
140

Static Detection of Silent Misconfigurations with Deep
Interaction Analysis

JIALU ZHANG, Yale University, USA
RUZICA PISKAC, Yale University, USA
ENNAN ZHAI, Alibaba Group, USA
TIANYIN XU, University of Illinois at Urbana-Champaign, USA

The behavior of large systems is guided by their configurations: users set parameters in the configuration

file to dictate which corresponding part of the system code is executed. However, it is often the case that,

although some parameters are set in the configuration file, they do not influence the system runtime behavior,

thus failing to meet the user’s intent. Moreover, such misconfigurations rarely lead to an error message or

raising an exception. We introduce the notion of silent misconfigurations which are prohibitively hard to

identify due to (1) lack of feedback and (2) complex interactions between configurations and code.

This paper presents ConfigX, the first tool for the detection of silent misconfigurations. The main challenge

is to understand the complex interactions between configurations and the code that they affected. Our goal is

to derive a specification describing non-trivial interactions between the configuration parameters that lead to

silent misconfigurations. To this end, ConfigX uses static analysis to determine which parts of the system code

are associated with configuration parameters. ConfigX then infers the connections between configuration

parameters by analyzing their associated code blocks. We design customized control- and data-flow analysis

to derive a specification of configurations. Additionally, we conduct reachability analysis to eliminate spurious

rules to reduce false positives. Upon evaluation on five real-world datasets across three widely-used systems,

Apache, vsftpd, and PostgreSQL, ConfigX detected more than 2200 silent misconfigurations. We additionally

conducted a user study where we ran ConfigX on misconfigurations reported on user forums by real-world

users. ConfigX easily detected issues and suggested repairs for those misconfigurations. Our solutions were

accepted and confirmed in the interaction with the users, who originally posted the problems.

CCS Concepts: • Software and its engineering→ Software configuration management and version
control systems.

Additional Key Words and Phrases: Silent Misconfiguration, Misconfiguration Detection, Configuration

Specification

ACM Reference Format:
Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu. 2021. Static Detection of Silent Misconfigurations

with Deep Interaction Analysis. Proc. ACM Program. Lang. 5, OOPSLA, Article 140 (October 2021), 30 pages.
https://doi.org/10.1145/3485517

1 INTRODUCTION
Software misconfigurations today have been one of the most common causes of service failures [Xu

and Zhou 2015]. For example, almost all the mainstream cloud providers, including Amazon [ama

Authors’ addresses: Jialu Zhang, Yale University, New Haven, Connecticut, 06511, USA; Ruzica Piskac, Yale University, New

Haven, Connecticut, 06511, USA; Ennan Zhai, Alibaba Group, Bellevue, Washington, 98004, USA; Tianyin Xu, University of

Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART140

https://doi.org/10.1145/3485517

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

https://doi.org/10.1145/3485517
https://doi.org/10.1145/3485517

140:2 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

2017], Facebook [Spangler 2019], Google [goo 2018], and Microsoft [mic 2014], have experienced

significant outages resulting from misconfigurations. In addition, an earlier survey [Yin et al. 2011]

on misconfiguration in commercial and open source software shows that misconfigurations are the

most common root causes of “high-severity” issues. Misconfigurations are responsible for 31% of

server downtime issues, compared to just 15% for software bugs.

One of the key reasons for the increase in problems caused by misconfigurations is an increase

in software complexity [Yin et al. 2011]. For example, widely-deployed software systems, e.g.,
Apache, Hadoop, and MySQL, have more than 300 tunable configuration parameters for users. Such

complexity in software configurations presents significant challenges for system management.

Research into misconfiguration detection has been the focus of the system and software en-

gineering research community for a long time [Attariyan et al. 2012; Attariyan and Flinn 2010;

Mehta et al. 2020; Nadi et al. 2015; Su et al. 2007; Sun et al. 2020; Wang et al. 2004, 2003; Xu et al.

2016a, 2013; Yin et al. 2011; Yuan et al. 2006, 2011; Zhang et al. 2014; Zhang and Ernst 2013; Zhang

et al. 2021]. At the same time, the verification community has overlooked this important problem,

as modern verification techniques and tools inherently rely on the existence of a formal specifi-

cation. Therefore, the first step to take towards the verification of configuration files should be

specification formulation—the specification is a set of rules expressing the mutual connections of

configuration parameters. Although there have been several attempts to automatically derive the

specification for configuration checking in the past years, these tools are limited in the scope of the

properties that they can infer. Specifically, there is a class of tool that learns simple specification

by using configuration files as training sets [Mehta et al. 2020; Santolucito et al. 2017, 2016]. The

other type [Chen et al. 2020; Rabkin and Katz 2011a; Xu et al. 2016a, 2013] infers coarse-grained

information by analyzing the source code of system programs; however, they only analyze the

parts of the system implementation where a configuration parameter is consumed, deriving this

way the properties about the scope of a parameter. The main obstacle of the existing tools, thus, is
that they do not analyze the system program as a whole, missing the complex interactions between
multiple configuration parameters and the code affected by them.

The focus of this paper is to employ program analysis to derive such non-trivial interactions be-

tween configuration parameters. Motivated by real-world examples, we show that the rules that we

inferred can help us detect a special class of misconfigurations that we call silent misconfigurations.
We chose this name because these misconfigurations typically occur without any helpful system

logs or messages. Those misconfigurations have not been systematically studied before, though they

commonly appear in practice and the users repeatedly ask for help on public forums (Section 2.1).

Such misconfigurations typically happen when the user explicitly modifies a configuration parame-

ter c , but this modification does not have any effect due to the implicit influence of other “seemingly

unrelated” configuration parameters. Such implicit interactions cannot be detected by existing tools

because those tools either analyze only the configuration files or analyze only the system source

code. To detect such convoluted silent misconfigurations, the configurations and the source code

that affected by the configurations have to be analyzed jointly—silent misconfigurations are mainly

the result of code affected by one configuration overwriting the other. To capture that fact, we need

to understand the interactions of the source code and configurations, which existing tools are short

of.

We developed a tool, called ConfigX, that uses static analysis to determine which parts of

the code are affected by which configurations. ConfigX analyzes the interactions between the

configuration-related code blocks with customized control- and data-flow analysis to derive specifi-

cations. Additionally, we conduct reachability analysis to eliminate spurious rules to reduce false

positives.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:3

An example of a silent misconfiguration. The following example shows a real-world silent

misconfiguration collected from Stack Overflow [apa 2012]. The user wanted to allow access to only

one country but also to exclude some proxies within that country. The user changes the following

lines in the Apache web server configuration file, explicitly stating their intent:

1: <Limit GET POST>

2: order deny,allow

3: allow from ...country.com

4: deny from ...proxy.country.com

5: </Limit>

However, instead of producing the HTTP 403 Forbidden message, the specified proxy was allowed

to access the web server. This misbehavior constitutes a severe security threat and is the exact

opposite of what the user intended. Running our tool ConfigX on the reported configuration file

will report that the configuration parameter deny from has no effect: the system behavior remains

the same independently if this option is present or removed from the configuration file.

