
Synthesizing Functional Reactive Programs
Bernd Finkbeiner

Saarland University

Germany

Felix Klein

Saarland University

Germany

Ruzica Piskac

Yale University

CT, USA

Mark Santolucito

Yale University

CT, USA

Abstract
Functional Reactive Programming (FRP) is a paradigm that

has simplified the construction of reactive programs. There

are many libraries that implement incarnations of FRP, us-

ing abstractions such as Applicative, Monads, and Arrows.

However, finding a good control flow, that correctly manages

state and switches behaviors at the right times, still poses a

major challenge to developers.

An attractive alternative is specifying the behavior instead

of programming it, as made possible by the recently devel-

oped logic: Temporal Stream Logic (TSL). However, it has

not been explored so far how Control Flow Models (CFMs),

resulting from TSL synthesis, are turned into executable code

that is compatible with libraries building on FRP. We bridge

this gap, by showing that CFMs are a suitable formalism to

be turned into Applicative, Monadic, and Arrowized FRP.

We demonstrate the effectiveness of our translations on a

real-world kitchen timer application, which we translate to a

desktop application using the Arrowized FRP library Yampa, a
web application using the Monadic Threepenny-GUI library,
and to hardware using the Applicative hardware description

language ClaSH.

CCS Concepts • Software and its engineering;

Keywords Reactive Synthesis, TSL, FRP

ACM Reference Format:
Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito.

2019. Synthesizing Functional Reactive Programs. In Proceedings of
the 12th ACM SIGPLAN International Haskell Symposium (Haskell
’19), August 22–23, 2019, Berlin, Germany.ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3331545.3342601

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Haskell ’19, August 22–23, 2019, Berlin, Germany
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6813-1/19/08. . . $15.00

https://doi.org/10.1145/3331545.3342601

1 Introduction
Reactive programs implement a broad class of computer

systems whose defining element is the continued interaction

between the system and its environment. Their importance

can be seen through the wide range of applications, such as

embedded devices [Helbling and Guyer 2016], games [Perez

2017], robotics [Jing et al. 2016], hardware circuits [Khalimov

et al. 2014], GUIs [Czaplicki and Chong 2013], and interactive

multimedia [Santolucito et al. 2015].

Functional Reactive Programming (FRP) [Courtney et al.

2003; Elliott and Hudak 1997] is a paradigm for writing pro-

grams for reactive systems. The fundamental idea of FRP

is to extend the classic building blocks of functional pro-

gramming with the abstraction of a siдnal to describe values
varying over time. In contrast to sequential programs being

executed step by step, FRP programs lead to stream pro-

cessing networks that manage state and switch between

behaviors dependent on the user input. FRP programs can

be exceptionally efficient. For example, a network controller

recently implemented as an FRP program on a multicore

processor outperformed all its contemporary competing im-

plementations [Voellmy et al. 2013].

Building a reactive program is a complex process, of which

the most difficult part is finding a good and correct high-level

design [Piterman et al. 2006]. Furthermore, even once this

design has been fixed, implementing the system still remains

a highly error-prone process [Shan et al. 2016]. While FRP

helps with the latter problem by embedding the concept of

time into the type system, it still leaves the challenge of

switching between behaviors and managing state efficiently

open. The use of temporal logic has been explored to test

properties of FRP programs [Perez and Nilsson 2017], how-

ever testing still leaves space for possible errors.

A solution for solving the design challenge has been pro-

posed with Temporal Stream Logic [Finkbeiner et al. 2019],

a specification logic to specify the temporal control flow be-

havior of a program. The logic enforces a clean separation

between control and data transformations, which also can be

leveraged in FRP [Elliott and Hudak 1997]. Temporal Stream

Logic (TSL) is used in combination with a reactive synthesis

engine to automatically create an abstract model of temporal

control called a Control Flow Model (CFM) satisfying the

https://doi.org/10.1145/3331545.3342601
https://doi.org/10.1145/3331545.3342601

Haskell ’19, August 22–23, 2019, Berlin, Germany Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito

yampaButton : : SF (Event MouseClick) Picture

yampaButton = proc click → do

rec

count <- init 0 -< newCount

newCount <- arr f1 -< (click , count)

pic <- arr f2 -< count

returnA -< pic

f1 : : (Event MouseClick , Int) → Int

f1 (click , count)

| isEvent click = count + 1

| otherwise = count

f2 : : Int → Picture

f2 = text . show

Figure 1. A button written with the FRP library Yampa.

given specification. TSL combines Boolean and temporal op-

erations with predicates p si, evaluated on inputs si, and
updates denoted by Jso � f si K, which map pure func-

tions f to inputs si and pipe the result to an output so. An
example for a TSL specification is given by(

(event click ↔ Jcount � increment countK)
∧ Jscreen � display countK

)
which states that the counter must always be incremented if

and only if there is a click event, and that the value of the

counter is displayed on a screen.

An implementation that satisfies the specified behavior,

built using the FRP library Yampa [Courtney et al. 2003],

is shown in Fig. 1. The program implements a button in

a GUI which shows a counter value that increments with

every click. The Yampa FRP library uses an abstraction called

arrows [Hughes 2000], where the arrows define the structure

and connection between functions [Liu and Hudak 2007].

As mentioned before, they can be used to cleanly separate

data transformations into pure functions, creating a visually

clear separation between the control flow and the data level.

In the example program of Fig. 1, this separation is clearly

visible. The yampaButton is the “arrow” part of the code,

which defines a control flow. The functions f1 and f2 are

the “functional” part, describing pure data transformations.

In the TSL specification, function applications, like click,
increment or display, are not tied to a particular imple-

mentation. Instead, the synthesis engine ensures that the

specification is satisfied for all possible implementations

that may be bound to these placeholders, similar to an un-

known polymorphic function that is used as an argument in

a functional program. Thus, the implementation of Fig. 1 in-

deed satisfies the given specification by implementing event
with isEvent of the yampa library, increment with (+1),
and display with text of the gloss library and show.
The immediate advantage of synthesis over manual pro-

gramming is that, if the synthesis succeeds, then there is a

guarantee that the constructed program satisfies the spec-

ification. Sometimes, the synthesis does not succeed, and

this also leads to interesting results. An example is given

by the FRPZoo [Gélineau 2016] study, which consists of im-

plementations for the same program for 16 different FRP

libraries. The program consists of two buttons that can be

clicked on by the user: a counter button, which keeps track

of the number of clicks, and a toggle button, which turns the
counter button on and off. To our surprise, after translating

the written-English specification from the FRPZoo website

into a formal TSL specification, the synthesis procedure was

not able to synthesize a satisfying program. By inspecting

the output of the synthesis tool, we noticed that the spec-

ification is actually unrealizable. The problem is that the

specification requires the counter to be incremented when-

ever the counter button is clicked. At the same time, the

counter must be reset to zero whenever the toggle button is

clicked. This creates a conflict when both buttons are clicked

together. To obtain a solution, we had to add the assumption

that both buttons are never pressed simultaneously.

While the work of Finkbeiner et al. 2019 discusses the

synthesis process for creating the CFM in detail, it does not

elaborate on how a CFM is actually turned into FRP code,

which is necessary to finally generate an executable. In this

work we explore this process, and show how Causal Commu-

tative Arrows (CCA) form a foundational abstraction for FRP

in the context of program synthesis. From this connection

between CCA and a CFM, we build a system to generate

library-independent FRP across a range of FRP abstractions.

There is no single style of FRP which is generally accepted

as canonical. Instead, FRP is realized through a number of

libraries, which are based on fundamentally different ab-

stractions, such as Monadic FRP [Apfelmus 2013; Ploeg and

Claessen 2015; Trinkle 2017], Arrowized FRP [Courtney et al.

2003; Winograd-Cort 2015], and Applicative FRP [Apfelmus

2012; Baaij 2015].

We show that our system is flexible enough to handle all

of these abstractions, by demonstrating translations from a

CFM to Threepenny-GUI [Apfelmus 2013], Yampa [Court-

ney et al. 2003], and ClaSH [Baaij 2015]. The CFM used

to generate the code is synthesized from a TSL specifica-

tion that describes the behavior of a kitchen timer appli-

cation. It was obtained from a real-world kitchen timer, as

depicted in Fig. 2, that is retailed by the German company

Dirk Rosssmann GmbH .

