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Abstract—The stable path problem (SPP) is a unified model
for analyzing the convergence of distributed routing protocols
(e.g., BGP), and a foundation for many network verification tools.
Although substantial progress has been made on finding solutions
(i.e., stable path assignments) for particular subclasses of SPP
instances and analyzing the relation between properties of SPP
instances and the convergence of corresponding routing policies,
the non-trivial challenge of finding stable path assignments to
generic SPP instances still remains. Tackling this challenge is
important because it can enable multiple important, novel routing
use cases. To fill this gap, in this paper we introduce a novel data
structure called solvability digraph, which encodes key properties
about stable path assignments in a compact graph representation.
Thus SPP is equivalently transformed to the problem of finding in
the solvability digraph a maximum independent set (MIS) of size
equal to the number of autonomous systems (ASes) in the given
SPP instance. We leverage this key finding to develop a heuristic
polynomial algorithm GREEDYMIS that solves strictly more SPP
instances than state-of-the-art heuristics. We apply GREEDYMIS
to designing two important, novel use cases: (1) a centralized
interdomain routing system that uses GREEDYMIS to compute
paths for ASes and (2) a secure multi-party computation (SMPC)
protocol that allows ASes to use GREEDYMIS collaboratively to
compute paths without exposing their routing preferences. We
demonstrate the benefits and efficiency of these use cases via
evaluation using real-world datasets.

I. INTRODUCTION

The stable path problem (SPP) [1], [2] is a unified model for
distributed routing protocols. It is used in various routing pro-
tocol convergence studies (e.g., [1]–[7]), but it has also been
adopted by many emerging network configuration tools as their
foundation [8]–[11]. Specifically, in SPP, the behavior of path
vector routing protocols, such as the Border Gateway Protocol
(BGP) [12], is abstracted into a simple path vector protocol
(SPVP), where each router receives paths from neighbors,
selects the best path to use, and extends and sends the selected
path to all its neighbors in the form of a path vector. Using this
abstraction, an SPP instance is composed of a network graph
G, where each node has a set of permitted paths and a ranking
function that ranks these paths, and executes SPVP. The SPP
problem is defined as a decision problem that checks whether
such an instance admits a stable path assignment, in which
each router selects the best path available to it and does not
change the selected path. Originally proposed to only model
path vector protocols, SPP has recently been used to model
generic distributed routing protocols [8]–[10] (e.g., OSPF).

The seminal paper [1] proves the NP-completeness of SPP.
This means that a brute-force solution that enumerates all path
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assignments is not feasible as it might be de facto exponential.
Existing studies have made substantial progress on using SPP
to analyze the convergence of BGP policies [3]–[7], [13]–
[16]. Some studies develop polynomial time algorithms to find
solutions (i.e., stable path assignments) for different subclasses
of SPP instances that have unique solutions and converge [1],
[2], [4]. There are also studies that aim to identify the relation
between properties of SPP instances and the convergence of
the corresponding BGP policies. For example, dispute-wheel-
free [1], [2], [5], Gao-Rexford conditions [3], and acyclic path
digraph [6] each implies BGP convergence.

Despite all this progress, a non-trivial basic challenge still
remains: how to find stable path assignments to generic
SPP instances other than by enumeration? This challenge is
overlooked by existing studies mainly because SPP solvability
(even unique solvability) does not guarantee the convergence
of BGP. However, in this paper, we argue that tackling this
challenge is of great importance for several reasons.

First, being able to find solutions to generic SPP instances
enables autonomous systems (ASes) to collaboratively com-
pute interdomain paths without worrying about convergence
issues of their interdomain policies, which improves the flexi-
bility of end-to-end interdomain route control [17]. In practice
this means that a trusted controller (e.g., [17]–[21]) or a secure
multi-party computation (SMPC) system (e.g., [22], [23])
could be deployed to compute the stable path assignment and
send to ASes, instead of letting ASes exchange their private
routing information via BGP. Second, better understanding
of SPP solvability can shed light on understanding the gap
between solvable SPP and safe SPP (i.e., whose corresponding
BGP policies always converge). Third, with many network ver-
ification tools using SPP as the foundation to model network
configurations [8]–[11], finding all stable solutions for a given
SPP instance has the potential of significantly improving the
performance of network verification tools.

This paper makes the following main contributions:
Key finding: a solvability digraph data structure for
reasoning about SPP solvability (Section III). We design
a novel data structure solvability digraph to encode key
properties about the stable path assignment in a compact graph
representation. We show that the SPP is equivalent to the
problem of finding a maximum independent set (MIS) of size
|V (G)| (the number of ASes in the SPP instance) in solvability
digraph. This equivalence gives us a new perspective on
characterizing and understanding SPP solvability, because MIS
problem is a well-known NP-hard problem for which many



exact and heuristic algorithms have been developed [24], [25].
To the best of our knowledge, this is the first general result
on solving generic SPP instances.
A polynomial time heuristic GREEDYMIS (Section IV).
Leveraging the equivalence between SPP and MIS, we de-
veloped the GREEDY++ algorithm for solving generic SPP
instances. We prove that GREEDY++ solves strictly more SPP
instances than state-of-the-art SPP algorithms [1], [4].
Two novel interdomain use cases (Section V). As a proof
of concept, we apply the GREEDYMIS algorithm to three
novel use cases. First, we design a centralized interdomain
routing system, where a logically centralized server collects
ASes interdomain policies and uses GREEDYMIS to find a
stable path assignment for ASes. This platform is suitable for
collaborative interdomain networks where ASes have high-
level trust to each other and are willing to work together
to manage interdomain routing (e.g., an example of such
interdomain networks is the Large Hadron Collider [26]).

Second, we developed an SMPC protocol that allows ASes
to collaboratively use GREEDY++ to find a stable path assign-
ment without exposing their routing preferences. This protocol
is suitable for interdomain networks where ASes want to
achieve more flexible interdomain routing while preserving
policy privacy.
Evaluation to demonstrate benefits and efficiency (Sec-
tion VI). We performed extensive experiments on three use
cases listed above, using real-world datasets. Our results shows
that the solvability digraph and the GREEDYMIS algorithm
work well in practice, with reasonable overhead.

II. BACKGROUND AND RELATED WORK

A. Stable Path Problem in a Nutshell
We provide a brief overview of the stable path problem. For

simplicity of presentation, we focus on the original SPP model
of BGP in [1], and refer readers to [8]–[10] for details on how
SPP models other routing protocols (i.e., distance vector and
link state protocols).