In this case, the entry order plays a key role: it decides the order in which the functions deny

and allow are executed. If the value of order is set to deny,allow, any IP address matching the value

specified in the entry deny from gets a temporary return value deny. After that it checks the entry

allow from, and if it matches, it receives the return value allow, that overwrites the previous value.

Our tool automatically derived the rule that states exactly that:

1: AdvOrder((Order = deny,allow), Allow, Deny)}

Silent misconfigurations are hard to detect. Detecting silent misconfigurations is challenging,

not only because they do not have useful logs, but also because they require users to understand

the interactions between configurations and the code that they affect. Existing systems cannot

detect silent misconfigurations because (1) they rely on accurate error messages to detect potential

misconfigurations [Sun et al. 2020; Xu et al. 2016a], (2) they fail to analyze interactions between

configuration parameters [Wang et al. 2004; Xu et al. 2016a], or (3) they do not look into source

code [Mehta et al. 2020; Santolucito et al. 2017, 2016; Zhang et al. 2014].

Silent misconfigurations are common. As we report in Section 2, we identified more than 100

reports on silent misconfigurations for systems like Apache, vsftpd and PostgreSQL. Based on the

reported issues, we noticed that the main problem is that the system behavior does not correspond

to intended configurations, and the system silently “went wrong” without error messages or other

observable symptoms. In addition, we deduced that silent misconfigurations are often caused by

incorrect interactions between configurations.

Our approach: ConfigX. This paper is the first approach towards systematically detecting silent

misconfigurations. We developed a tool called ConfigX. ConfigX consists of two components: ana-

lyzing and checking. The analyzing component of ConfigX automatically derives the specification

of configurations from the system source code. This specification is given as a set of rules. The

analyzer consists of three different parts. We first compile the system source code, using the LLVM

compiler, into LLVM IR [Lattner and Adve 2004]. We next apply a field-sensitive static analysis to

establish a connection between the LLVM IR and the configurations. Our static analysis maps the

configurations to variables in LLVM IR. In the second part, we derive interactions between configu-

ration values using customized control- and data-flow analyses. The third part is a reachability

analysis, which eliminates the spurious rules derived during the previous parts.

Once there is a specification, ConfigX checks for silent misconfigurations in a given configuration

file. Since a configuration file might not set all the configuration parameters, we first augment the

configuration file by explicitly assigning the system defaults to the configuration parameters that

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:4 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

do not occur in the file. Next, we generate the intermediate representation used in ConfigX. Finally,

the ConfigX checker inspects whether the augmented intermediate representation violates any of

the interactions derived from the ConfigX analysis.

Main technical challenges in designing ConfigX. The main technical challenge in detecting

silent misconfigurations is to analyze the complex interaction of source code blocks and use this

rich comprehensive semantics to derive complex interactions between configurations, extending

this way significantly the class of misconfiguration that can be automatically analyzed and detected.

State-of-the-art tools [Chen et al. 2020; Xu et al. 2016a, 2013] only check configuration values

themselves and do not further analyze the source code affected by the configuration values, making

them fundamentally limited to detect the semantics-related silent misconfigurations.

We used the following techniques in ConfigX that were not used or considered previously in

existing tools:

• We designed a comprehensive analysis to capture and analyze the interactions between code

blocks related to configurations.

• We proposed reachability analysis to systematically prune out the detected spurious rules in

our rule learning process. While previous work uses the statistical method [Xu et al. 2013] to

reduce false positives, our reachability analysis is sound.

• Since silent misconfigurations are either syntax-related or semantics-related, we included

the system defaults in our analysis—this way our analysis is a combination of source code

and configurations.

Evaluation. To extensively evaluate our tool, we have run ConfigX on five different datasets across

three widely used systems, Apache, vsftpd and PostgreSQL. First, we ran our tool on the dataset

collected from Stack Overflow. ConfigX is able to detect silent misconfigurations even when full

configurations are not available. In addition, we also ran ConfigX on the publicly available Apache

dataset used by previous work [Xu et al. 2015]. We further created three datasets by crawling

configuration files for Apache, vsftpd and PostgreSQL from Github repositories. ConfigX detects

more than 2200 silent misconfigurations in 457 configuration files in five datasets in less than an

hour. The time was mainly spent in the analyzing phase, while the checking phase takes only

negligible time.

To additionally evaluate how useful ConfigX is in real world, we conducted a user study on

configurations appearing on Github and Stack Overflow. We ran ConfigX on those configurations

and reported the detected silent misconfigurations to the users. The user feedback is very positive.

Most users immediately confirmed the silent misconfigurations reported by ConfigX, and used our

suggestions to correct their configuration files. Altogether, we corrected fourteen real-world silent

misconfiguration problems. Our experience interacting with the real-world users confirmed that

silent misconfigurations appear often in practice and are hard to detect.

In summary, we make the following contributions:

• We identify a new class of misconfigurations, termed silent misconfigurations. We show

that silent misconfigurations are common in practice but difficult for existing techniques to

handle.

• We developed a tool named ConfigX that automatically derives complex interaction specifica-

tions between configurations by analyzing the interactions of code related to configurations;

ConfigX uses the specifications to detect silent misconfigurations.

• We empirically evaluated ConfigX on real-world silent misconfiguration issues as well as on

five public datasets across Apache, vsftpd and PostgreSQL. ConfigX detects more than 2200

silent misconfigurations in 457 configuration files in less than an hour.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:5

• We conducted a user study to report the detected silent misconfigurations back to real-world

users. Most users appreciatively confirmed the validity of the detected issues and quickly

fixed them in their codebase with the help of ConfigX.

2 UNDERSTANDING SILENT MISCONFIGURATIONS
We present our study on real-world silent misconfigurations in three mature, widely used open-

source server systems, the Apache HTTP server [apa 2021a], vsftpd [vsf 2021], and PostgreSQL [pos

2021]. We describe the common patterns of silent misconfigurations and give some concrete

examples. We further discuss the implications that drive the design of ConfigX.

2.1 Methodology
We collected 48 user-reported issues caused by silent misconfigurations from two data sources,

Stack Overflow [sta 2021] and Server Fault [ser 2021], two Q&A forums where configuration-

related issues are commonly reported. We identify silent misconfigurations by looking for issues in

which users reported missing modules/features/behaviors due to misconfigurations. For example,

in one post [StackOverflow #6070335 2011], the question was “How to retain original request
URL on mod_proxy redirect?” and the correct answer was “If you are using mod_proxy, disable
ProxyPreserveHost in the Apache configuration.” Specifically, we selected posts that contain the

keywords such as “configuration”, “silent”, “module”, “enable”, “disable”, etc. in either the question or

any of the answers. We do not consider unanswered or unvoted questions, because the root causes

may not be determined. We manually analyze each post to understand the silent misconfiguration,

including the configuration pattern and the source-code manifestation.