We do not envision FRP synthesis as a replacement for

FRP libraries, but rather as a complement. Through synthe-

sis and code generation, users automatically construct FRP

programs in these libraries that provide critical interfaces

to input/output domains. Furthermore, we show that TSL

synthesis generates code as expressive as CCA. While this

power is sufficient for many applications, the FRP libraries

still provide an interface to more powerful language abstrac-

tion features, in case the user chooses to use them.

Synthesizing Functional Reactive Programs Haskell ’19, August 22–23, 2019, Berlin, Germany

Figure 2. Real-world kitchen timer that is retailed by the

company Dirk Rosssmann GmbH.

In summary, the paper makes the following contributions:

1. We describe the process of automatically generating

library-independent FRP control code from TSL speci-

fications.

2. We examine the relation between CFMs and CCA, and

compare the differences between various FRP abstrac-

tions during the translation process.

3. We demonstrate our translations on a kitchen timer

application, built as a desktop application using the

Arrowized FRP library Yampa, as a web application

using the Monadic library Threepenny-GUI, and to

hardware using the Applicative hardware description

language ClaSH.
4. We provide an open-source tool for the synthesis of

FRP programs from TSL specifications
1

2 Preliminaries
We assume time to be discrete and denote it by the set Time

of positive integers. A value is an arbitrary object of arbitrary

type, where we use V to denote the set of all values. We

consider the Boolean values B ⊆ V as a special subset,

which are either true ∈ B or false ∈ B.
A signal s : Time →V is a function fixing a value at each

point in time. The set of all signals is denoted by S, usually

partitioned into input signals I and output signals O.

An n-ary function f : Vn →V determines a new value

from n given values. We denote the set of all functions (of

1
All source code is available at https://github.com/reactive-systems/tsltools

(a) arr f (b) a1 >>> a2

(c) first a (d) loop a

f a1 a2

a a

Figure 3. The core Arrow operators. Others, like second,
are built from these.

arbitrary arity) by F . Constants are functions of arity zero,

while every constant is also a value, i.e, an element of F ∩V .

An n-ary predicate p : Vn → B checks a truth statement on

n given values. The set of all predicates (of arbitrary arity) is

denoted by P.

2.1 Functional Reactive Programming
FRP is a programming paradigm that uses the abstractions

available in functional programming to create an abstraction

of time. The core abstraction in FRP is that of a signal

Siдnal a = Time → a

which produces values of some arbitrary type a over time.

The typea can be an input from theworld, such as the current

position of the mouse, or an output type, such as some text

that should be rendered to the screen. Signals are also used

internally to manipulate values over time, for example if the

position of the mouse should be rendered to the screen.

Arrows There are many incarnations of FRP, which use var-

ious abstraction tomanipulate signals over time. One popular

abstraction for FRP is a Monad, but a weaker abstraction,

called Arrows, is also used in many modern libraries [Mur-

phy 2016; Perez et al. 2016]. The Arrow abstraction describes

a computation connecting inputs and outputs in a single

type [Hughes 2000]. Hence, an Arrow type also allows us to

describe reactive programs that process inputs and produce

outputs over time.

Arrowized FRP was introduced to plug a space leak in the

original FRP work [Elliott and Hudak 1997; Liu and Hudak

2007]. By using the Arrow abstraction introduced in [Hughes

2000], which describes in a single type inputs and outputs, we

can also describe reactive programs that process inputs and

produce outputs over time. At the top level, an Arrowized

FRP program will have the form

SF Input Output = Siдnal Input → Siдnal Output

which is a signal function type, parametrized by the type of

input from the world and the type of output to the world. The

core Arrow operators, shown in Fig. 3, are used to compose

multiple arrows into larger programs.

https://github.com/reactive-systems/tsltools

Haskell ’19, August 22–23, 2019, Berlin, Germany Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito

f

init i

Figure 4. loopD i f: a special loop from CCA that is ini-

tialized with a user provided value i.

The abstractions used in different implementations of FRP

vary in expressive power. Arrowized FRP has a smaller in-

terface than Monadic FRP [Lindley et al. 2011] preventing

particular constructs that caused the aforementioned space

leak. This is also useful when choosing a core language to

synthesize, as we are able to simulate Arrowized FRP pro-

grams in most Monadic libraries.

CCA We target a restricted set of arrows called Causal

Commutative Arrows (CCA) [Liu et al. 2011; Yallop and Liu

2016]. Specifically, CCA adds additional laws to arrows that

constrain their behavior and the type of state theymay retain.

Of particular interest is that CCA also introduces a special

initialization operator, init. This init operator allows for
loopD, a loop that includes initialization, as shown in Fig. 4.

We use CCA as a minimal language for synthesis. Our

synthesis is able to support any FRP library which is at least

as powerful as CCA. Because CCA is again restricted in its

interface, there are more libraries that can simulate CCA FRP

than Arrowized FRP in general. This makes our synthesis

procedure possible for an even wider range of application

scenarios. We revisit the implications of CCA as our choice

of computation abstraction in Section 4.1.

2.2 Reactive Synthesis
The synthesis of a reactive system concerns the process of

automatically generating an implementation from a high-

level specification. The reactive system acts as a deterministic

controller, which reads inputs and produces outputs over an

infinite amount of time. In contrast, a specification defines

all input/output behavior pairs that are valid, i.e., allowed to

be produced by the controller.

In the classical synthesis setting, time is discrete and inputs

and outputs are given as vectors of Boolean signals. The stan-

dard abstraction treats inputs and outputs as atomic proposi-

tions I∪O, while their Boolean combinations form an alpha-

bet Σ = 2
I∪O

of alphabet symbols. This fixes the behavior of

the system to infinite sequences σ = σ0σ1σ2 . . . of alphabet
symbols σt . At every time t signals appearing in the set σt are
enabled (true), while signals not in σt are disabled (false).
The set of all such sequences is denoted by Σω , where the
ω-operator induces the infinite concatenation of alphabet

symbols of Σ. A deterministic solution links exactly one out-

put sequence β ∈ (2
O
)
ω
to every possible input sequence

α ∈ (2
I
)
ω
, i.e., it is a total function f : (2I)ω → (2

O
)
ω
. A

specification describes an arbitrary relation between input

sequences α ∈ (2I)ω and output sequences β ∈ (2O)ω .

2.3 Connections between FRP and Reactive Systems
A first inspection reveals that FRP fits into the definition of

a reactive system, as given in Section 2.2: an FRP program

reads an infinite stream of input signals and finally produces

a corresponding infinite output stream. Nevertheless, FRP

does not fit into the classical setting used for reactive systems,

as the input and output streams in FRP are allowed to have

arbitrary types.

To solve this problem, one could restrict FRP to just streams

of enumerative types, which then are reduced to a Boolean

representation. However, this would drop the necessity of

almost all interesting features of FRP and it is questionable

whether this restricted notion of FRP would give any ben-

efits against Mealy/Moore automata or circuits, which are

already used for reactive systems. Additionally, it just creates

an exponential blowup and does not provide any insights

into the core problem.

Hence, it is more reasonable and interesting to askwhether

it is possible to natively handle streams of arbitrary type

within reactive systems. Recall that FRP includes functional

behavior, defined using standard functional paradigms, but

also a control structure, defined via arrows and loops. We

will target synthesis of the control structure, leaving the func-

tional level synthesis to tools such as Myth [Kuncak et al.

2010; Osera and Zdancewic 2015] or Synqid [Polikarpova

et al. 2016].

2.4 Temporal Stream Logic
We use Temporal Stream Logic (TSL) for specifying the con-

trol flow behavior of functional reactive programs [Finkbeiner

et al. 2019]. TSL has been especially designed for synthesis

and describes control flow properties with respect to their

temporal behavior. If a TSL specification is realizable it can

be turned into a Control Flow Model (CFM), an abstract

representation of the FRP network that covers all possible

behavior switches.

Temporal Stream Logic builds on the notion of updates,
such as Jy � f xK, which expresses that the result of map-

ping the pure function f to some input stream x is piped to

the output stream y. The execution of an update is coupled

with predicate evaluations guiding the control flow decisions

of the network. In combination with Boolean and tempo-

ral operators, the logic allows for expressing even complex

temporally evolving FRP networks using only a short, but

precise description of the temporal behavior.