Let G = (V,E) be an undirected graph. V = {0, . . . , n}
corresponds to the set of n + 1 ASes, and AS 0 is the
destination AS. An edge (i, j) ∈ E represents the BGP
peering between AS i and j. A path p in G is a sequence
of nodes (vk, vk−1, . . . , v0) such that (vi, vi−1) ∈ E for
each 1 ≤ i ≤ k. A simple path is a path without loops,
or in other words a path (vk, vk−1, . . . , v0) such that for
any 1 ≤ i < j ≤ k, vi 6= vj . If k = 0, then (v0) is
the trivial path of zero length from v0 to itself. For each
0 ≤ i ≤ k − 1, path (vi, vi−1, . . . , v0) is a suffix of p, and
we use suffixes(p) to denote the set of all suffixes of p. For
a path p = (vk, vk−1, . . . , v0), node vk−1 is called the next
hop of p, and we say that path p is one hop away from path
(vk−1, vk−2, . . . , v0). The concatenation of two non-empty
paths, p2 = (vk, vk−1, . . . , vj) and p1 = (vj , vj−1, . . . , v0), is
the path p3 = (vk, vk−1, . . . , vj , vj−1, . . . , v0) and we denote
that by p3 = p1p2. For a given graph G, we let V (G) denote
its vertex set and let E(G) denote its edge set.

A simple path is a path without loops. In SPP, each v ∈ V
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(d) Bad gadget.

Fig. 1: Examples of stable path problems taken from [1].

aims to find a simple path in G to the destination AS. To this
end, each v executes a simple path vector protocol (SPVP),
which is an abstract version of BGP. In particular, each v is
assigned

1) a set of permitted paths Pv , such that P0 = {(0)} and for
v 6= 0, Pv is composed of simple paths starting from v
and ending at 0 as well as the empty path ε, and

2) a ranking function λv : Pv → N that ranks paths in Pv in
a descending order of preference, such that for p1, p2 ∈ Pv ,
λv(p1) > λv(p2) means p1 is preferred over p2 by v.

Consider an example given in Fig. 1a: to reach the destination
node (node ”0”), node 2 can use two paths: either to go to 0
directly, or via node 1. The path (210) is higher ranked than
the path (20).

Given two paths p1, p2 ∈ Pv , p1 and p2 can only be equally
ranked if they have the same next hop, which is that p1 =
(v, v′)p′1 and p2 = (v, v′)p′2 for some v′ ∈ V .

Permitted paths and ranking functions capture the import/-
export and selection policies of ASes, respectively. Given a
path (vk, vk−1, . . . , v0) in G, it is a permitted path if and only
if (1) v0 announces (v0) to v1, (2) vk’s import policy does not
filter out (vk−1, . . . , v0), and (3) for each i, 0 < i < k, the
import policy of vi does not filter out (vi−1, . . . , v0) and vi’s
export policy announces (vi, . . . , v0) to vi+1.

Each v locally maintains an incoming routing information
base rib-inv to store the latest paths sent by its neighbors.
When v receives a path pw from a neighbor w, v extends it
to p′w = (v, w)pw and checks whether p′w ∈ Pv . If not, p′w is
updated to ε. v uses p′w to replace the last path sent by w in
rib-inv and selects best path p∗v as arg maxp∈rib-inv

λv(p).
If p∗v = p′w, v sends it to all its neighbors.

A path assignment π is a function that maps each v ∈ V
to a path π(v) ∈ Pv , where π(0) is always the trivial
path (0). Given a path assignment π, it is a stable path
assignment if π(0) = (0) and for each 1 ≤ i ≤ n, π(i) =
best(i, {(i, j)π(j) : (i, j) ∈ E} ∩ Pi), where best(i,∅) = ε,
and best(i, S) = arg maxp∈S λ

i(p) for S 6= ∅.



An instance of the stable path problem is then the triple
S = (G,P,Λ), where P = ∪i∈V (G)Pi and Λ = {λi}i∈V (G).
The decision version of the stable path problem is defined as:

Definition II.1 (Stable Path Problem). Given an SPP instance
S = (G,P,Λ), does S have a stable path assignment?

For completeness of presentation, Fig. 1 shows some typical
SPP instances from [1] (i.e., good gadget in Fig. 1a, naughty
gadget in Fig. 1c and bad gadget in Fig. 1d). Both good gadget
and naughty gadget have the same stable path assignment
{(0), (130), (20), (30), (430)}, which implicitly defines a tree
rooted at AS 0 (Fig. 1b), while the bad gadget does not have
a solution and its SPVP protocol always diverges.
B. Related Work

The original purpose of SPP was to analyze behaviors
of BGP, a path vector protocol deployed in interdomain
routing [3], enterprise networks [27], and data centers [28].
In particular, SPP has been shown to be a powerful model
for understanding the convergence of different BGP policies.
The seminal paper [1] proves that SPP is NP-complete via a
reduction from the 3-SAT problem. It shows that the existence
of a solution to an SPP instance, even a unique one, does not
imply the convergence of the corresponding BGP policies. One
such example is the naughty gadget in Fig. 1c, where there is
a unique stable path assignment but the network may oscillate
for arbitrarily long before converging. [1] characterized a
subclass of SPP instances using the now-classic dispute-wheel-
free condition, such that if an SPP instance has no dispute
wheel, then it has a unique solution and the network always
converges to that solution (e.g., Fig. 1a). For this subclass of
SPP instances, [1] also presented a heuristic algorithm called
GREEDY, which finds the unique solution in polynomial time.

Since then, many studies have made substantial progress
on designing polynomial-time algorithms to find solutions to
different subclasses of SPP instances (e.g., [3], [4]), as well as
identifying the relation between different subclasses of SPP
instances and the convergence of their corresponding BGP
policies (e.g., [5]–[7], [13]–[16]). For example, [3] proposes
the Gao-Rexford condition that has become the foundation of
Internet stability, and [4] extends the dispute-wheel-free condi-
tion to a GREEDY+-solvable condition that identifies a larger
subclass of SPP instances which are uniquely solvable and
converge. The proposed GREEDY+ algorithm solves strictly
more SPP instances than the GREEDY algorithm in [1]. [5]–
[7], [13], [29] did not develop algorithms for SPP, but instead,
they introduced graph data structures (i.e., dispute digraph,
path digraph, multipath digraph, and p-graph) to derive new
sufficient conditions (e.g., acyclic graphs) for SPP instances to
have unique solutions and converge. We refer readers to [2]
for a comprehensive survey on SPP and BGP convergence.