We focus on Apache, vsftpd, and PostgreSQL. The studied software programs are widely used and

their configuration design represents the state of the practice. Moreover, these three programs are

extensively studied [Attariyan et al. 2012; Xu and Zhou 2015; Yin et al. 2011]. In total, we collected

27, 11, and 10 silent misconfiguration issues for Apache, vsftpd, and PostgreSQL, respectively.

Our data is available at: https://doi.org/10.5281/zenodo.4697690.

2.2 General Findings
In this section, we present our analysis of silent misconfigurations in Apache. Table 1 lists 27

real-world silent misconfigurations reported by Apache users. Silent misconfigurations in vsftpd

and PostgreSQL are manifested in the same vein.

Finding 1: Themajority (74.0%) of silent misconfigurations are caused by interactions betweenmultiple
configuration parameters and their values.

Inspecting the source code that uses the configurations, we find that this interaction is due to

the complex interaction of source code blocks that are decided by configurations. All these 19 cases

have the same root cause: the effect of one configuration was either disabled by other configurations

or overwritten by the code affected by other configurations.

However, none of the existing work [Santolucito et al. 2017; Xu et al. 2013; Yin et al. 2011] analyzed

the source code affected by configurations; therefore, they cannot detect silent misconfigurations.

Specifically, existing work on configuration dependencies [Chen et al. 2020; Xu et al. 2013] only

focuses on analyzing the dependencies between configuration values themselves, but does not

consider the interactions between source code affected by the configurations.

As modern systems like the ones studied have hundreds of tunable configuration parameters,

identifying interactions between configurations is an error-prone and tedious. Expecting users to

dig into the source code to understand interactions between configurations is unrealistic—it defeats

the purpose of having configurations in the first place [Xu et al. 2015, 2013].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

https://doi.org/10.5281/zenodo.4697690

140:6 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

Table 1. Apache silent misconfiguration study results. In the root cause column, “interaction”, “syntax”, and
“one-off” refer to interactions among multiple configuration values, syntax error (incorrect configuration
values), and one-off cases that do not reveal common patterns, respectively.

Post ID Feedback Root Cause Patterns

519272 No Syntax Unmatched Guard

213916225 Useless Syntax Unmatched Guard

36448791 No Syntax Missing Module

20127138 Incomplete Syntax Missing Module

41831003 Incomplete Syntax Missing Module

10994650 No Interaction Miss Handling Default

32401502 No Interaction Miss Handling Default

55942751 No Interaction Miss Handling Default

42650086 Useless Interaction Miss Handling Default

7748595 No Interaction Miss Handling Default

21263746 No Interaction Miss Handling Default

13277968 No Interaction Miss Handling Default

45306092 No Interaction Miss Handling Default

43239190 Useless Interaction Miss Handling Default

13712283 No Interaction Miss Handling Default

26097825 No Interaction Miss Handling Default

21338450 No Interaction Implicit Overwrite

7093385 No Interaction Implicit Overwrite

16340 No Interaction Implicit Overwrite

6070335 No Interaction Implicit Overwrite

9943042 No Interaction Advanced Ordering

18392741 Useless Interaction Advanced Ordering

9507645 No Interaction Advanced Ordering

24728814 No Interaction Advanced Ordering

4400154 No Interaction Advanced Ordering

39143631 Incomplete One-off N/A

47795431 Useless One-off N/A

This finding shows that we need a systematic analysis that accurately captures the interactions

between configurations.

Finding 2: A significant number (18.5%) of silent misconfigurations are caused by a new kind of
guard-related syntax errors in configuration files.

Guards are conditions held on configurations. Configurations are valid if and only if the guards

hold. If the guards are missing or unsatisfied, the configuration will not be passed as a parameter

to the system, even if users specify the configuration parameter in the configuration file. However,

none of the existing work [Santolucito et al. 2017; Xu et al. 2013; Yin et al. 2011] supported guards,

and thus they failed to report these syntax errors.

This finding showed that we need a static analyzer to check the guards on configurations to

users, and proactively detect guard-related syntax silent misconfigurations before any problematic

configurations are passed to the system.

Finding 3: Most (70.4%) silent misconfigurations happen without any system messages or logs. None
of our observed error messages were useful.

Particularly, for 19 out of 27 (70.4%) of the cases, there was no feedback, e.g., logs (“No” in

the Feedback column of Table 1). For the rest of the eight cases, though some of them indeed

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:7

Table 2. The categories of silent misconfigurations. Unmatched guards and missing module are called
syntax-related silent misconfigurations; Miss handling default, implicit overwrite, and advanced ordering are
semantics-related silent misconfigurations.

Patterns Descriptions

Unmatched guards

“Guard configuration parameters” should be set together in pairs (defined in §3). In a typical

unmatched guard misconfiguration, one of the paired configuration parameters is missing.

Missing module

In some cases, guards require a specific module to be enabled. However, this needed module

is not explicitly loaded in the configuration files, making the guard become a silent

misconfiguration.

Miss handling default

When a configuration parameter is not explicitly set in the configuration files, the system

uses its default value. However, this default value might disable some other configurations

that are explicitly set, which will result in a silent misconfiguration.

Implicit overwrite

Two configuration parameters can share non-trivial interactions such that setting them

to certain values will cause that one configuration parameter is overwritten by another,

making it this way obsolete and resulting in a silent misconfiguration.

Advanced ordering

A silent misconfiguration based on non-trivial interactions between three configuration

parameters. Setting one parameter to a certain value might cause implicit overwrites

between the other two parameters, resulting in a silent misconfiguration.

return error messages to users, none of them are useful. Our criterion of usefulness is that the

log message needs to include the root-cause configuration parameters. For example, one post

asked why mod_rewrite was not working [StackOverflow #43239190 2017]. The root cause was

a silent misconfiguration that violates complex interactions between configuration parameter

rewriteBase and parameter rewriteRule. However, the error message that Apache returned is

“Use LimitInternalRecursion to increase the limit if necessary.” This message is not helpful for

understanding and fixing the silent misconfiguration and is in fact actively misleading.

2.3 Patterns and Examples
We classify silent misconfigurations into five patterns, as shown in Table 2. This section presents

examples of each pattern along with methods for detecting misconfigurations of that pattern.

Pattern 1: Unmatched guards. Guards are conjunctions of conditions held on configurations.

Modern software such as Apache has introduced guards to support conditional configurations.