TSL specifications implicitly induce an architecture as

shown in Fig. 5. As a basis, the syntax of TSL uses a term

based notion, built from input streams i ∈ I, output streams

o ∈ O, memory cells c ∈ C, and function and predicate lit-

erals f ∈ F and p ∈ P with P ⊆ F, respectively. The pur-

pose of cells is to memorize data values, output to a cell at

time t ∈ Time, to provide them again as inputs at time t + 1.

Synthesizing Functional Reactive Programs Haskell ’19, August 22–23, 2019, Berlin, Germany

inputs:

I

cells: C

outputs:

O

reactive system

implementing a

TSL specification φ...
...

...
...

Figure 5. The TSL system architecture.

We differentiate between function terms τF ∈ TF and predi-

cate terms τP ∈ TP , built according to the following grammar

τF := si | f τ 0F τ 1F · · · τ
n−1
F

τP := p τ 0F τ 1F . . . τ
n−1
F

where si ∈ I ∪ C is either an input stream or a cell. In a TSL

formulaφ, predicate and function terms are then combined to

updates with Boolean connectives and temporal operators (as

well as the standard derived Boolean and temporal operators)

φ := τP | Jso � τF K | ¬φ | φ ∧ φ | φ | φU φ

where so ∈ O ∪ C is either an output signal or a cell.

For giving semantics to TSL formulas φ, a universally

quantified assignment function ⟨·⟩ : F → F is used. The

assignment function fixes an implementation for each predi-

cate and function literal, as well as input streams ι : I→ S.
We will only give an intuitive description of the semantics

here. For a fully formal definition, the interested reader is

referred to [Finkbeiner et al. 2019]. Intuitively, the semantics

of TSL can be summarized as follows:

Predicate terms are evaluated to either true or false, by
first selecting implementations for all function and predicate

literals according to ⟨·⟩, and then applying them to the inputs,

as given by ι, and cells, using the stored value at the current

time t . The content of a cell thereby is fixed iteratively by

selecting the past values piped into the cell over time. Cells

are initialized using a special constant provided as part of ⟨·⟩.

Function terms are evaluated similar to predicate terms,

except that they can evaluate to any value of arbitrary type.

Updates are used to pipe the result of function term eval-

uations to output streams or cells. Updates, as they appear

in a TSL formula, are typed as Boolean expressions. In that

sense, update expressions are used in TSL formulas to state

that a specific flow is executed at a specific point in time,

where the expression evaluates to true, if it is executed and

to false, otherwise. The semantics of TSL ensure that dif-

ferent updates to the same output or cell are always mutual

exclusive, e.g., the expression Jo � f xK ∧ Jo � g xK is
never satisfied.

· · · t t + 1 · · ·

φ φ

· · · t t + 1 · · ·

φ

φ φ

· · · t t + 1 · · · t ′−1 t ′ t ′+ 1 · · ·

φ φ

· · · t t + 1 · · · t ′−1 t ′ t ′+ 1 · · ·

ψ U φ φ

ψ ψ ψ

· · · t t + 1 · · · t ′−1 t ′ t ′+ 1 · · ·

ψ R φ ψ

φ φ φ φ φ

· · · t t + 1 · · · t ′−1 t ′ t ′+ 1 · · ·

ψ W φ φ

ψ ψ ψ ψ ψ

Figure 6. Temporal behavior of the operators next, always,
finally, until, release, and weak until. In case of release and
weak until, the formula is either fulfilled by satisfying the

top behavior (green) or the bottom behavior (yellow). The

blue arrows on the time axis indicate the temporal scope of

the operators over time.

Boolean operators like negation [¬] and conjunction [∧],

and temporal operators like next [] and until [U] have

standard semantics. We use the standard derived operators,

e.g., disjunction [φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ)], implication [φ →
ψ ≡ ¬φ ∨ ψ] and equivalence [φ ↔ ψ ≡ (φ → ψ) ∧ (ψ →
φ)]. For the temporal operators, intuitive behavior is given

in Fig. 6, including derived operators like release [φ Rψ ≡
¬((¬ψ)U(¬φ))], finally [φ ≡ trueU φ], always [φ ≡
falseR φ], and the weak version of until [φWψ ≡ (φUψ)∨
(φ)]. The precedence order of the listed operators matches

the listed order, except that and have higher precedence

thatU and R.

The synthesis problem of creating a CFMM satisfying a TSL

specification φ then is formalized by

∃M . ∀ι. ∀⟨·⟩. M≀ ι, ι �⟨·⟩ φ

whereM≀ ι denotes the output produced byM under the

input ι. Note that the CFMM must satisfy the specification

for all possibly chosen function and predicate implementa-

tions, as selected by ⟨·⟩, and all possible inputs ι, which is

the reason for the synthesis problem being undecidable in

general.

Theorem 2.1 ([Finkbeiner et al. 2019]). The synthesis prob-
lem of TSL is undecidable.

A useful advantage of TSL in contrast to other specification

logics is that function and predicate names, as used by the

Haskell ’19, August 22–23, 2019, Berlin, Germany Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito

specification, are only considered as symbolic literals. That

is, TSL formulas are universally quantified over the function

and predicate terms that appear in the formula. Therefore,

the logic guarantees that synthesized systems satisfy the

specified behavior for all possible implementations of these

function and predicate literals. The literals are still classified

according to their arity, i.e., the number of other function

terms they are applied to, as well as by their type: input, out-

put, cell, function or predicate. Thus, they can be considered

similar to a function, passed as an argument, of polymorphic

type. In this sense, TSL specifications fix the type of the net-

work, but not the type of the data, which is still polymorphic.

Type information of the data only needs to be provided after

synthesis through the instantiation of function and predicate

literals with respective implementations.

If synthesis is successful, then it creates a Control Flow
Model (CFM) that satisfies the specified behavior. Formally,

a CFMM is a tupleM = (I,O,C,V , ℓ,δ), where I is a finite
set of inputs, O is a finite set of outputs, C is a finite set of

cells, V is a finite set of vertices, and ℓ : V → (F ∪ L ∪ U)
assigns each vertex a signal function (either a function f ∈ F,
a predicate p ∈ P, a logic operator in L lifted to the signal

level, or a mutex selector U lifted to the signal level). The set

of logic operators L contains the standard Boolean opera-

tors, and the mutex selectors U are signal functions, pattern

matching on one input signal to select among the other input

signals for output. Finally, a CFM also contains a dependency

relation

δ : (O ∪ C ∪V) × N→ (I ∪ C ∪V ∪ {⊥})

relating every output, cell, and vertex to a set of inputs, cells,

or vertices. The dependency relations defines the wiring

between signal functions. The selector n ∈ N argument

allows us to specify a specific connection, since a signal

function may have multiple inputs. Outputs and cells s ∈
O ∪ C always have only a single input signal stream, so

the first selector has some non-bottom value (δ (s, 0) . ⊥)
and any larger selector is undefined (∀m > 0. δ (s,m) ≡ ⊥).

In contrast, for vertices x ∈ V the number of input signals

n ∈ N match the arity of the assigned function or predicate

ℓ(x). This means ∀m ∈ N. δ (x ,m) ≡ ⊥ ↔ m > n. We only

consider valid CFMs, where a CFM is valid if it does not

contain circular dependencies, i.e., on every cycle induced

by δ there must lie at least a single cell. As an example, a

CFM would contain a circular dependency, if given x ,y ∈ V ,

δ (x , 0) = y and δ (y, 0) = x . Such a CFM, if rendered as an

Arrow, would enter an infinite loop, and, in the best case,

generates the runtime error <<loop>>.

3 System Design with TSL
We demonstrate the advantages of using TSL as a specifica-

tion language for the development of FRP applications using

the example application of a kitchen timer, as presented in

SECMIN
STOP

START

RESET

SECMIN

display

seconds

minutes

start/stop timer

increase seconds

increase minutes

Figure 7. The kitchen timer concept.

Fig. 7. The timer consists of three buttons, a screen display-

ing the currently set time and a buzzer to produce an alarm.

The button values are provided as Boolean input streams

to the system, which deliver true, as long as a button is

pressed, and false otherwise. In addition, there is an input

stream providing the time passed since the last execution

of the network, which is utilized to synchronize the time

displayed, with the clock of the application framework.