Recently, people have started to explore SPP from a dif-
ferent angle. For instance, many network configuration verifi-
cation tools [8]–[11], [30] choose SPP as the foundation for
modeling not only BGP, but also generic distributed routing
protocols [8]–[10]. By encoding SPP instances as logical
formulas (e.g., SMT formulas), they enumerate over every

possible message sequence in executions of routing protocols,
so as to compute all stable path assignments. They then verify
whether these assignments satisfy certain network properties
(e.g., reachability). However, these tools do not scale well due
to the costly nature of exhaustive search.

Despite these studies, there has been little progress made
on finding stable path assignments to generic SPP instances.
Tackling this challenge can enable important use cases such as
flexible interdomain route control, policy convergence verifica-
tion, and faster network verification. As such, in the next few
sections, we present our main result that tackles this challenge
and show how to use it to design new routing use cases.

III. MAIN RESULT: SOLVING GENERIC SPP THROUGH
SOLVABILITY DIGRAPH

In this section, we present our key findings on the solvability
of generic SPP instances. We first briefly characterize the main
properties of stable path assignments. Then we introduce the
novel solvability digraph data structure which encapsulates
these properties for a given SPP instance, and demonstrate
how to use the solvability digraph data structure to reason
about SPP solvability.
Main properties of stable path assignments. Given any
SPP instance S = (G = (V,E),P,Λ), if π is a stable path
assignment for this instance, then the set of paths assigned by
π, π(V ) = {π(i) : i ∈ V }, has the following three properties:

Property III.1. For each AS i, π(V ) contains one and only
one path from Pi.

Property III.2. For any path p ∈ π(V ), suffixes(p) ⊆ π(V ).

Property III.3. For any v ∈ V , if w is a neighbor of v, then
λv(π(v)) ≥ λv((v, w)π(w)).

These three properties all directly follow from the defini-
tion of stable path assignments, as shown in [1]. Note that
Property III.2 implies that a stable path assignment implicitly
defines a tree rooted at the destination AS (e.g., Figure 1b),
while Property III.3 states that this tree is locally optimal.
The solvability digraph. We propose the novel solvability
digraph data structure, which takes motivation from existing
graph data structures such as the dispute digraph [5], the path
digraph [6], and the multipath digraph [7]). Different from
their focus on analyzing the convergence of SPP, we aim to
analyze the solvability of SPP using solvability digraph.

The idea behind the solvability digraph is to encapsulate
the three main properties of stable path assignments in a
compact graph representation, so that SPP can be equivalently
transformed to a classic graph theoretical problem. Note
that for simplicity of presentation, in the remaining of this
paper, we only consider SPP instances where for each AS i,
λi(p1) 6= λi(p2) for any distinct pair of paths p1 and p2 in Pi

(i.e., each ranking function λi totally orders Pi). To handle
paths p1 and p2 that are equally preferred by some AS i, and
the fact that there may not be any edges between the two
respective nodes in the solvability digraph we present below
we can extend the definition of the solvability digraph with
a separate type of preference edge connecting two such paths
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Fig. 2: The solvability digraphs for the SPP instances in Fig. 1

in the solvability digraph, and carefully adapt the algorithm
accordingly.

Definition III.4 (Solvability Digraph). Given a stable path
problem instance S = (G,P,Λ), the solvability digraph of S
is a directed graph Gs, where the vertex set V (Gs) is P , and
for any two distinct paths p1, p2 ∈ V (Gs), (p1, p2) ∈ E(Gs)
if one of the following conditions is satisfied:

1) p1 and p2 belong to the same Pi and λi(p1) < λi(p2);
2) there exists a path p3 such that p2 and p3 belong to the

same Pi, λi(p2) 6= λi(p3), and p3 is a suffix of p1;
3) there exists a path p3 such that p1 and p3 belong to the

same Pi, λi(p3) > λi(p1), and p3 is one hop away from
p2 such that p3 = (vi, vj)p2 for some j.

Note that in the above definition of solvability digraph,
the three conditions for the existence of an edge are distinct,
and they each correspond to a main property of stable path
assignments. In Fig. 2, we illustrate the respective solvability
digraph for each SPP instance from Fig. 1. The black, red and
blue edges represent edges in solvability digraph satisfying
condition (1), (2), and (3), respectively.
A necessary and sufficient condition for generic SPP solv-
ability. Having presented the solvability digraph data structure
and shown how it encapsulates the three main properties of
stable path assignments in a compact graph representation, we
are now ready to present our main result. Specifically, we give
the following necessary and sufficient condition for generic
SPP solvability.

Theorem III.5. Given any SPP instance S = (G,P,Λ) and
the corresponding solvability digraph Gs, a path assignment π
is a solution to S if and only if π(V (G)) = {π(v) : v ∈ V (G)}
is an independent set of size |V (G)| in Gs.

Proof. We first prove that if π is a stable path assignment for
S, then π(V (G)) is an independent set in Gs. To this end, we
show that for any pair of distinct ASes, i and j, (π(i), π(j)) 6∈
E(Gs). Firstly, (π(i), π(j)) does not satisfy condition (1) in
Definition III.4 because π(i) and π(j) are permitted paths
from different ASes. Secondly, suppose (π(i), π(j)) is an edge
satisfying condition (2) in Definition III.4. Then, there exists

a path pj ∈ Pj that is a suffix of π(i). From Property III.2, pj
is also in π(V (G)). By Property III.1, both pj and π(j) being
in π(V (G)) is a contradiction. As such, (π(i), π(j)) does not
satisfy condition (2). Thirdly, suppose (π(i), π(j)) is an edge
satisfying condition (3) in Definition III.4. Then, there exists a
path pi ∈ Pi such that pi = (i, j)π(j) and λi(pi) > λi(π(i)),
which is a direct contradiction with Property III.3.