Configurations are valid if and only if the guards held on them are satisfied.

However, users sometimes specify guards incorrectly, and this results in silent misconfigurations.

In our experience, we have found two patterns of syntax-related silent misconfigurations caused by

misuse of guards. The first pattern is the unmatched guard. This is the only pattern that we have

identified that does not cause any harm per se, but it is an example of ill-formed code and we issue

a warning. For example, any guard that begins with IfModule ..._module should be paired with

another guard /IfModule. In the following configuration snippet, the guard /IfModule is incorrectly

introduced here without a matched IfModule ..._module, making the configuration syntactically

ill-formed.

1: </IfModule >

2: ServerAdmin david@vizion2000.net

3: ServerName dns1.vizion2000.net

We show another example that triggers a warning. In the following configuration snippet, there

is no configuration under the guard alias_module because the code is commented out. Introducing

a guard but providing no configuration under the guard does not change any system behavior.

Therefore, this guard is empty.

1: <IfModule alias_module >

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:8 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

2: #ScriptAlias /cgi-bin/ ...

3: </IfModule >

Pattern 2: Missing module. The second pattern of syntax-related silent misconfigurations is the

missing module pattern. In the following configuration snippet, the guard requires the alias_module;

however, themodule is not explicitly loaded in the configuration files. To detect themisconfiguration,

we will need to parse configuration files and check if the guards are unpaired or any module is

missing in its customized syntax analyzer (we describe ConfigX’s implementation in Section 4.1).

1: # missing alias_module (modules/mod_alias.so)

2: <IfModule alias_module >

3: ScriptAlias /cgi-bin/ "/usr/local/apache2/cgi-bin/"

4: </IfModule >

Pattern 3: Miss handling configuration defaults. The configuration defaults determine system

default behaviors if no configurations are set explicitly. Software often uses the preset default

values, unless the user explicitly changed some configuration parameter values. However, those

user-customized changes can conflict with the rest of the system defaults, which results in miscon-

figurations. In the following example from a user forum, the user asks help in redirecting all the

URLs that start with www to URLs without www. However, Apache failed to redirect URLs although

the following configuration parameters explicitly state that (using some regular expression):

1: RewriteCond %{HTTP_HOST} ^www\.(.*)$ [NC]

2: RewriteRule ^/(.*)$ http://%1/$1 [R]

The root cause of this misconfiguration is the interaction between RewriteCond and RewriteRule

parameters and some other parameters that do not even seem to appear in the configuration file,

leading to miss handling configuration defaults. To enable the usage of RewriteRule, the user must

explicitly set the configuration RewriteEngine to On. The default value of RewriteEngine is Off, and

since it did not appear in the configuration file, Apache was using its default value. This error can

be corrected only after the user explicitly adds RewriteEngine On into the configuration file.

In fact, having both parameters RewriteEngine Off and RewriteRule together is also recommended

in the Apache user manual [apa 2021b]. This saves users from manually commenting out all the

instances of URL redirection like RewriteCond and RewriteRule. However, users do not have the same

level of expertise as Apache developers, and in this example, they fail to understand and handle

that complexity.

To detect silent misconfiguations, we analyze the interaction between the code blocks en-

abled by RewriteRule and RewriteEngine. ConfigX detected that the code blocks enabled by

RewriteRule will only be executed if RewriteEngine is set to On. After learning the interaction,

our tool derives the following rule:

1: Disables(RewriteEngine == On, RewriteRule)

Pattern 4: Implicit overwrite. Consider the following configuration snippet (from a real-world

issue [apa 2014]):

1: SSILastModified on

2: XBitHack full

The user intends to set the Last-Modified header in HTTP responses by introducing two key-

value pairs. In this example, SSILastModified On is a silent misconfiguration, because independently

whether SSILastModified is on or not, it does not change program behavior.

By tracing this problem back to the source code, ConfigX automatically detects that Xbithack Full

implicitly overwrites code blocks enabled by SSILastModified. Such silent misconfigurations are

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:9

subtle and can only be inferred by analyzing the non-trivial interactions between source code

blocks that are decided by configurations. To correct this silent misconfiguration, SSILastModified On

should be removed.

Pattern 5: Advanced ordering. The example shown in Section 1 presents a silent misconfiguration

that results from advanced ordering.

2.4 Insights
Based on our observation of silent misconfigurations, we extract the following insights guiding our

solution design. First, from our study more than 70% of studied silent misconfigurations are caused

by intra-procedural semantic interaction of source code blocks; thus, in order to detect semantics-

related silent misconfigurations, analyzing the overlap between different source code blocks is

quite necessary. Second, since around 20% of silent misconfigurations are caused by mishandling

guards in configuration files only, to detect these syntax-related silent misconfigurations, our syntax

analyzer should detect them. Finally, because silent misconfigurations produce no useful system

messages or logs, a potential solution to the problem should not rely on any system feedback.

3 DEFINING SILENT MISCONFIGURATIONS
In Section 1 we intuitively defined silent misconfigurations as errors that happen when the user

sets a configuration parameter to some value, but this change does not have any effect. As our

survey indicates, these types of errors appear often in practice. In this section we provide a formal

definition for silent misconfigurations.

We first define an abstraction of a user configuration file. Given some configuration file C , we
translate it into a flat intermediate representation, denoted by a list Ĉ . The translation is described

in Section 4.1. Having such an intermediate representation makes our approach system-agnostic:

one only needs a parser from a configuration file to Ĉ . All our definitions and techniques are defined
on Ĉ . Given a list L and an element e1 and an element e2, with before(e1, e2,L) we denote that
e1 ∈ L and e2 ∈ L, and e1 appears in L before e2. To simplify the notation, we assume that the list

contains no repeated elements.

The list Ĉ contains two types of elements, either a tuple of the form (дi , ci ,vi), or a closure

element cl(дi). In the tuple, ci is the name of a configuration parameter and vi is its value. The
value vi is either set by the user, in which case we annotate it as vui , or it is the default value preset

by the system, annotated as vdi . The "MySQL 8.0 user manual states explicitly that “Without an

option file, the server just starts with its default settings.” If a configuration parameter does not

have a preset value, we setvdi to “Null.” The first argument, дi , is a guard ensuring the configuration
parameter ci is set to the value vi . A typical example in a configuration file that will result in a

guard is the command IfModule In our representation the guard is either True, i.e., there
is no guard, or it is a conjunction of atoms of the form c j = vj . An example of a guard in our

representation is module1=loaded ∧ engine2=On.
The closure element, cl(дi), closes the scope of a guard. In a well-formed configuration file, for

every guard there is an explicit statement or an indentation indicating where the guard ceases to

hold. We introduce a predicate closed to describe that a guard дi is closed in the list Ĉ:

closed(дi , Ĉ) ⇔

дi = True

дi = (c j = vj) ∧ before((дi , ci ,vi), cl(дi), Ĉ)

дi =
∧k
j≥1 дj ∧ ∀j .1 ≤ j ≤ k .closed(дj , Ĉ) ∧ well-formed(дi , Ĉ)

The guard дi is closed if it is True, or if it is of the form c j = vj and its closing element cl(дi)

appears later in the list Ĉ , or if дi is a conjuction of guards, each guard of the conjuction needs to be

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:10 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

Table 3. The definition of silent misconfigurations. If there exists a tuple (дi , ci ,vi) in Ĉ such that (дi , ci ,vi)
satisfies one of the preconditions, then setting ci = vi is a silent misconfiguration, and its particular name is
given in the first column.