Similar to the button inputs, the system must output a

Boolean data stream to control the buzzer, which is turned

on whenever the output is true. The second output the

system must provide delivers the data to be displayed on the

screen, where the data type is fixed by the utilized application

framework.

We consider the following list of requirements to be imple-

mented by the timer:

1. Whenever the MIN and SEC buttons are pressed simul-

taneously, the timer is reset, meaning the time is set

to zero and the system stays idle until the next button

gets pressed.

2. If only the MIN button is pressed and the timer is not

currently counting up or down, then the currently set

time is increased by one minute.

3. If only the SEC button is pressed and the timer is not

currently counting up or down, then the currently set

time is increased by one second.

4. As long as no time greater than zero has been set and

the system is idle: if the START/STOP button is pressed

and the timer is not already counting up or down, then

the timer starts counting up until it is stopped by any

button pressed.

5. If a time has been set and the START/STOP button is

pressed while the timer is not currently counting up

or down, then the timer starts counting down until it

is stopped by any button pressed.

6. The timer can only be started by pressing start.

7. The timer can always be stopped by pressing any but-

ton while counting up or down.

Synthesizing Functional Reactive Programs Haskell ’19, August 22–23, 2019, Berlin, Germany

8. It is possible to start the timer and to set some time

simultaneously.

9. The buzzer beeps on any button press and after the

counter reaches zero while counting down.

10. The display always shows the time currently set.

While it requires a certain amount of engineering for finding

the right control behavior, especially for fixing the additional

state to manage the different modes, when directly imple-

menting the application on top of an FRP library, it is an easy

task to specify the control behavior with TSL. We first fix

possible operations on time, used as a cell for holding the

currently set time.

countup := Jtime � countup time dtK
countdown := Jtime � countdown time dtK

incmin := Jtime � incMinutes timeK
incsec := Jtime � incSeconds timeK

idle := Jtime � timeK

The used literals countup, countdown, incMinutes, and
incSeconds represent pure functions that update the value

of time accordingly, while the input signal dt delivers the
time difference since the last execution of the network. By

the semantics of TSL it is already ensured that assignments to

the same cell are mutually exclusive, i.e., it can never be the

case that time is counting up and the minutes are increased

at the same time.

Next, we fix the control flow behavior of time. In our case,

we need a predicate to check whether the time currently set

is zero or not

zero := eq time zero

where zero is a constant function of the same type as time.
We also fix some sub-properties, that are useful to express

conditions regularly appearing in the main specification later.

In our case these are

reset := btnMin ∧ btnSec

counting := countup ∨ countdown

anykey := press btnMin ∨ press btnSec
∨ press btnStartStop

start := press btnStartStop
∧¬press btnMin ∧ ¬press btnSec

start&min := press btnStartStop ∧ press btnMin
∧ (¬btnSec ∧ ¬btnSec)

start&sec := press btnStartStop ∧ press btnSec
∧ (¬btnMin ∧ ¬btnMin)

The literals btnMin, btnSec, and btnStartStop represent

the input signals for the three buttons, respectively. The

function press is used as a helper function for improved

readability and is defined as

press x := ¬x ∧ x

The additional conditions start&min and start&sec are

used for realizing requirement 8. This is all we need for imple-

menting the invariants of the aforementioned requirements:

ψ1 := reset ↔ Jtime � zeroK
ψ2 := ¬counting ∧ press btnMin ∧ ¬btnSec

↔ incmin

ψ3 := ¬counting ∧ press btnSec ∧ ¬btnMin
↔ incsec

ψ4 := zero→(
(idle ∧ start

→ tillAnyInput countup)
W (incmin ∨ incsec)

)
ψ5 := incmin ∨ incsec→(

(¬counting ∧ start

→ tillAnyInput countdown)

W zero

)
ψ6 := ¬counting ∧ counting

→ start ∨ start&min ∨ start&sec

ψ7 := counting ∧ anykey ∧ ¬reset

→ tillAnyInput idle
ψ8 := ¬counting ∧ (start&min ∨ start&sec)

→ tillAnyInput countdown

ψ9 := (Jbeep � trueK ⊕ Jbeep � falseK) ∧(
(countdown ∧ zero) ∨ anykey

↔ Jbeep � trueK
)

ψ10 := Jscreen � display timeK

The function tillAnyInput is a helper function to denote that

a condition must be satisfied until either the system is reset

or any button gets pressed. It is defined as:

tillAnyInput x := (x ∧ ¬anykey)
W (reset ∨ x ∧ anykey)

The final specification is given by φ = ψinit ∧
∧

10

i=1ψi ,
whereψinit adds some remaining initial conditions. The full

specification, using our plain text specification format, is

also given in Fig. 8. Note that the various operations in the

formulasψi are always necessary, since the “being pressed”

condition requires a change of the input, which is only ob-

servable by comparing the currently provided value with the

previous one.

For the development of such specifications, the designer

also gets feedback from the synthesis engine. For example,

the condition ofψ2 requires btnSec to not be pressed in order
to increase the minutes of the counter. Without this condi-

tion, the synthesis engine would return an unrealizabilty

result, since increasing minutes would conflict with setting

the time to zero on a potential reset, which also requires

btnMin to be pressed.

Haskell ’19, August 22–23, 2019, Berlin, Germany Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito

COUNTUP = [time <- countup time dt];

COUNTDOWN = [time <- countdown time dt];

INCMIN = [time <- incMinutes time];

INCSEC = [time <- incSeconds time];

IDLE = [time <- time];

ZERO = eq time zero () ;

RESET = btnMin && btnSec;

COUNTING = COUNTUP || COUNTDOWN;

ANYKEY = press btnMin ||

press btnSec || press btnStartStop;

START = press btnStartStop &&

!press btnMin && !press btnSec;

STARTANDMIN = press btnStartStop &&

press btnMin && X !btnSec && X X !btnSec;

STARTANDSEC = press btnStartStop &&

press btnSec && X !btnMin && X X !btnMin;

xor x y = !(x <-> y);

press x = !x && X x;

tillAnyInput x =

(x && !ANYKEY) W (RESET || x && ANYKEY);

initially guarantee {

!COUNTING && (X COUNTING -> START);

!INCSEC && !INCMIN;

[beep <- false];

}

always guarantee {

RESET

<-> [time <- zero ()];

!COUNTING && press btnMin && X !btnSec

<-> X INCMIN;

!COUNTING && press btnSec && X !btnMin

<-> X INCSEC;

ZERO

-> ((IDLE && START -> X tillAnyInput COUNTUP)

W (INCMIN || INCSEC));

INCMIN || INCSEC -> ((!COUNTING && START

-> X tillAnyInput COUNTDOWN) W X ZERO);

COUNTING && ANYKEY && X !RESET

-> X tillAnyInput IDLE;

!COUNTING && (STARTANDMIN || STARTANDSEC)

-> X X tillAnyInput COUNTDOWN;

X !COUNTING && X X COUNTING

-> X START || STARTANDMIN || STARTANDSEC;

X (COUNTDOWN && ZERO) || ANYKEY

<-> X [beep <- true];

xor [beep <- true] [beep <- false];

[dsp <- display time];

}

Figure 8. The complete plain text specification of the kitchen

timer: The initially guarantee section specifies require-

ments that must hold at time t = 0. Properties of the always
guarantee section must hold for all t ∈ N.

control =

rec

-- gather values from the previous cell value

∀c ∈ C. c ← δ (c, 0)
-- gather applications of F and P

∀v ∈ (V ∩ (F ∪ P)). v ←(δ (v, 0), ..., δ (v, n))
-- compute control signals from cs, vs, and ctr l s

∀ctr l ∈ (V ∩ L). ctr l ←(δ (ctr l, 0), ..., δ (ctr l, n))
-- use control signals to select from F and P

applications

∀m ∈ (V ∩ U). m ←(δ (m, 0), ..., δ (m, n))
-- output signals take the signals from either the

cs, vs, or ms as specified by δ
return ∀o ∈ O. o ← δ (o, 0)

Figure 9. The general code template for the control block

of the synthesized FRP program. The exact syntax for rec,
assignment, and outputting signals varies across different

FRP abstractions.

After the development of the specification is finished, the

synthesis automatically creates a CFM that satisfies the spec-

ified control behavior. In the next step the CFM then is spe-

cialized towards the specific application context.