Next, we prove that if V I ⊆ V (Gs) is an independent
set of size |V (G)| in Gs, then there exists some stable path
assignment π, such that π(V (G)) = V I . For convenience, let
V (G) = {0, 1, . . . , n} denote the set of ASes, where 0 is the
destination AS. Then we also have n+1 = |V (G)|. No pair of
distinct paths in V I are from the same AS to the destination,
for otherwise, the fact that no two paths at the same AS
are equally preferred would imply the existence of an edge
by condition (1) in Definition III.4. Hence, each node in V I

corresponds to a path from a different AS to the destination.
Let pi denote the path in V I from AS i to the destination,
for each 0 ≤ i ≤ n, so that V I = {pi : 0 ≤ i ≤ n}.
Let π be the path assignment defined by π(i) = pi for each
0 ≤ i ≤ n. We first have that π(0) = (0), since P0 = {(0)}.
Then, to prove that π is a stable path assignment, it’s sufficient
to show that for each 1 ≤ i ≤ n, (a) π(i) = (i, j)π(j), for
some neighbor j of i in G, and (b) for any neighbor j of i,
λi(π(i)) ≥ λi((i, j)π(j)).

To prove (a), assume that for some AS i, it is the case that
π(i) = (i, j)p′j , where p′j 6= π(j). This means that λj(p′j) 6=
λj(π(j)), thus implying an edge (π(i), π(j)) ∈ E(Gs) by
condition (2) in Definition III.4, which is impossible since
π(i) and π(j) are both in independent set V I of Gs. To
prove (b), assume, by way of contradiction, that there exists a
path p′i = (i, j)π(j) where j is a neighbor of i, such that
p′i 6= π(i) and λi(p′i) > λi(π(i)). This implies an edge
(π(i), π(j)) ∈ E(Gs) by condition (3) in Definition III.4,
which is a contradiction. Thus, we can conclude that π is
indeed a stable path assignment. �

As an example of Theorem III.5, we have that the stable path
assignment to both the good gadget and the naughty gadget,
which is {(0), (130), (20), (30), (430)} as shown in Fig. 1b,
is an independent set in the corresponding solvability digraphs
(Fig. 2a and Fig. 2b, respectively). The novel solvability
digraph data structure and Theorem III.5 give us a new per-
spective on characterizing and understanding SPP solvability,
by transforming it into a maximum independent set (MIS)
problem, a well-known NP-hard problem for which many
exact and heuristic algorithms have been developed [24], [25].
This graph theoretic approach opens up many opportunities
for the development of new tools and algorithms that tackle
various SPP related problems (e.g., flexible route control,
convergence checking, and network verification). As proof of
concepts, in the next two sections, we leverage this new finding
to develop a polynomial time heuristic algorithm for solving
generic SPP, and apply it to designing two novel interdomain
use cases.
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1 GREEDYMIS (Gs , |V (G)| ) :
2 S0 = {} ; Gs

0 = Gs ; i = 1
3 w h i l e ( |Si−1| < |V (G)| and |V (Gs

i−1)| > 0 ) :
4 Bi =NodesWithZeroOutDegree (Gs

i−1 )
5 i f ( |Bi| = 0 ) :
6 Bi =NodeWithNoPrefEdges (Gs

i−1 )
7 i f ( |Bi| = 0 ) :
8 Bi =NodeWithLowestOutDegree (Gs

i−1 )
9 Gs

i = Gs
i−1

10 f o r v ∈ Bi :
11 N =Neighbor s (Gs

i−1 , v )
12 Gs

i =Remove (Gs
i , N ∪ {v} )

13 Si = Si−1 ∪Bi

14 i = i+ 1
15 r e t u r n Si−1

Fig. 4: The GREEDYMIS algorithm

IV. GREEDYMIS: A HEURISTIC ALGORITHM FOR SPP
Leveraging the main result in Section III, we develop a

heuristic polynomial time algorithm GREEDYMIS to solve
SPP by looking for MIS on the solvability digraph. We present
the details of GREEDYMIS and prove that it solves strictly
more SPP instances than a state-of-the-art polynomial time
algorithm.
A. GREEDYMIS: Details

Given S = (G,P,Λ), GREEDYMIS takes the correspond-
ing solvability digraph Gs, and |V (G)| as input, and returns
an independent set of Gs. The edges in the solvability digraph
are labeled with their respective types, (type (1), (2), or
(3)), corresponding to which one of the three conditions in
Definition III.4 they satisfy.
Basic idea. The basic idea of GREEDYMIS consists in iter-
atively adding nodes from the solvability digraph Gs into an
independent set Si until either |Si| = |V (G)| or there are
no more nodes left in Gs that can be added to Si (Fig. 4).
Specifically, in each iteration i, GREEDYMIS constructs Bi

from one of the three subroutines, with graph H ⊆ Gs as
input: (1) NodesWithZeroOutDegree(H) (Line 4) returns the
set of nodes with no outgoing edges in H; (2) NodeWithNo-
PrefEdges(H) (Line 6) returns a singleton set {p} ⊆ V (H)
such that p ∈ Pi for some vertex i and Pi∩V (H) = {p}; (3)
NodeWithLowestOutDegree(H) (Line 8) non-deterministiaclly
returns a singleton set whose only node is such that no other
node in H has a smaller out-degree. Then, GREEDYMIS
obtains Gs

i as a subgraph of Gs
i−1, induced by removing Bi

as well as the neighbors of nodes in Bi from the vertex set
(Line 11, 12).

Properties. The following three properties show that
GREEDYMIS always terminates in polynomial time and out-
puts an independent set of the input solvability digraph Gs.
Property IV.1. GREEDYMIS exits after at most n iterations.

This is because at each iteration i, |Bi| > 0 and thus
|Si+1| > |Si|, while |Si| can be at most |V (G)|.
Property IV.2. At any iteration i before GREEDYMIS exits,
for any pair of distinct nodes p and p′ in Gs

i−1, if (p, p′) is
not an edge in Gs

i−1, then it is also not an edge in Gs.
This is true because when edges and nodes are removed

from the solvability digraph (Line 12), an edge will only be
removed if at least one of its two end nodes is removed.
Property IV.3. At each iteration i before GREEDYMIS exits,
Si is an independent set of the input solvability digraph Gs.