Name of an Error Preconditions
Unmatched Guards Jдi K ⇓ Open
Missing Module Jдi K ⇓ False
Miss Handling Default Jдi K ⇓ True , Jдj K ⇓ True , (дi , ci ,vi) in Ĉ , (дj , c j ,vj) in Ĉ ,

∃r ∈ R, s.t., r = Disables(c j = vdj , ci), vdj is a default value for c j

Implicit Overwrite Jдi K ⇓ True , Jдj K ⇓ True , (дi , ci ,vi) in Ĉ , (дj , c j ,vj) in Ĉ ,
∃r ∈ R, s.t., r = OverWrites(c j = vj , ci = vi)

Advanced Ordering Jдi K ⇓ True , Jдj K ⇓ True , Jдk K ⇓ True , (дi , ci ,vi) in Ĉ , (дj , c j ,vj) in Ĉ , (дk , ck ,vk) in Ĉ ,
∃r ∈ R, s.t., r = AdvOrder(c j = vj , ck , ci)

closed. Additionally, the guard that is a conjuction has to appear in the list after all its conjucts and

before their closing elements. We denote this property with well-formed(дi , Ĉ), for дi =
∧k

j≥1 дj :

well-formed(дi , Ĉ) ⇔ ∀j .1 ≤ j ≤ k . before((дj , c j ,vj), (дi , ci ,vi), Ĉ)

∧ before((дi , ci ,vi), cl(дj), Ĉ)

The other issue with guards is that they might not be available. For example, a guard might state

that a moduleM needs to be loaded for configuration parameters to be set to some values, but if

the moduleM was never loaded then this part of the configuration file is irrelevant. In the terms

of the Ĉ list, this means that whenever a new non-trivial guard is introduced, there must be an

element in the list that ensures that this guard is enabled. To capture this, we introduce a predicate

avail(дi , Ĉ) ⇔

дi = True

дi = (c j = vj) ∧ before((дj , c j ,vj), (дi , ci ,vi), Ĉ)

дi =
∧k
j≥1 дj ∧ ∀j .avail(дj , Ĉ)

We can now define the evaluation of a guard дj in the list Ĉ . Informally, the guard evaluates to

true if it is available and closed. Formally, a guard д can evaluate to one of three values: True, False,

or Open. We denote the evaluation of a guard д in the list Ĉ with JдK ⇓Ĉ ·. When it is obvious from

the context, we omit Ĉ:

JдK ⇓Ĉ True⇔ closed(д, Ĉ) ∧ avail(д, Ĉ)

JдK ⇓Ĉ False⇔ ¬avail(д, Ĉ)

JдK ⇓Ĉ Open⇔ ¬closed(д, Ĉ) ∧ avail(д, Ĉ)

To be able to define silent misconfigurations, we also need to consider a set of rules, or a

specification, and see which rules are violated. We denote the specification by R.

In our particular case, this specification is a set of rules that we learned by using the static

analysis on the configuration-related system source code. We learn three types of rules:

(1) Miss handling default: A general form of the rule that we learn is Disables(c j = vj , ci). The
meaning of this rule is that when the parameter c j is set to the value vj this disables the
parameter ci , making it inaccessible, independently of the value that the user assigns to ci .
Although a simplified form of this rule can be inferred by some existing work [Xu et al. 2013],

none of the existing work handles the case of default values. When vj = v
d
j , the user needs

to explicitly set a customized value to c j , otherwise ci remains disabled.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:11

ConfigX

Per Software

Users’

configurations

Default

configurations

Translator

§ 4.1

Source

code

Config

Set

Specification

Analyzer § 4.2

Augmented

intermediate

representation

Specification Checker

Report

Fig. 1. ConfigX overview. The pink blocks are the inputs that ConfigX receives from users and the outputs
that ConfigX provides for them. The blue blocks are the software-specific knowledge base. The gray blocks
are intermediate results generated in ConfigX.

(2) Implicit overwrite: The rule OverWrites(c j = vj , ci = vi) is the result of implicit connections

between configuration parameters c j and ci , derived by a static analysis on the source code.

The rule states that when the parameter c j is set to the value vj and the parameter ci is set to
the value vi , the latter has no effect.

(3) Advanced ordering: The rule AdvOrder(c j = vj , ck , ci) is another result of implicit connec-

tions between configuration parameters. The rule states that when the parameter c j is set to
the value vj the parameter ck gets a higher ordering than the parameter ci . In particular, that

means that if both parameters ck and ci are set to the same value, then the parameter ck has

a higher precedence and disables the parameter ci , thus causing a silent misconfiguration. If

the parameters are set to two different values then there is no discrepancy and the program

behaves as expected.

Finally, given a configuration file Ĉ and a specification R, we can formally define silent mis-

configurations as follows: if there exists a tuple (дi , ci ,vi) ∈ Ĉ such that (дi , ci ,vi) satisfies one
of the five preconditions from Table 3, then setting the value vi to the parameter ci is a silent

misconfiguration.

4 CONFIGX DESIGN
Driven by the insights from Section 2.4, we design and build ConfigX, a system that can detect

misconfigurations. Figure 1 gives an overview of ConfigX’s architecture. It consists of three main

modules. (1) The translator, described in Section 4.1, takes the user’s configurations as input,

augments them with the system defaults and generates the intermediate representation (IR) used in

ConfigX. (2) The analyzer, described in Section 4.2, uses a customized program analysis to derive a

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:12 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

specification describing connections between configuration’s parameters. (3) The checker, detects

possible silent misconfigurations by checking whether the given configuration file adheres to the

derived specification.

4.1 Translator
The translator parses the user’s configuration into an intermediate representation for post semantics-

related silent misconfigurations checking. It also detects syntax-related silent misconfigurations.

Given a configuration file C , before we even start to parse it into an intermediate representation,

we first augment that file with missing default values. This pre-processing works in two steps. First,

we collect all of the system preset defaults from a user manual. Second, in the configuration file C
we identify configuration parameters that are not customized by the user. We then augment the

configuration file by explicitly adding the system defaults for those parameters.