4 Code Generation
We present a system for FRP program generation from syn-

thesized CFMs. The user initially provides a CFM that was

synthesized from a TSL specification over a set of predicate

and function terms. The user specifies a target FRP abstrac-

tion, and receives an executable Haskell FRP program in the

library of their choosing.

Our approach takes a multi-stage approach, whereby the

TSL specification is used to generate a control flow model

(CFM). The CFM is an abstract representation of the temporal

changes that the FRP program must implement in order to

satisfy the TSL specification. In particular, a CFM maps the

input signals through various function and predicate terms

to the output signals. We only consider valid CFMs, where

for every cycle created, by mapping an output back to an

input, there is at least one cell. A cell is a memory unit with

delay, i.e., at one moment a value may be stored, and at the

next that value is retrieved. The concept of cells is analogous

to ArrowLoop [Paterson 2001], or registers in hardware.

The synthesis from TSL to CFM is the most computation-

ally expensive and may result in unrealizability, in which

case synthesis terminates with no solution. We omit a de-

tailed description of the generation of the CFM from a TSL

specification, and instead direct the reader to [Finkbeiner

et al. 2019]. Here we focus on how the generality of the CFM

is utilized to generate framework-independent FRP code. If a

satisfying CFM is found during the first stage, a user specifies

a target FRP abstraction (Applicative, Monad, Arrow) that is

used to generate the FRP program code from the CFM.

Synthesizing Functional Reactive Programs Haskell ’19, August 22–23, 2019, Berlin, Germany

control

: : _ signal -- FRP abstraction

⇒ _ -- cell implementation

→ (_ → _) -- functions and predicates

→ _ -- initial values

→ signal _ -- input signals

→ signal _ -- output signal

(a) The general template of the type signature for the control block

of the synthesized FRP program.

control

: : Applicative signal

⇒ (∀ p. p → signal p → signal p)

→ (a → Bool) -- press

→ (b → c) -- display

→ (b → b) -- increment

→ b -- initial value: count

→ c -- initial value: screen

→ signal a -- button (input)

→ (signal b -- count (output)

, signal c -- screen (output)

)

(b) An example instantiation of the type signature for the control

block of the button (as described in the introduction) as it has been

specialized for Applicative FRP.

Figure 10.The control block follows a general type signature
template across FRP abstractions.

Given a CFM that satisfies the TSL specification, we con-

vert it into a template for our FRP program. The code imple-

menting the CFM is given in Fig. 9. The CFM is transformed

via a syntactic transformation into an FRP program in the

abstraction of the user’s choice, as a function that is param-

eterized over the named function and predicate terms, as

shown in Fig. 10. The user then provides implementations of

the function and predicate terms that complete the construc-

tion of the FRP program based on the generated template.

The CFM transformation is modularized to fit any FRP li-

brary that is at least as powerful as CCA [Gélineau 2016; Mur-

phy 2016; Patai 2010; Perez et al. 2016; Ploeg and Claessen

2015]. The key insight is that first-order control along with

a loop describes the expressive power of both CCA and the

CFM model generated from the techniques of [Finkbeiner

et al. 2019]. Although many FRP libraries support more pow-

erful operations than CCA, e.g., switch in Yampa, we do not

need to utilize these in the synthesis procedure, and thus can

generalize synthesis to target any FRP library that is at least

as expressive as CCA.

Recall that in TSL, output signals can be written at the

current time t , and be read from at time t + 1. To implement

this in the FRP program, we use the concept of a cell in the

CFM. In the translation, we allow a space for the user to

provide an implementation of the cell that is specialized to

their FRP library of choice (as shown in Fig. 10). In the case

of CCA, this is the loopD combinator. The loopD combinator

pipes the output values back to the input to allow them to be

read at time t + 1. Since a system may require output values

at t = 0, the user must also provide initial values to O.

4.1 Properties
In the translation of the CFM, we use Casual Commutative

Arrows (CCA) as the target conceptual model. Understand-

ing the implications of using CCA as an underlying model

to connect TSL to FRP allows us to gain insight into the

expressive power and limitations of using TSL synthesis to

construct FRP programs. One interesting note about this

is that CCA does not allow the arrowApply function, en-

forcing a static structure on the generated program. The

arrowApply (also called switch) function is a higher-order

arrow that allows for dynamically replacing an arrow with

a new one that arrives on an input wire. While switch is

a very expressive operation, it also comes with drawbacks.

First, dynamically evolving networks cannot provide run-

time guarantees for memory requirements in general, while

static networks do. Second, the behavior of a dynamically

evolving network is hard to grasp in general, which espe-

cially makes them unamenable for verification. Third, the

use of dynamic networks is largely impractical for FRP appli-

cations with restricted resources, as for example applications

that are executed on embedded devices [Sawada and Watan-

abe 2016] or are implemented directly in hardware [Baaij

2015]. An insight provided by prior work on CCA [Liu et al.

2011] was that, in general, the expressive power of higher-

order arrows makes automatic optimization more difficult.

Furthermore, for most FRP programs, first-order switch is

more than enough [Winograd-Cort and Hudak 2014].

For a full description of the formal properties of TSL syn-

thesis, see the work of [Finkbeiner et al. 2019]. In summary

the synthesis procedure is sound, but not complete. From a

programming languages design perspective, this means that

“compilation” (synthesis) of a specification may not termi-

nate, but when it does terminate, it will generate code that

satisfies the specification.

With respect to the synthesis procedure, this is a funda-

mental restriction related to TSL. With TSL, every update

term Jx � y K is lifted to an arrow that updates x with

y over time. Since in TSL updates are fixed by the speci-

fication, so too must the arrow structure be fixed in syn-

thesis. Note that having a fixed arrow structure disallows

higher-order arrows, but higher-order functions can still be

passed along wires. As an example, we may have a function

term app : : (a→ b)→ a→ b and signals f : : a→ b and

x : : a. A simple specification making use of higher order

functions then could state that the system should always

apply the incoming higher-order function to the incoming

value: Jx � app(f, x)K.

Haskell ’19, August 22–23, 2019, Berlin, Germany Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito

control

: : (MonadFix monad , Applicative signal)

⇒ (∀ p. p → signal p → monad (signal p))

· · ·

→ signal a → monad (signal b, signal c)

(a) The Monadic control for the button from the introduction.

control

: : (Arrow signal , ArrowLoop signalfunction)

⇒ (∀ p. p → signalfunction p p))

· · ·

→ signalfunction a (b, c)

(b) The Arrowized control for the button from the introduction.

control

: : HiddenClockReset domain gated synchronous

· · ·

→ Signal dom a → (Signal dom b, Signal dom c)

(c) The Applicative (specialized to ClaSH) control for the button
from the introduction.

Figure 11. The abbreviated type signatures of the synthe-

sized control blocks for each FRP framework abstraction.

Additionally, a key difference between arrows and cir-

cuits is that arrows are able to carry state that tracks the

application of each arrow block. By using CCA, a user may

write TSL specifications about stateful arrows that are still

handled correctly by the synthesis procedure. To this end,

we only synthesize programs that obey the commutativity
law [Liu et al. 2011; Yallop and Liu 2016] restated below that

ensures that arrows cannot carry state influencing the result

of composed computations.

f irst f >>> second д = second д >>> f irst f

Imagine an arrow with a global counter to track data of a

buffer. Since addition is commutative, this arrow respects

the commutativity law. However, non-commutative state

is possible as well. For example, when building GUIs with

Arrowized FRP [Winograd-Cort 2015], the position of each

new UI element depends on the order of the previously laid

out elements. Due to the commutativity of the Boolean oper-

ators, the commutativity of CCA is a necessary precondition

for synthesis of a TSL specification. Specifically, the commu-

tativity of logical conjunction allows the solution to update

signals in any arbitrary order. Thus, the correctness of the

TSL synthesis relies on commutativity of composition, which

is naturally modeled with CCA’s commutativity law.