Proof. By Property IV.2, it is sufficient to show that (1) each
Bi is an independent set of Gs

i−1, and that (2) for any pair of
iterations i and j with i > j, there is no edge between Bi and
Bj in Gs

j−1. Point (1) follows from the fact that Bi constructed
from either Line 6 or Line 8 has only one node, while any edge
in Bi constructed from Line 4 would cause a contradiction by
implying that some node in the set has an outgoing edge. Point
(2) follows directly from Lines 11 and 12, for they imply that
there is no edge between Bj and V (Gs

j) in Gs
j−1, and we

know that given i > j, Bi ⊆ V (Gs
i−1) ⊆ V (Gs

j). �

Example. We demonstrate a successful execution of
GREEDYMIS using the SPP instance DISPUTE-WHEEL-
4 in Fig. 3. Notice that DISPUTE-WHEEL-4 has at
least two solutions, namely {(120), (340), (40), (20)} and
{(10), (230), (30), (410)}. This can be verified noting that
both these sets form independent sets in the solvability digraph
corresponding to DISPUTE-WHEEL-4 (Fig. 3),

To see how GREEDYMIS will non-deterministically find
one of the two solutions, notice that on the network graph
in Fig. 3, initially the algorithm finds no nodes to include
in B1, at both Line 4 and Line 6, thus choosing one of the
nodes in {(120), (230), (340), (410)} at Line 8. Without loss
of generality, let the node chosen be the path (120). Then,
the paths {(120), (10), (230), (410)} are removed from the
solvability digraph at Line 12 in iteration 1, and, because
they have no outgoing edges in Gs

1, the paths (340) and
(40) are selected at Line 4 in iteration 2. As a result, path
(30) is thus removed from the graph. In the final iteration,
by having no outgoing edges, the path (20) is selected so
that {(120), (340), (40), (20)} is the independent set output
by GREEDYMIS. Since the tie-breaking at Line 8 is arbitrary
and non-deterministic, the algorithm could have also found the
solution {(10), (230), (30), (410)}.
B. GREEDYMIS: Analysis

We conduct rigorous analysis to prove that GREEDYMIS
solves strictly more SPP instances than a state-of-the-art SPP
polynomial algorithm [4] called GREEDY+. We omit the
proofs of lemmas due to space limit.
A review on GREEDY+. We first briefly review the GREEDY+

algorithm. Given a path p ∈ P and a set S ⊆ P , we say



that p is consistent with the set S if p = ε, or p = (0), or
p = (v, w)p′, where p′ is some path in S, (v, w) ∈ V (G),
and p′ is consistent with S. For each v ∈ V (G), the useful set
of paths, denoted by P̄v , is initialized with the paths in Pv

that are consistent with P , where we recall that Pv is the set
of permitted paths from v to the destination. Given input SPP
instance S = (G,P,Λ) and the useful set P̄ = ∪v∈V (G)P̄v ,
GREEDY+ proceeds as follows, for each iteration i ≥ 1. In
the beginning, V0 = {0} and P̄0 = P̄ .

i) Prune paths from P̄i−1: for any v ∈ V (G) \ Vi−1, if v has
a neighbor w ∈ Vi−1, then we know |P̄w

i−1| = 1 and let let
pw denote that path. Remove from P̄i−1 all paths in P̄v

i−1
that have a lower ranking than path (v, w)pw.

ii) Prune paths from P̄i−1: for any v ∈ V (G) \ Vi−1, remove
from P̄i−1 any p ∈ P̄v

i−1 that is not consistent with P̄i−1.
iii) Constructs the set of candidate vertices, Ci, by selecting

all v ∈ V (G) \ Vi−1, such that the highest ranked path in
P̄v
i−1 either is ε or has a next hop in Vi−1. Additionally,

for each v ∈ Ci, prune all but the highest ranked path in
P̄v
i−1 from P̄i−1. Let P̄i = P̄i−1 and Vi = Vi−1 ∪ Ci. If
|Ci| = 0, then exit.

The basic idea of GREEDY+ is to start from the destination
AS 0, and then iteratively “grow” a stable path assignment,
such that after each iteration i, the useful set of paths left for
any v ∈ Vi, P̄v

i , is a singleton set containing the path assigned
to v, while for each v ∈ V (G)\Vi, a path is not assigned yet.
In the remaining of this paper, we use Pi to denote the set of
paths assigned to the ASes in Vi by GREEDY+ after iteration
i, i.e., Pi = ∪v∈Vi

P̄v
i and |Pi| = |Vi|.

GREEDY+ was proposed to analyze BGP convergence using
the SPP model. It guarantees that given S = (G,P,Λ), if it
finds a stable path solution, this solution must be unique and
the corresponding BGP policie must converge. As such, the
SPP instances it can solve are limited. For example, GREEDY+

fails to find a solution to DISPUTE-WHEEL-4 in Fig. 3. This
is because no paths are pruned at Step i) or ii), and at each
AS other than 0, the highest ranked path does not have a next
hop in V0 = {0}. So with C1 = ∅, GREEDY+ exits at Step
iii) of iteration 1.

At the end of this review, we note that since our presentation
only considers SPP instances where no two paths are equally
ranked, Step iii) of GREEDY+ is well defined as there is
only one path that has the highest ranking, in each P̄v

i−1.
We also note that Step iii) defined above differs from the
description in [4], in that it returns the set of all nodes that
satisfy the condition, rather than just an arbitrary one. But this
is equivalent to the original algorithm, by Property 4.2 in [4].
Connecting GREEDY+ to the solvability digraph and
GREEDYMIS. Before presenting the key analysis result, we
first remark on the key connections between GREEDY+ and
GREEDYMIS. Note that the notations used in the following
are consistent with those in the description of the algorithms.

1) Step i) of GREEDY+ prunes paths that can no longer be
locally optimal, which corresponds exactly to condition (3)
in Definition III.4.

2) Step ii) of GREEDY+ prunes paths when they are no
longer consistent with the useful set of paths in the current
iteration. This is reflected exactly by condition (2) in
Definition III.4.

3) At Step iii) of GREEDY+, once an AS has been assigned
a path, all other paths from that AS are pruned, the
reasoning of which is reflected exactly by condition (1)
in Definition III.4.

These connections directly imply the correspondence be-
tween the removal of nodes (other than those included in
Bi) from the solvability digraph at Line 12 of GREEDYMIS
and the pruning of paths from the useful set at Step i),
ii), and iii) of GREEDY+. More formally, consider the ex-
ecution of GREEDY+(S, P̄) and GREEDYMIS(Gs), where
S = (G,P,Λ) is a given SPP instance, and P̄ and Gs are the
corresponding useful set and solvability digraph, respectively.
We have the following lemma.