After preprocessing the file, we invoke a parser that converts the configuration file C into a list

Ĉ , containing either tuples of the form (дi , ci ,vi) or closure statements of the form cl(дi).
Finally, after the configuration file has been translated, we immediately check for some silent

misconfigurations, namely unmatched guards and missing modules.

Example 4.1. Consider the following generic configuration file:

1: module1 = loaded

2: module2 = loaded

3: [guard1: module0 = loaded]

4: config1 = value1

5: [close guard1]

6: [guard2: module2 = loaded]

7: config2 = value2

8: [guard3: module1 = loaded]

9: config3 = value3

10: [close guard2]

11: config4 = value4 (default)

We parse this file into the following list:

1: [(True, module1, loaded_u),

2: (True, module2, loaded_u),

3: (g1: module0 = loaded, config1, value1_u),

4: cl(g1),

5: (g2: module2 = loaded, config2, value2_u),

6: (g2 && g3: module1 = loaded, config3, value3_u),

7: cl(g2),

8: (True, config4, value4_d)]

Note that the values of configuration parameters have an annotation indicating if they are user

defined values (the annotation u) or default values (the annotation d). We also introduce g1 and g2
as shorthands for the guards, while in the internal representation we just use guards as conjunctions.

Already in this first phase we detect silent misconfigurations of unmatched guards and missing

modules. For example, avail(д1, Ĉ) evaluates to false, since module0 = loaded is missing in the first

three lines, when we invoke it as a guard. This means that Jд1K ⇓Ĉ False and the preconditions for

the missing modules silent configuration are fulfilled, so we raise the alarm.

4.2 Specification Analyzer
A specification analyzer derives the specification of configurations using a customized static analysis.

The analysis takes the system source code and a set containing configuration default values as

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:13

Source Code

LLVM

LLVM IR of Source Code

Field-sensitive

Configuration Tainting

Configuration Default Set

Tainted LLVM IR of Source Code Rule Deriving Raw Rules

Reachability Analysis

Specification

Fig. 2. Workflow of Specification Analyzer in ConfigX

input and outputs the learned interactions between configuration parameters. An overview of our

approach is given in Figure 2 and the pseudocode of our approach is in Algorithm 1. The specification

analyzer consists of three different parts. The first part is a field-sensitive configuration tainting,

where we use the LLVM compiler [Lattner and Adve 2004] and map the configuration parameters

in the user’s configuration files to registers in LLVM IR. In the second part, we derive the rules

that show interactions between configuration parameters. The third part is a reachability analysis,

which eliminates spurious rules systematically.

Algorithm 1 Specification Analysis

Input: sC : System C Source Code

Input: configSet : System Configuration Set

Output: rules : A set of detected rules, each rule means a interaction between configurations

1: procedure specAnalyzer(sC, conf iдSet)
2: llvmsC← clang(sC)
3: for ci in configSet do
4: mark_var_C ← map(ci , llvmsC)
5: taint_regs_llvm← taint(mark_var_C, debug)
6: taintedSet.append(ci , taint_regs_llvm)

7: for func in llvmsC do
8: for regi , regj in taint_regs_llvm do ◃ configuraton ci is tainted to regi
9: att_block_regi , asso_block_regi ← analyze(func[regi/vi])
10: att_block_regj , asso_block_regj ← analyze(func[regj/vj])
11: if (asso_block_regj overwrites asso_block_regi) ∧ reachabilityAnalysis(func, regi , regj) then
12: spec_set.append(regi ,vi , regj ,vj)

13: if (att_block_regi ⊆ asso_block_regj) ∧ vj = v
d
j then ◃ vdj is the default value of c j

14: spec_set.append(regi ,vi , regj ,vj)

15: return spec_set
16: procedure reachabilityAnalysis(f unc, reдi , reдj)
17: if (reach(regi) ∧ reach(regj)) = unSAT then
18: return False

19: return True

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:14 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

Field-sensitive configuration tainting. The first step in deriving the specification of configura-

tions from the software source code automatically is to determine which parts of the software source

code are controlled by each configuration parameter. As shown in Figure 2, we first invoke the

LLVM compiler and generate a configuration tainted LLVM IR. To achieve this, our field-sensitive

forward configuration tainting performs two operations: (1) configuration mapping and (2) variable

tainting.

Configuration mapping automatically maps the configuration parameters specified by the user to

variables/functions in C program source code. We mark variables/functions configuration-related

if they directly take the string representation of configuration parameters as inputs (Line 4 in

Algorithm 1). For example, in Listing 1, configuration parameter RewriteEngine is mapped to the

function cmd_rewriteengine in the Apache source code.

1: static const command_rec command_table[] = {

2: AP_INIT_FLAG("RewriteEngine", cmd_rewriteengine , ...),

3: ...

4: }

5: static const char *cmd_rewriteengine(cmd_parms *cmd, ..., int flag) {

6: if (cmd->path == NULL) {

7: sconf->state = (flag ? ENGINE_ENABLED : ENGINE_DISABLED);

8: }

9: ...

10: }

Listing 1. An example of field-sensitive configuration tainting in ConfigX. In Apache, the configuration
parameter RewriteEngine is first mapped to the function cmd_rewriteengine and then mapped to the
system variable sconf->state. The configuration mapping processes for system vsftpd and PostgreSQL
are manifested in the same vein.

After mapping all configuration parameters to the initial functions in the software source code,

ConfigX then performs variable tainting – a forward dataflow analysis to find which registers in

LLVM are initialized by configurations. In Listing 3, the value of RewriteEngine taints the variable

sconf->state. ConfigXmaps the variables in C source code to tainted registers in LLVMby leveraging

LLVM debug information (Line 5 in Algorithm 1). By the end, we generate a tainted LLVM IR.

Rule deriving. Rule deriving module reads tainted LLVM IR (generated above), and derives

interaction rules between configuration parameters that may lead to silent misconfigurations. The

main challenge is how to automatically infer complex correlations between configuration variables.

ConfigX addresses this challenge by deeply analyzing the interaction of associated code blocks

controlled by configurations.

ConfigX first needs to identify where the configuration parameters are loaded in the LLVM IR.

We traverse the generated LLVM IR and then identify which basic block contains the first load of a

configuration-related register, i.e., attaching basic block Bi to reдi . For example, in Figure 3, we

attach basic blocks B1, B3, and B5 to tainted registers reд1, reд2 and reд3, respectively. Formally, let

JP[reдi]K denote the attached basic block that contains the first load of reдi in this LLVM function.

In Figure 3, we have JP[reд1]K = {B1}. Similarly, we have JP[reд2]K = {B3} and JP[reд3]K = {B5}.