4.2 Example: Kitchen Timer
We revisit the Kitchen Timer application introduced in Sec-

tion 3 to show the concrete code that is generated. From

the TSL specification, we first generate a CFM using our

TSL synthesis toolchain together with the LTL synthesizer

Figure 12. Timer applications: the hardware application

built with ClaSH is on the top left. The top right shows the

desktop application built using Yampa and the at bottom

the web application built using Threepenny-GUI. All are
synthesized from the same CFM.

strix [Meyer et al. 2018] [version 18.04]. The resulting

CFM utilizes six additionally synthesized cells and consists

of 1188 vertices. This CFM is then transformed into a control

structure for each of the different application domains. In

Fig. 11, we show how the template described in Section 4

is specialized to each of the three application domains: the

desktop program is built with Yampa [version 0.13] and
the web app with Threepenny-GUI [version 0.8.3.0]. Both
have been built using stack

2
on lts-13.17 [ghc-8.6.4]. For

building the hardware implementation, we first use the func-

tional hardware description language ClaSH3 to generate

verilog-code, which then is turned into the blif format using

the open synthesis suite yosys4. Afterwards, the generated
blif-file is placed using the place-and-route tool nextpnr5.
The packaged result is then uploaded to an iCEblink40HX1K

Evaluation Kit Board from Lattice Semiconductor, featuring

an ICE40HX1K FPGA with 100 IO-pins and 1280 logic cells,

additionally equipped with the required hardware compo-

nents. The interfaces to the corresponding timer applications

are depicted in Fig. 12.

Note that synthesis only needs to be executed once. Af-

terwards, code is generated from the resulting CFM and

combined with function implementations and initialization

2https://www.haskellstack.org
3https://github.com/clash-lang/clash-compiler [commit: fff4606]
4https://github.com/YosysHQ/yosys [commit: 70d0f38]
5https://github.com/YosysHQ/nextpnr [commit: 5344bc3]

https://www.haskellstack.org
https://github.com/clash-lang/clash-compiler
https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/nextpnr

Synthesizing Functional Reactive Programs Haskell ’19, August 22–23, 2019, Berlin, Germany

Table 1. Synthesis and compilation times for creating the

different timer applications from the TSL specification.

Executed Tool Time (sec)
Synthesis→ strix 4.965

Compilation

Desktop→ Yampa 19.403

Web→ Threepenny-GUI 18.344

Hardware

→ ClaSH 11.218

→ yosys 6.405

→ nextpnr 7.276

procedures for each of the frameworks. Both, the desktop

and the web application only require GHC for compilation,

while for hardware, we need multiple translation steps. The

respective synthesis and compilation times of the different

tools are depicted in Table 1. The full code of the Arrow

module, generated from the CFM realizing the specification

of the introduction, is given as an example in Fig. 13.

The specification, the building framework, and a list of the

required hardware components can be found at:

https://github.com/reactive-systems/KitchenTimer

Yampa uses Arrowized FRP which easily fits into the general

interface for Arrows that we provide (Fig. 11b). Likewise,

Threepenny-GUI uses a Monadic FRP (where the signals

themselves are Applicative) which also easily fits into our

general interface for Monadic FRP (Fig. 11a). Finally, for

ClaSH, we use a mostly Applicative interface, that is special-

ized to handle the peculiarities of hardware (which needs

explicit clocks, as opposed to more traditional FRP frame-

works). If we wanted to support other libraries with explicit

clocks, for example, as presented in [Bärenz and Perez 2018],

we would need a specialized module - although the cus-

tomization is limited mostly to the type signature generation

as shown in Fig. 11c.

Each control block requires the user to provide a cell im-

plementation. Both Yampa and ClaSH provide native imple-

mentations of the concepts, as shown in Fig. 14. Although

Threepenny-GUI does not provide the exact implementation

of a cell, as we require in our synthesized control block, it

can be easily implemented using the available primitives of

the library.

5 Related Work
There are various lines of work that are related to our ap-

proach. While we draw inspiration from these research di-

rections, each one, on its own, addresses a different type of

problem.

{-# LANGUAGE Rank2Types , Arrows #-}

module Example (control) where

import Control.Arrow

control

: : (Arrow sig , ArrowLoop sig)

⇒ (∀ poly. poly → sig poly poly)

→ (a → Bool) -- event

→ (b → c) -- display

→ (b → b) -- increment

→ b → c -- initial values: count , screen

→ sig

a -- input: click

(b, c) -- output: (count , screen)

control cell pEvent fDisplay

fIncrement iCount iScreen =

proc sClick → do

rec

cCount <- cell iCount -< oCount

cScreen <- cell iScreen -< oScreen

w3 <- arr fDisplay -< cCount

w4 <- arr fIncrement -< cCount

b5 <- arr pEvent -< sClick

(cout0 , cout1 , cout2 , cout3) <-

controlCircuit cell -< b5

oCount <- countSwitch -<

((cCount , cout0), (w4, cout1))

oScreen <- screenSwitch -<

((cScreen , cout2), (w3, cout3))

returnA -< (oCount , oScreen)

countSwitch

: : Arrow sig ⇒ sig ((a, Bool), (a, Bool)) a

countSwitch =

proc ((s0, b0), (s1, _)) → do

r0 <- arr ite -< (b0, s0, s1)

returnA -< r0

where

ite (b, t, e) = if b then t else e

screenSwitch

: : Arrow sig ⇒ sig ((a, Bool), (a, Bool)) a

screenSwitch =

proc ((s0, b0), (s1, _)) → do

r0 <- arr ite -< (b0, s0 , s1)

returnA -< r0

where

ite (b, t, e) = if b then t else e

controlCircuit

: : (Arrow sig , ArrowLoop sig)

⇒ (Bool → sig Bool Bool) -- cell

→ sig Bool (Bool , Bool , Bool , Bool)

controlCircuit cell =

proc cin0 → do

returnA -< (not cin0 , cin0 , False , True)

Figure 13. Generated Arrow code for the intro example.

https://github.com/reactive-systems/KitchenTimer

Haskell ’19, August 22–23, 2019, Berlin, Germany Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito

-- yampa

iPre : : SF a a

-- clash

register

: : HiddenClockReset domain gated synchronous

⇒ a → Signal domain a → Signal domain a

-- reactivebanana / threepennygui

cell

: : MonadMoment / MonadIO m

⇒ a → Behavior a → m (Behavior a)

cell v x = stepper v (x <@ allEvents)

-- reflex

cell

: : Reflex t

⇒ b → Behavior t b → Behavior t b

cell v x = hold v (tag x allEvents)

Figure 14. The implementations for a cell in the CFM is com-

monly found across FRP libraries, or easliy re-implemented.

5.1 Temporal Types for FRP
FRP is a programming paradigm for computations over time,

and, hence, a natural extension is to investigate type sys-

tems to be able to reason about time. A correspondence

between LTL and FRP in a dependently typed language was

discovered simultaneously by [Jeffrey 2012; Jeltsch 2012]. In

this formulation, FRP programs are proofs and LTL proposi-

tions are reactive, time-varying types that describe temporal

properties of these programs. In establishing the connection

between logic and FRP, these LTL types are also used to

ensure causality and loop-freeness on the type level.

Dependent LTL types are a useful extension to FRP that

provides insight into the underlying model of FRP, but does

not lend itself to control flow synthesis. In the work of Jeffery

and Jeltsch, the types describe the input/output change over

time for each arrow. Using these LTL types, only arrows

adhering to sensible temporal orderings (e.g. computations

only depend on past values) will be well typed. However,

as with any other FRP system, the temporal control flow of

function applications in the program is fixed by the code. A

similar approach was used by [Krishnaswami 2013] to make

a temporal type system that ensures there are no space-time

leaks in a well typed FRP program. Work on reasoning about

FRP using temporal logics also includes [Sculthorpe and

Nilsson 2010], although this setting considered dynamic net-

work structure, as allowed by higher-order arrows. While

the above works apply temporal types for functional correct-

ness, type extensions have also been used to encode fairness

properties [Cave et al. 2014], to ensure that any well-typed

system will eventually perform actual work.

In contrast, we use the logic TSL, for a fine-grained de-

scription of function application behavior which cannot be

expressed within pure LTL. The synthesis procedure of TSL

determines a temporal control flow of functions, where the

TSL specifications determines the transformations to be ap-

plied at each point in time. In addition to the logical speci-

fications, the synthesis is also constrained by the types of

functions appearing in the specification. Since the types of

all functions are fixed at all times, the type system can be

lifted to the specification. If the specification is well typed,

synthesis is guaranteed to yield a well typed program.

