set is mandatory for the approach to
work.

The Horn Rule transforms a non-Horn clause into a set of Horn clauses:

R C ∨A1 ∨ . . . ∨An
C ∨A1

...
C ∨An

where n ≥ 2 and A1 ∨ . . . ∨An are equality or non-equality atoms and no more
positive atoms are in C.

The next two rules constitute alternative transformations from non-monadic
non-equality literals into monadic literals. Note that equality literals are not
transformed.

The Monadic Term Encoding Rule transforms an n-ary predicate into a monadic
atom using by moving the predicate to the function level.

R C ∨ [¬]P (t1, . . . , tn)

C ∨ [¬]T (p(t1, . . . , tn))

where n ≥ 2, p is a new function corresponding to the predicate P and T is a
special fixed predicate. Applied to a given clause set, all occurrences of P in the
clause set are transformed into the same function p.

The Monadic Projection Encoding Rule transforms an n-ary predicate into sev-
eral monadic atoms by argument projection:

R C ∨ [¬]P (t1, . . . , tn)

C ∨ [¬]P1(t1)
...

C ∨ [¬]Pn(tn)
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where n ≥ 2, and P1, . . . , Pn are new monadic predicates. All occurrences of P
in the clause set are transformed into the same predicates P1, . . . , Pn.

So far a combination of the rules enables the transformation from an arbitrary
clause set into a monadic Horn clause set. From now on we assume all clause
sets to be Horn and monadic. The following rules approximate a monadic Horn
clause set into a monadic Horn clause set with a decidable entailment problem
by relaxing the term structure. There are several candidates for such clause sets,
relying on linearity and shallowness. A term is called linear if it contains no
repeated variables. A term is called shallow if it is of the form f(x1, . . . , xn).
The Linear Approximation Rule given below reduces the number of non-linear
variable occurrences in a Horn clause by replacing a variable x repeated within
an atom by some new variable x′. Note that the transformation is not applicable
to clauses containing equality or non-monadic literals.

The Linear Approximation Rule eliminates non-linear variable occurrences in
atoms of monadic Horn clauses:

R C ∨ P (t)[x]p,q
C{x 7→ x′} ∨ C ∨ P (t)[x′/x]p

where p 6= q, and x′ is a new variable.

Finally, nested terms are transformer into shallow terms by the Shallow Approx-
imation Rule

R C ∨ P (t[s]p)

¬S(x) ∨ C ∨ P (t[x/s]p)
C ∨ S(s)

where s is a complex term at non-top position p in t, and x is a new variable
and S a new predicate.

The rule can be further refined by considering all occurrences of s in t simul-
taneously and by filtering C with respect to variable dependencies with s.

The transformation rules Horn Transformation, Monadic Projection Encod-
ing, Linear Approximation, Shallow and Relaxed Shallow produce upper approx-
imations of the original clause set.

Eventually the rules can be combined to obtain a decidable approximation for
a given clause set N . A typical sequence is the transformation to Horn clauses,
transformation to monadic literals, linear transformation, and finally shallow
transformation resulting in an approximation Horn clause set N ′ in the above
sense. In practice, the challenge is to find approximations that lead to consistent
and non-trivial approximations.

6 Conclusions

Simplification and redundancy detection are the key techniques to reduce the
search space of a theorem prover. Harald Ganzinger has developed the funda-
mental abstract concept of redundancy and simplification for superposition-like
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calculi together with Leo Bachmair. His theoretical work, however, has always
been supplemented by the urge to make it practically useful – by developing
concrete, effective redundancy and simplification criteria to be implemented in
current theorem provers in order to make them beneficial for various application
domains. In this survey, we have tried to give a few representative examples of
this practical side of his scientific work.
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