After attaching basic blocks to the corresponding registers, ConfigX infers which basic blocks

are controlled by the value of configuration parameters. This design intuitively pinpoints the code

functionality enabled by setting a given configuration parameter. If a basic block is exclusively

executed by setting the specific value to a configuration parameter and this block is not decided

by the system OS call or other configuration, this basic block is associated with that configura-

tion parameter (Line 9-10 in Algorithm 1). Let JF [reдi = vi]K denote the list of associated blocks

exclusively executed when reдi is set to vi .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:15

(1) B1: ...

———-

reд1 == v1?

(2) B2 : x = 0

(3) B3: ...

———-

reд2 == v2?

(4) B4: y = 5

———-

cond? (OS calls,
I/O read)

(6) B6 : ... (7) B7 : ...

(8) B8 : x = 1

(5) B5 : y = reд3

(9) exit

True

False

True
False

True False

Fig. 3. An example of how ConfigX derives interactions between configurations c1, c2 and c3. Each node in
this figure represents an LLVM basic block. x and y are two system inner variables that are not initialized by
configurations. Here c1, c2, and c3 taint reд1, reд2 and reд3 respectively in LLVM IR. The red node represents
the LLVM basic block associated with the configuration parameter c1 = v1. The green nodes represent the
basic blocks associated with the configuration parameter c2 = v2. The blue node represents the basic block
associated with the configuration parameter c2 , v2. ConfigX derives two rules from this example. First, a
miss handling default rule: Disables(c2 = v2, c3), ifv2 =vd

2
(vd
2
is the default value of c2). Second, an implicit

overwrite rule: OverWrites(c2 = v2, c1 = v1).

We use two examples to illustrate how we infer which basic blocks are controlled by the value

of configuration parameters. As shown in Figure 3, since basic block B2 is executed by setting

configuration reд1 to v1, we have JF [reд1 = v1]K = {B2} : {x = 0}. Note that {B3} is not associated

with JF [reд1 = v1]K because setting reд1 , v1 will also execute basic block {B3}, which violates the

exclusivity. For another example also in Figure 3, since the exit condition in basic block B4, cond , is
controlled by the system environment such as file reading, permission checking by the OS and so

on, we cannot decide which block controls B6 and B7 by looking at the value of the configuration c2
alone. Therefore, to be conservative, we have JF [reд2 = v2]K = {B4,B8} : {y = 5,x = 1}. Similarly,

we have JF [reд2 , v2]K = {B5} : {y = reд3}.
How does ConfigX handle miss handling default? ConfigX detects a miss handling default miscon-

figuration (Line 13-14 in Algorithm 1) between two configurations if the attached basic blocks of

ci are the subset of the associated blocks of reдj , v
d
j . For example, in Figure 3, since JP[reд3]K ⊆

JF [reд2 , vd
2
]K, ConfigX detects a miss handling default rule: Disables(c2 = v2, c3).

How does ConfigX handle implicit overwrite? ConfigX detects an implicit overwrite misconfig-

uration between ci and c j (Line 11-12 in Algorithm 1) when the variables and functions in the

associated blocks exclusively executed by setting ci = vi are overwritten by the setting c j = vj .
For example, in Figure 3, since JF [reд2 = v2]K : {y = 5,x = 1} overwrites JF [reд1 = v1]K : {x = 0},

ConfigX detects a implicit overwrite rule: OverWrites(c2 = v2, c1 = v1).

Reachability analysis. The goal of reachability analysis is to check the feasibility of derived rules

in the above rule derivation process. ConfigX detects a spurious rule if the configuration-related

registers that are involved in this rule could not be reached together under any conditions.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:16 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

For every rule derived, ConfigX computes the reachability condition of every configuration-

related register in this rule. Then, ConfigX checks the conjunction of all the reachability conditions

by invoking the SMT solver z3 [de Moura and Bjørner 2008]. If this formula is unsatisfiable, the

derived rule is spurious. The pseudocode for reachability analysis is shown in Lines 16-19 in

Algorithm 1.

Computing the exact reachability condition requires exploring all possible traces from the

start of the program, which does not scale to a large program such as Apache or PostgreSQL.

To address this challenge, ConfigX computes the approximate reachability condition by limiting

the computation to a single function. We preserve soundness; every spurious rule filtered out in

ConfigX is guaranteed to be a false positive. Compared to the existing tools that also derive rules

via source code analysis [Nadi et al. 2015; Xu et al. 2013], reachability analysis is first introduced in

ConfigX to systematically reduce false positives rather than adopting statistical methods.

(1) cond1

(2) cond2

(3) cond3

(4) reд4 = v4 (5) reд5 = v5

True

False

True

False

True False

Fig. 4. An Example of False Positive Pruning via Reachability Analysis in ConfigX

For example, suppose ConfigX has derived a raw rule that involves two configuration-related

registers reд4 and reд5. In Figure 4, the reachability condition of reд4, Reach(reд4) is (cond1 =
True) ∧ ((cond2 = True) ∨ (cond3 = True)). Similarly, we have Reach(reд5) = (cond1 = False) ∨
((cond2 = False) ∧ (cond3 = False)). Since (Reach(reд4) ∧ Reach(reд5)) is evaluated unsatisfiable

in z3, ConfigX detects this as a spurious rule. Reachability analysis plays an essential role in our

rule deriving process, and we report the effectiveness and efficiency of reachability analysis in

Section 5.

5 EVALUATION
We aim to evaluate ConfigX by answering the following questions: (1) How effective and efficient

is ConfigX in deriving specification of configurations? (2) How many silent misconfigurations have

been detected by ConfigX in Apache, vsftpd and PostgreSQL in total? (3) How efficient is ConfigX?

Why are state-of-the-art tools not helpful? Before answering the above questions, we compare

ConfigXwith the state of the art. In general, the representative misconfiguration prevention systems

cannot detect silent misconfigurations. Table 4 shows a concrete comparison between ConfigX and

four state-of-the-art efforts (PCheck [Xu et al. 2016a], Spex [Xu et al. 2013], cDep [Chen et al. 2020],

EnCore [Zhang et al. 2014], and ConfigV [Santolucito et al. 2017]).

First, PCheck [Xu et al. 2016a] relies on accurate error messages to detect potential single-

parameter misconfigurations; thus, PCheck is not able to detect silent misconfigurations. Second,

Spex [Xu et al. 2013] and cDep [Chen et al. 2020] analyze and capture dependencies between

configurations. However, the detection of semantics-related silent misconfigurations requires

an understanding of the complex interactions between configurations and source code. Unlike

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:17

Table 4. All Evaluated Systems and Their Comparisons

Syntax-related Misconfiguration Semantics-related Misconfiguration

Tool

Type

Unmatched
Guards

Missing
Module

Miss handling
Default

Implicit
Overwrite

Advanced
Ordering

PCheck [Xu et al. 2016a] X X X X X

Spex [Xu et al. 2013] X X X X X

cDep [Chen et al. 2020] X X X X X

Encore [Zhang et al. 2014] X X X X X

ConfigV [Santolucito et al. 2017] X X X X X

ConfigX, Spex and cDep are limited to the analysis of the configuration values themselves and do

not further analyze the system source code affected by the configuration values. Consequently,

they cannot deal with the three patterns of semantics-related silent misconfigurations that we have

identified. Third, EnCore [Zhang et al. 2014] andConfigV [Santolucito et al. 2017] take fundamentally

different approaches and rely on different assumptions. They collect massive configuration files

for training rather than analyzing the source code, so that they cannot detect semantics-related

misconfigurations because they fail to analyze complex semantics interactions between variables

in the source code.