Lemma IV.4. After j iterations of GREEDYMIS and i itera-
tions of GREEDY+, respectively, if Sj ⊆ Pi, then for any path
p ∈ (V (Gs) \ (Sj ∪ V (Gs

j)) we have p 6∈ P̄i.

In other words, the Lemma above states that if Sj ⊆ Pi,
then if a path is removed at Line 12 by GREEDYMIS as a
neighbor of some node in Bt, 1 ≤ t ≤ j, it is also pruned by
GREEDY+ in one of the first i iterations.
Key analysis result of GREEDYMIS. We show that
GREEDYMIS solves strictly more SPP instances than
GREEDY+. The strictness follows from the SPP instance
DISPUTE-WHEEL-4, which is solvable by GREEDYMIS but
not GREEDY+. We now prove that any instance solvable
by GREEDY+ is also solvable by GREEDYMIS. Let S =
(G,P,Λ) be an instance of the stable path problem solvable
by GREEDY+ with solution π, and let Gs be the corresponding
solvability digraph. Let k1 and k2 denote the number of
iterations it took for GREEDYMIS and GREEDY to complete,
respectively, such that GREEDYMIS and GREEDY terminate
at iteration k1 + 1 and k2 + 1, respectively. We first give the
following lemma (whose proof is omitted due to page limit).

Lemma IV.5. At each iteration i where 1 ≤ i ≤ min(k1, k2),
(1) Pi ⊆ Si ⊆ Pk2 , and (2) in GREEDYMIS, there exists at
least one node in Gs

i−1 that has no outgoing edges in Gs
i−1.

Notice that Lemma IV.5 implies that at each iteration i, 1 ≤
i ≤ min(k1, k2), GREEDYMIS constructs Bi by selecting all
and only nodes in Gs

i−1 that have no outgoing edges in Gs
i−1

(Line 4).

Theorem IV.6. Any instance of the stable path problem
solvable by GREEDY+ is also solvable by GREEDYMIS.

Proof. From Lemma IV.5, we have that k1 ≤ k2, thus we can
replace min(k1, k2) with k1 everywhere. At iteration i = k1+
1 where GREEDYMIS exits, if |Si−1| = |V (G)|, then Si−1 ⊆
Pk2 (by Lemma IV.5) and |Pk2 | = |V (G)| together imply that
Si−1 = Pk2 , as desired. If this is not the case, then it must be
that at iteration i = k1+1, |Si−1| < |V (G)| and |V (Gs

i−1)| =
0. This means that there exists some p ∈ Pk2

⊆ P̄k2
, such that



p 6∈ Si−1. By Lemma IV.5, we have Si−1 ⊆ Pk2
. Given that

|V (Gs
i−1)| = 0, we have V (Gs)\(Si−1∪V (Gs

i−1)) = V (Gs)\
Si−1. Thus, p 6∈ Si−1 is equivalent to p ∈ V (Gs)\Si−1, which
is equivalent to V (Gs) \ (Si−1 ∪ V (Gs

i−1)). By Lemma IV.4,
Si−1 ⊆ Pk2

together with p ∈ V (Gs) \ Si−1 implies that
p 6∈ P̄k2

, a contradiction. �

In Theorem IV.6, the solution found by both algorithms
will be the same, since by Property 4.4 in [4], any instance
solvable by GREEDY+ has a unique solution. We leave it for
future work to study how well the heuristics developed for
solving the MIS problem on a generic graph can perform on
the solvability digraph, compared with GREEDYMIS.

V. USE CASES

In this section, we apply the GREEDYMIS algorithm to
design two novel interdomain routing use cases.
A. Use Case 1: A Centralized Interdomain Routing System

This platform leverages the architecture of recent inter-
domain routing systems [17]–[21] to introduce a centralized
route control server, which uses SPP as the foundation for
computing interdomain routes. Specifically, the server collects
the interdomain network topology as well as the policies of
ASes (i.e., both route export and selection policy), translates
them into an SPP instance using existing tools [4], [8], and
transforms the SPP instance to a solvability digraph. Then the
server applies the GREEDYMIS algorithm to compute the MIS
in the solvability digraph. If an MIS of size |V (G)| is found,
where G is the network graph of the SPP instance, the server
sends the corresponding stable path assignment back to the
ASes. Otherwise, the server notifies the ASes and ask them to
adjust their policies.

A main advantage of this platform is that it greatly expands
the set of routing policies ASes can use, and thus improves the
flexibility of interdomain routing. The reasons for this are that
centralized route computation does not need to worry about
convergence in distributed routing protocols, and that the set
of BGP policies that correspond to solvable SPP instances
is a superset of the set of BGP policies that correspond to
convergable SPP instances. As such, this platform is suitable
for collaborative interdomain networks (e.g., the Large Hadron
Collider [26]), where ASes are willing to expose their policies
in exchange for more flexible route control.
B. Use Case 2: Compute Interdomain Routing via SMPC

For interdomain networks where ASes want to achieve
more flexible interdomain routing while preserving policy
privacy, we develop a secure multi-party computation (SMPC)
protocol, called P-GREEDYMIS, which allows ASes to col-
laboratively use GREEDYMIS to find a stable path assignment
without exposing their routing preferences.
Setting. Given an SPP instance S = (G,P,Λ) with n + 1
ASes (i.e., |V (G)| = n+ 1) and the corresponding solvability
digraph Gs, we use N = |V (Gs)| to denote the number of
nodes in the solvability digraph, and index the nodes from
1 to N . In this use case, each AS exposes its export/import
policies so that each AS k can compute its permitted paths
Pk while keeping its routing selection policies private. This