One connection to our work however is the implications

of the fact that the Curry-Howard correspondence extends to

FRP and LTL. In the aforementioned work, LTL propositions

are types for FRP programs. If a proof of a TSL proposition

can be interpreted as a program, one might expect that there

is some corresponding type system to TSL. We leave such

explorations to future work.

5.2 Synthesis of Reactive Programs
A distinguishing feature of our approach is the connection

to an actual programming paradigm, namely FRP. Most reac-

tive synthesis methods instead target transition systems or

related formalisms such as finite state machines. The idea to

synthesize programs rather than transition systems was in-

troduced in [Madhusudan 2011]. In his work, an automaton

is constructed that works on the syntax tree of the program,

which makes it possible to obtain concise representations

of the implementations, and to determine how many pro-

gram variables are needed to realize a particular specification.

Unlike our FRP programs, Madhusudan’s programs only sup-

port variables on a finite range of instances.

Another related approach is the synthesis of synchroniza-

tion primitives introduced in [Bloem et al. 2012] for the

purpose of allowing sequential programs to be executed in

parallel. Similar to our synthesis approach, uninterpreted

functions are used to abstract from implementation details.

However, both the specification mechanism (the existing

program itself is the specification) and the type of programs

considered are completely different from TSL and FRP.

5.3 Logics for Reactive Programs
Many logics have been proposed to specify properties of reac-

tive programs. Synthesis from Signal Temporal Logic [Raman

et al. 2015] focuses on modeling physical phenomena on the

value level, introducing continuous time and resolving to

a system of equations. The approach allows for different

notion of data embedded into the equations. While more

focused on the data level, the handling of continuous time

might provide inspiration for future extensions to explicitly

handle continuous time.

Another logic that has been proposed, Ground Temporal

Logic [Cyrluk and Narendran 1994], is a fragment of First

Order Logic equipped with temporal operators, where it is

Synthesizing Functional Reactive Programs Haskell ’19, August 22–23, 2019, Berlin, Germany

not allowed to use quantification. Satisfiability and validity

problems are studied, with the result that only a fragment

is decidable. However, specifications expressed in Ground

Temporal Logic, as well as their motivations, are completely

different from our goals.

5.4 Reasoning-based Program Synthesis
Reasoning-based synthesis [Kuncak et al. 2010; Osera and

Zdancewic 2015; Solar-Lezama 2013; Vechev et al. 2013] is a

major line of work that has been mostly, but not entirely, or-

thogonal to reactive synthesis. While reactive synthesis has

focused on the complex control aspects of reactive systems,

deductive and inductive synthesis has been concerned with

the data transformation aspects in non-reactive, sequential

programs. Our work is most related to Sketching [Solar-

Lezama 2013]. In Sketching the user provides the control

structure and synthesizes the transformations while, in TSL

we synthesize the control and leave the transformations to

the user.

The advantage of deductive synthesis is that it can handle

systems with complex data. Its limitation is that it cannot

handle the continuous interaction between the system and

its environment, which is typical for many applications, such

as for cyber-physical systems. This type of interaction can

be handled by reactive synthesis, which is, however, typi-

cally limited to finite states and can therefore not be used

in applications with complex data types. Abstraction-based

approaches can be seen as a link between deductive and reac-

tive synthesis [Beyene et al. 2014; Dimitrova and Finkbeiner

2012].

Along the lines of standard reactive synthesis, our work

is focused on synthesizing control structures. We extend

the classic approach by also allowing the user to separately

provide implementations of data transformations. This is

useful in the case where the value manipulations are un-

known or beyond the capability of the synthesis tool. For

example, a user may want to synthesize an FRP program that

uses closed source libraries, which may not be amenable to

deductive synthesis. In this case, the user can only specify

that certain functions from that API should be called under

certain conditions, but cannot and may not want to reason

about their output.

6 Conclusions
In this work we have presented a detailed account of how to

transformControl FlowModels into framework-independent

FRP code. With this transformation, we utilize TSL synthesis

as presented in [Finkbeiner et al. 2019] to build a complete

toolchain for synthesizing Functional Reactive Programs.

Using TSL specifications prior to manually programming im-

proves designing the underlying control flow. The developer

is immediately notified about conflicts in the current design

and supported by the feedback returned from synthesis for

resolving them.

So far, we have used a discrete time model in our formal-

ization, however, the behavior of the kitchen timer is in fact

sampling rate independent (Continuous Time FRP). Sam-

pling rate independence is guaranteed in TSL as long as the

next operator is not used. However, the relation between

TSL with the next operator and Continuous Time FRP still

needs to be explored.

In another direction, the usual way in FRP to distinguish

between continuous and discrete behaviors is to use signals

and events. So far we have embedded data into signals. It is

open to future work how to utilize events natively. Future

directions for improvements to usability include integrat-

ing FRP synthesis more tightly with programming, e.g., by
allowing specifications to be used inline with QuasiQuot-

ers [Mainland 2007].

Acknowledgments
This material is based upon work supported by the National

Science Foundation under Grant No. 1302327, the European

Research Council (ERC) Grant OSARES (No. 683300), and the

German Research Foundation (DFG) as part of the Collabo-

rative Research Center Foundations of Perspicuous Software

Systems (TRR 248, 389792660). Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author and do not necessarily reflect the

views of the these agencies.

References
Heinrich Apfelmus. 2012. Reactive-banana. Haskell library available at

http://www. haskell. org/haskellwiki/Reactive-banana (2012).
Heinrich Apfelmus. 2013. Threepenny-gui. https://wiki.haskell.org/

Threepenny-gui.
C.P.R. Baaij. 2015. Digital circuit in CλaSH: functional specifications and

type-directed synthesis. Ph.D. Dissertation. https://doi.org/10.3990/1.
9789036538039 eemcs-eprint-23939.

Manuel Bärenz and Ivan Perez. 2018. Rhine: FRP with type-level clocks. In

Proceedings of the 11th ACMSIGPLAN International Symposium onHaskell,
Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17, 2018, Nicolas
Wu (Ed.). ACM, 145–157. https://doi.org/10.1145/3242744.3242757

Tewodros Beyene, Swarat Chaudhuri, Corneliu Popeea, and Andrey Ry-

balchenko. 2014. A Constraint-based Approach to Solving Games on

Infinite Graphs. In POPL. ACM, 221–233.

Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv

Sa’ar. 2012. Synthesis of reactive (1) designs. J. Comput. System Sci. 78, 3
(2012), 911–938.

Andrew Cave, Francisco Ferreira, Prakash Panangaden, and Brigitte Pientka.

2014. Fair Reactive Programming (POPL ’14). ACM, New York, NY, USA,

361–372. https://doi.org/10.1145/2535838.2535881
Antony Courtney, Henrik Nilsson, and John Peterson. 2003. The Yampa

Arcade. In Proceedings of the 2003 ACM SIGPLAN workshop on Haskell.
ACM, 7–18.

David Cyrluk and Paliath Narendran. 1994. Ground temporal logic: A logic

for hardware verification. In CAV. Springer, 247–259.
Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Re-

active Programming for GUIs (PLDI ’13). ACM, New York, NY, USA,

411–422. https://doi.org/10.1145/2491956.2462161

https://wiki.haskell.org/Threepenny-gui
https://wiki.haskell.org/Threepenny-gui
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.1145/3242744.3242757
https://doi.org/10.1145/2535838.2535881
https://doi.org/10.1145/2491956.2462161

Haskell ’19, August 22–23, 2019, Berlin, Germany Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito

Rayna Dimitrova and Bernd Finkbeiner. 2012. Counterexample-Guided
Synthesis of Observation Predicates. Springer Berlin Heidelberg, Berlin,

Heidelberg, 107–122.

Conal Elliott and Paul Hudak. 1997. Functional reactive animation. In ACM
SIGPLAN Notices, Vol. 32. ACM, 263–273.

Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito. 2019.

Temporal Stream Logic: Synthesis beyond the Bools. In Computer Aided
Verification - 31th International Conference, CAV 2019, New York, NY, USA,
July 15-18, 2019, Proceedings, Part I. https://doi.org/10.1007/978-3-030-
25540-4_35

Samuel Gélineau. 2016. FRPzoo - Comparing many FRP implementations by

reimplementing the same toy app in each. https://github.com/gelisam/
frp-zoo.