setting is reasonable in that even if ASes choose to keep
their export/import policies private, thee export policies can
be accurately inferred [31]–[33], even in the case where they
go beyond the Gao-Rexford condition to include sibling/peer+
AS relationship [34], and behaviors of import policies can
be observed at BGP Looking glass and RIPE database. In
contrast, the routing selection policies are generally considered
very hard to infer [35]. In addition, we assume a semi-
honest security model, where each AS faithfully executes the
protocol, but tries to infer private information of other ASes.
Preliminaries. The SMPC protocol is based on a linear secret
sharing scheme [36], where inputs are shared by n+ 1 ASes
at the beginning, such that no single AS has the complete
knowledge of the solvability digraph. We refer the reader
to [36] for details about this secret sharing scheme. Later
computation is performed over the secret shares while all
intermediate results are also shared by all ASes. We use [x]
to denote that value x is secret shared. We also use [f(x, y)]
to denote that the ASes perform some computation f over
secret shared inputs x and y, and then secret share the result.
We have that addition is free and can be locally computed
whereas multiplication involves some communication between
the ASes. In particular, given [x] and [y], each AS can compute
their share of [x+ y] using only their share of [x] and [y] and
therefore the computation can happen locally. On the other
hand, obtaining the secret shared value for [x ∗ y], given [x]
and [y], involves the communication of certain values between
all the ASes. These values are independent of [x] and [y] and
can happen at the initialization phase.
An adjacency matrix representation of solvability digraph.
We denote using M the adjacency matrix of the solvability
digraph Gs, where the i-th row and column correspond to
the i-th node of the solvability digraph. In particular, given
an edge (p1, p2) ∈ Gs, if (p1, p2) satisfy conditions (1) or
(3) in Definition III.4, its existence (Mp1p2 = 1) is private
information known only to AS k, where p1 ∈ Pk. Otherwise,
it satisfies condition (2) and Mp1p2

= 1 can be derived and
known by all ASes.
Initialization. With the matrix representation, each entry of
M is secret shared by all n + 1 parties using the linear
secret sharing scheme in [36]. This can be easily implemented,
because the edges of the solvability digraph by Definition III.4
either are public or can be computed locally by a single party.
For the former type of edges the n + 1 parties secret share
1 for their corresponding entries in M at initialization. The
rest of the entries in M can be computed by each AS locally.
Indexing each row and column of M by the node in Gs it
corresponds to, each AS k computes the pk-th row of M for
each pk ∈ Pk and then shares each entry of the row with
the other ASes. During the initialization, ASes also share two
binary vectors Z and S of length N . Each entry of Z indicates
whether a node has been removed from the solvability digraph,
and each entry of S indicates whether a node has been added
into the independent set constructed so far. Finally, a number
of values related to the number of secret shared multiplications
as described earlier, are shared among all ASes.



1 P-GREEDYMIS ( [M ], n+ 1, N, {Pk}0≤k≤n ) :
2 [S] = [[0] ∗N ]
3 [Z] = [[1] ∗N ]
4 f o r ( i i n [0, n] ) :
5 [ind] = [lst] = [d] = [u] = [b] = [[0] ∗N ]
6 f o r (k i n [1, N ] ) :
7 [dk] = [Mk,1 + · · ·+Mk,N ]
8 [indk] = [dk == 0]
9 [lst] = [MiniFind(d, lst)]

10 [badd] = [1]
11 f o r (k i n [1, n] ) :
12 [bk] = [(

∑
p∈Pk

Zp == 1) ∗ badd]

13 [badd] = [badd ∗ (1− bk)]
14 f o r (j i n Pk) :
15 [uj ] = [Zj ∗ bk]
16 [tmp] = [indj ]
17 [tmp] = [tmp+ (1− indj) ∗ uj ]
18 [tmp] = [tmp+ (1− indj) ∗ (1− uj) ∗ lstj ]
19 [Sj ] = [(1− Sj) ∗ tmp+ Sj ]
20 f o r (k i n [1, N ] ) :
21 f o r ( j i n [1, N ] ) :
22 [Zk] = [(1− Sk) ∗ Zk]
23 [Zk] = [(1− Sj ∗Mk,j) ∗ Zk]
24 [Zk] = [(1− Sj ∗Mj,k) ∗ Zk]
25 f o r (k i n [1, N ] ) :
26 f o r ( j i n [1, N ] ) :
27 [Mk,j ] = [Zk ∗ Zj ∗Mk,j ]

28 Revea l [
N∑
i=1

Si == n+ 1]

Fig. 5: P-GREEDYMIS: an MPC protocol for finding independent
set based on GREEDYMIS

Protocol. After the initialization, the SMPC protocol takes
as input the secret shared matrix M , the number of ASes
n + 1, the number of nodes N of the solvability digraph,
and the permitted paths {Pk}0≤k≤n. During the protocol, the
ASes update [M ], [Z], and [S] collaboratively at each iteration.
The control flow does not reveal private information except
the number of iterations, which is bounded by the number of
nodes N . Hence we can replace the while loop with a constant
number of N rounds to avoid any leakage from the control
flow. Moreover, the memory accesses in P-GREEDYMIS are
all data-independent, and no private address is accessed, for
example, by accessing the i-th element of some vector L when
i is a value secret shared by all the ASes. As such, the protocol
in Fig. 5 can avoid the use of oblivious RAM, as well as any
considerable overhead that would be introduced by them [37].

To update [M ], [Z], and [S], all the parties need to construct
two secret shared binary vectors [ind] and [lst] of size N .
The vector [ind] is used to represent which nodes have out-
going neighbors. Using a vector [d] to represent each node’s
out-going degree, [ind] can be computed by checking if the
entries are 0. The vector [lst] is such that exactly one of its
entries is 1, and the rest are 0. We use [lst] to represent one
of the nodes with the smallest out-going degree. In the case
where there are more than one nodes with the smallest out-
going degree, we pick the one with the greatest index in the
adjacency matrix. Moreover, [lst] can be computed through
tailored sorting networks [38], using N − 1 comparisons and
4N multiplications. After n + 1 iterations, the n + 1 parties

reveal if
∑N

i=1 Si equals n+ 1.
Analysis. Theorem V.1 presents the correctness, privacy,
and complexity of our (n + 1)-party MPC protocol P-
GREEDYMIS. We provide the intuition while omitting the
details. The privacy claim follows from the security of the
secret sharing scheme and the data-independent control flow.
We assume that used in our protocol is a t-out-of (n + 1)
secure secret sharing scheme for the field Fq , for q a large
enough constant prime [36]. We also measure the complexity
of P-GREEDYMIS by counting the number of multiplication
gates, noting that additions can be “free” if the underlying
secret sharing scheme is linear.

Theorem V.1. The following holds true for the (n+ 1)-party
MPC protocol P-GREEDYMIS:

• Privacy: Assuming N ≤ q where q is a constant prime and
there exists a t-out-of (n+ 1) secure secret sharing scheme
for the field Fq , P-GREEDYMIS is t-out-of (n+ 1) secure
and does not reveal any information other than whether
GREEDYMIS can find an independent set in Gs of size n+1
under the semi-honest setting.

• Complexity: Assuming there is an (n + 1)-party protocol
miniFind that takes an array of length N as input and
returns a secret shared binary array [lst] as described above
using N − 1 comparisons and 4N multiplications, then P-
GREEDYMIS involves n(N−1) comparisons, n(N+n)+1
equality tests, and n(2n+ 9N + 7N2) multiplications.

• Correctness: P-GREEDYMIS returns true if and only if
GREEDYMIS finds an independent set of size n+ 1.

We reason about the correctness of P-GREEDYMIS by
checking that it implements each step of GREEDYMIS using a
sequence of arithmetic computations. In particular, lines 14-19
update Sj by indj+(1−indj)∗uj+(1−indj)∗(1−uj)∗lstj .
Noting that Sj indicates whether a node is in the independent
set, we have the code snippet implements the heuristic exactly:
it first tries to add to the independent set all nodes with no
outgoing edges; if such nodes do not exist, it attempts to add
to the independent set a node from some Pk that contains
only one node; finally if neither type of nodes exist, it adds a
node of lowest out-degree to the independent set. Lines 20-24
assign 0 to Zj if the node j is a neighbor of some node in the
independent set Sj . Lines 25-27 assign 0 to Mij if either node
i or j is removed. Conceptually, lines 20- 27 remove from the
graph the nodes of the independent set and their neighbors.

VI. PERFORMANCE EVALUATION

We study the benefits and efficiency of the GREEDYMIS
algorithm in both use cases using real-world datasets. We
introduce the experiment methodology and then the results.
A. Experiment Methodology
Generating SPP instances from real-world datasets. We
use the AS-level Internet topology derived from the CAIDA
dataset [39] to generate SPP instances of different sizes. In
particular, we first extract multiple AS-level topology graphs
from subgraphs of the whole Internet AS-level topology in-
ferred from the CAIDA dataset collected on July 1st, 2020. We
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use the public registry information of each AS to identify its
country. We then extract the maximum connected components
of the whole Internet topology containing ASes from the same
country. The rationale is that ASes from the same country
are usually from the same community or administrated/coor-
dinated by collaborative ISPs, hence they are more willing to
collaborate to improve the flexibility of interdomain routing
(e.g., sharing policies to a trusted controller).

For each extracted AS-level topology, we identify the
customer-provider business relationship between peering ASes
using the inferred AS relationship dataset [31], [39]. Based on
these business relationships, we configure the import/export
policy and the route selection policy of each AS to follow
a combination of Gao-Rexford conditions [3]. To add ran-
domness, we also randomly add export policies that do not
announce routes containing certain ASes (blackhole policy) or
certain AS segments (forbidden segment policy) [17], [35]. We
construct the ranking function of each AS as a total order based
on the local preference, the AS path length, and the next hop.
We simulate the BGP route announcement process without
applying route selection policies to generate all permitted
paths.We generate SPP instances by AS-level topologies from
48 different countries. The input topology graphs are scaled
from 11 ASes to 50 ASes. And the number of permitted paths
varies from 8 to 12k.
Comparing with state-of-the-art heuristics. We compare
the performance of GREEDYMIS with two state-of-the-art
heuristic algorithms for solving SPP, namely GREEDY [1]
and GREEDY+ [4]. Comparing GREEDYMIS with exact al-
gorithms (e.g., SAT solving) is an important next step and
will be explored in future work.
B. Results

We present the results of GREEDYMIS in both use cases.
Centralized interdomain routing computation. In this use
case, we use GREEDYMIS, GREEDY+, and GREEDY each
as the algorithm on the controller to find the stable path
assignment. We first demonstrate that GREEDYMIS solves
strictly more SPP instances than the other two algorithms.
Fig. 6a gives the complete result on the solvability and
efficiency of all three algorithms, where each point represents
a solution status of an SPP instance by a solver. A circle mark
means the algorithm found a stable solution successfully and a
cross mark represents a failure. Fig. 6b gives the summarized
result on solvability. In our experiments, GREEDYMIS finds a

solution to all SPP instances, while for over 50% of the SPP
instances, both GREEDY and GREEDY+ cannot find a solution.

Next, we show that GREEDYMIS is efficient in finding SPP
instances. We find that the execution time of GREEDYMIS
over the number of permitted paths is approximately linear
(Fig. 6a). Fig. 6c provides the CDF of computation time
of GREEDYMIS. Even for the largest SPP instance in our
experiment that has 12k permitted paths, the GREEDYMIS
can find a solution in 80 seconds. The execution time of
GREEDYMIS is close to that of GREEDY+ in most cases,
and even faster in some cases.
Privacy-preserving interdomain routing computation. We
next evaluate P-GREEDYMIS, the SMPC protocol for ASes
to collaboratively solve SPP using GREEDYMIS, without ex-
posing their routing preferences. We construct 5 SPP instances
by selecting different numbers of tier-1/tier-2 ASes from the
CAIDA dataset and one destination AS. In all 5 instances
in the experiment, P-GREEDYMIS can find a solution. We
plot the communication overhead of P-GREEDYMIS in terms
of the rounds of message exchanges between ASes and the
number of permitted paths for different instances in Fig. 7.
The results show that when there are 3800 permitted paths in
an SPP, the number of messages needed for P-GREEDYMIS
is about 4×108, which consumes little bandwidth. The growth
of communication overhead of P-GREEDYMIS conforms with
the increase of the number of permitted paths in SPP instances.
This shows the feasibility of P-GREEDYMIS to compute
stable path assignments for interdomain routing. We leave
more comprehensive evaluations, as well as performance op-
timizations, as future work.

VII. CONCLUSION

In this paper we studied the important problem of finding
a solution for generic SPP instances. We introduced a novel
data structure, called a solvability digraph, which encapsulates
the possible conflicts between paths in a solution. Our main
insight was to transform the SPP to the problem of finding
an independent set of size n + 1 in the solvability digraph,
where n + 1 is the number of ASes. We develop an efficient
heuristic algorithm that solves strictly more SPP instances
than existing state-of-the-art heuristics. Finally, we applied it
to novel interdomain routing use cases, and demonstrated its
benefits and efficiency via extensive experiments. We believe
that our new insights to this problem will shed light towards
better understanding and potential new applications of SPP.
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