Caleb Helbling and Samuel Z. Guyer. 2016. Juniper: A Functional Reactive

Programming Language for the Arduino (FARM 2016). ACM, New York,

NY, USA, 9. https://doi.org/10.1145/2975980.2975982
John Hughes. 2000. Generalising monads to arrows. Science of computer

programming 37, 1 (2000), 67–111.

Alan Jeffrey. 2012. LTL types FRP: linear-time temporal logic propositions as

types, proofs as functional reactive programs, Koen Claessen and Nikhil

Swamy (Eds.). ACM, 49–60. https://doi.org/10.1145/2103776.2103783
Wolfgang Jeltsch. 2012. Towards a common categorical semantics for linear-

time temporal logic and functional reactive programming. ENTCS 286
(2012), 229–242.

Gangyuan Jing, Tarik Tosun, Mark Yim, and Hadas Kress-Gazit. 2016. An

End-To-End System for Accomplishing Tasks with Modular Robots. In

RSS.
Ayrat Khalimov, Roderick Paul Bloem, and Swen Jacobs. 2014. Parame-

terized Synthesis Case Study: AMBA AHB. In SYNT 2014, Susmit Jha

Krishnendu Chatterjee, Rüdiger Ehlers (Ed.).

Neelakantan R Krishnaswami. 2013. Higher-order functional reactive pro-

gramming without spacetime leaks. In ACM SIGPLAN Notices, Vol. 48.
ACM, 221–232.

Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. 2010. Com-

plete functional synthesis. ACM Sigplan Notices 45, 6 (2010), 316–329.
Sam Lindley, Philip Wadler, and Jeremy Yallop. 2011. Idioms are oblivious,

arrows are meticulous, monads are promiscuous. ENTCS 229, 5 (2011),
97–117.

Hai Liu, Eric Cheng, and Paul Hudak. 2011. Causal commutative arrows.

J. Funct. Program. 21, 4-5 (2011), 467–496. https://doi.org/10.1017/
S0956796811000153

Hai Liu and Paul Hudak. 2007. Plugging a space leak with an arrow. ENTCS
193 (2007), 29–45.

ParthasarathyMadhusudan. 2011. Synthesizing reactive programs. In LIPIcs-
Leibniz International Proceedings in Informatics, Vol. 12.

Geoffrey Mainland. 2007. Why It’s Nice to be Quoted: Quasiquoting for

Haskell. In Proceedings of the ACM SIGPLAN workshop on Haskell work-
shop. ACM, 73–82.

Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. 2018. Strix:

Explicit Reactive Synthesis Strikes Back!. In Computer Aided Verification
- 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part I (Lecture Notes in Computer Science), Hana Chockler and Georg

Weissenbacher (Eds.), Vol. 10981. Springer, 578–586. https://doi.org/10.
1007/978-3-319-96145-3_31

Tom E Murphy. 2016. A livecoding semantics for functional reactive pro-

gramming. In Functional Art, Music, Modelling, and Design. ACM, 48–53.

PeterMichael Osera and Steve Zdancewic. 2015. Type-and-example-directed

program synthesis. In ACM SIGPLAN Notices, Vol. 50. ACM, 619–630.

Gergely Patai. 2010. Efficient and compositional higher-order streams. In

International Workshop on Functional and Constraint Logic Programming.
Springer.

Ross Paterson. 2001. A NewNotation for Arrows. In International Conference
on Functional Programming. ACM Press, 229–240. http://www.soi.city.
ac.uk/~ross/papers/notation.html

Ivan Perez. 2017. GALE: a functional graphic adventure library and engine.

In Proceedings of the 5th ACM SIGPLAN International Workshop on Func-
tional Art, Music, Modeling, and Design, FARM@ICFP 2018, Oxford, UK,
September 9, 2017. 28–35. https://doi.org/10.1145/3122938.3122944

Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional reac-

tive programming, refactored. In International Conference on Functional
Programming. ACM.

Ivan Perez and Henrik Nilsson. 2017. Testing and debugging functional

reactive programming. PACMPL 1, ICFP (2017), 2:1–2:27. https://doi.
org/10.1145/3110246

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. 2006. Synthesis of Reactive(1)

Designs. In VMCAI.
Atze van der Ploeg and Koen Claessen. 2015. Practical principled FRP: forget

the past, change the future, FRPNow!. In ACM SIGPLAN Notices, Vol. 50.
ACM, 302–314.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-

gram synthesis from polymorphic refinement types. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2016, Santa Barbara, CA, USA, June
13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 522–538.

https://doi.org/10.1145/2908080.2908093
Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M. Murray,

and Sanjit A. Seshia. 2015. Reactive Synthesis from Signal Temporal

Logic Specifications. In HSCC. 239–248. https://doi.org/10.1145/2728606.
2728628

Mark Santolucito, Donya Quick, and Paul Hudak. 2015. Media Modules:

Intermedia Systems in a Pure Functional Paradigm. In ICMC 2015, Denton,
TX, USA. http://hdl.handle.net/2027/spo.bbp2372.2015.077

Kensuke Sawada and Takuo Watanabe. 2016. Emfrp: a functional reactive

programming language for small-scale embedded systems. In Companion
Proceedings of the 15th International Conference on Modularity, Málaga,
Spain, March 14 - 18, 2016, Lidia Fuentes, Don S. Batory, and Krzysztof

Czarnecki (Eds.). ACM, 36–44. https://doi.org/10.1145/2892664.2892670
Neil Sculthorpe and Henrik Nilsson. 2010. Keeping calm in the face of

change. Higher-Order and Symbolic Computation 23, 2 (2010), 227–271.

Zhiyong Shan, Tanzirul Azim, and Iulian Neamtiu. 2016. Finding Resume

and Restart Errors in Android Applications (OOPSLA 2016). ACM, New

York, NY, USA, 864–880. https://doi.org/10.1145/2983990.2984011
Armando Solar-Lezama. 2013. Program sketching. STTT 15, 5-6 (2013),

475–495.

Ryan Trinkle. 2017. Reflex-FRP. https://github.com/reflex-frp/reflex.
Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2013. Abstraction-guided

synthesis of synchronization. STTT 15, 5-6 (2013), 413–431.

Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul

Hudak. 2013. Maple: Simplifying SDN programming using algorithmic

policies. CCR 43, 4 (2013), 87–98.

Daniel Winograd-Cort. 2015. Effects, Asynchrony, and Choice in Arrowized
Functional Reactive Programming. Ph.D. Dissertation. Yale University.

Daniel Winograd-Cort and Paul Hudak. 2014. Settable and Non-interfering

Signal Functions for FRP: How a First-order Switch is More Than Enough.

In Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’14). ACM, New York, NY, USA, 213–225.

https://doi.org/10.1145/2628136.2628140
Jeremy Yallop and Hai Liu. 2016. Causal commutative arrows revisited. In

Proceedings of the 9th International Symposium on Haskell. ACM, 21–32.

https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://github.com/gelisam/frp-zoo
https://github.com/gelisam/frp-zoo
https://doi.org/10.1145/2975980.2975982
https://doi.org/10.1145/2103776.2103783
https://doi.org/10.1017/S0956796811000153
https://doi.org/10.1017/S0956796811000153
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
http://www.soi.city.ac.uk/~ross/papers/notation.html
http://www.soi.city.ac.uk/~ross/papers/notation.html
https://doi.org/10.1145/3122938.3122944
https://doi.org/10.1145/3110246
https://doi.org/10.1145/3110246
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2728606.2728628
https://doi.org/10.1145/2728606.2728628
http://hdl.handle.net/2027/spo.bbp2372.2015.077
https://doi.org/10.1145/2892664.2892670
https://doi.org/10.1145/2983990.2984011
https://github.com/reflex-frp/reflex
https://doi.org/10.1145/2628136.2628140

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Functional Reactive Programming
	2.2 Reactive Synthesis
	2.3 Connections between FRP and Reactive Systems
	2.4 Temporal Stream Logic

	3 System Design with TSL
	4 Code Generation
	4.1 Properties
	4.2 Example: Kitchen Timer

	5 Related Work
	5.1 Temporal Types for FRP
	5.2 Synthesis of Reactive Programs
	5.3 Logics for Reactive Programs
	5.4 Reasoning-based Program Synthesis

	6 Conclusions
	Acknowledgments
	References