5.1 Implementation and Experimental Setup
We have built a ConfigX prototype using a mix of Python, LLVM and open-source software libraries.

Our translator uses Python libraries to parse user configuration files into our intermediation

representation. Our reachability analysis invokes the SMT solver z3[de Moura and Bjørner 2008]

for false positive elimination. All the experiments in this section are conducted on a MacBook Pro

equipped with Haswell Quad Core i7-4870HQ 2.5 GHz CPU, 16GB memory, and PCIe-based 512

GB SSD harddrive.

To evaluate the misconfiguration detection capability of ConfigX, we have collected five real

configuration datasets (one Stack Overflow dataset, one benchmark Apache dataset, and three

Github datasets for Apache, vsftpd, and PostgreSQL).

Stack overflowdataset setup. To checkwhether ConfigX can detect silent misconfigurations even

when user’s configuration files are incomplete, we build the first dataset (Stack Overflow dataset)

from questions posted by Apache users on Stack Overflow. Specifically, we extract the configuration

code snippets posted by the users who asked the questions and put them into our dataset. These

posts typically containO(10) lines of configurations and a typical Apache configuration file consists

ofO(100) lines of configuration. Having only incomplete configurations adds a significant challenge

to misconfiguration checking tasks. This dataset is meant to be representative of the usage of

ConfigX by users who want to check suspicious configuration snippets.

Existing benchmark dataset setup. To check whether ConfigX could detect silent misconfigu-

rations in existing real-world public datasets, we run ConfigX on an Apache configuration dataset

publicly available at [Xu 2017].

Github dataset setup. We further collect user’s complete configurations across three widely

used systems, Apache, vsftpd, PostgreSQL from the online code hosting platform GitHub, with

roughly 100 configuration files from each system. These configuration files are contained in user’s

repositories and used by users in their system deployment. This dataset is representative of the

usage of ConfigX by users who run ConfigX to verify the correctness of their configurations before

they run the system.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:18 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

Semantics: Miss Handling Defaults (VSFTPD) Semantics: Implicit Overwrite (VSFTPD)

if(tunable_data_connection_timeout > 0)
{vsf_sysutil_set_alarm(tunable_data_connectio

n_timeout);}
else if (tunable_idle_session_timeout > 0)

{vsf_sysutil_clear_alarm();}

Misconfiguration: idle_session_timeout = 600 (silent)
 data_connection_timeout = 300 (System default,
 and augmented by ConfigX)

Description: The default value of “data_connection_timeout” is 300.
Then “idle_session_timeout” has no effect unless user sets
“data_connection_timeout” to be less than or equal to 0.

Impact: The function “vsf_sysutil_clear _alarm()” is not executed, so
the alarm for the function “sysutil” will not be freed as the user
intended.

unsigned int caps = 0;
if (tunable_chown_uploads)
 {caps |= kCapabilityCAP_CHOWN;}
if (tunable_connect_from_port_20)
 {caps |= kCapabilityCAP_NET_BIND_SERVICE;}
vsf_secutil_change_credentials(...,caps,...);

Misconfiguration: chown_uploads = YES (silent)
 connect_from_port_20 = YES

Description: Enabling “connect_from_port_20” will implicitly
overwrite the system internal variable “caps” that is previously
initialized by “chown_uploads”.

Impact: Program enters a problematic state different than user’s
intention when “chown_uploads” is turned on.

Semantics: Miss Handling Defaults (PostgreSQL) Semantics: Implicit Overwrite (PostgreSQL)

if (wal_level != configFile-> wal_level...)
Xlrec.track_commit_timestamp =

track_commit_timestamp;

Misconfiguration: wal_level = 'replica'
 track_commit_timestamp = 'off (silent)

Description: The preset default value of “wal_level” (left to !=) is
already “replica”. To enable the usage of “track_commit_time-
-stamp”, the “wal_level” defined in the user’s configuration must be
set to some value other than the default value “replica”.

Impact: The usage of “track_commit_time stamp” was disabled,
contrary to what the user intended.

if (... && configFile. wal_level == MINIMAL)
 error state
if (... && EnableHotStandby)
 if (configFile. wal_level < REPLICA):
 error state
 ...
Misconfiguration: wal_level = 'minimal '
 hot_standby = 'off ' (silent)
Description: If “wal_level” is set to “minimal” (which is also less
than “replica” in PostgreSQL), then the program will enter an error
state anyway. Any value that user sets for “hot_standby” does not
matter here; it will not change any program behavior.

Impact: PostgreSQL entered into an error state.

Semantics: Advanced Ordering (Apache)

int ret = OK; // default
if (a->order[method]==ALLOW_THEN_DENY) {
 ret = HTTP_FORBIDDEN;
 if (find_allowdeny(r,a-> allows,method))
 ret = OK;
 if (find_allowdeny(r,a-> denys,method))
 ret = HTTP_FORBIDDEN;}
else if (a->order[method]== DENY_THEN_ALLOW)
{ if (find_allowdeny(r,a-> denys,method))
 ret = HTTP_FORBIDDEN;
 if (find_allowdeny(r,a-> allows,method))
 ret = OK;}
else { if (find_allowdeny(r,a-> allows,method)
 && !find_allowdeny(r,a-> denys,method))
 ret = OK;
 else
 ret = HTTP_FORBIDDEN;}

Misconfiguration: Order Deny,Allow (silent)
 Allow from all
 Deny from 192.168.30.1 (silent)

Description: Setting configuration “Order” to “Deny,Allow” makes
Apache first filter and deny the IP address matched with the value
defined in the “Deny”, then grant the access back to any entry
matched with the “Allow”. Apache first denies the access to
192.168.30.1, but it then grants access back to IP address
192.168.30.1 because of the setting “Allow from all”.

Impact: User wants to block the address 192.168.30.1. However, this
three-line configuration snippet is equivalent to a single line of “Allow
from all”. In this case, any IP address is allowed. This contradicts the
user's intention and creates a serious security issue.

Fig. 5. Typical rules and real-world silent misconfigurations detected by ConfigX. Configurations that marked
with (silent) indicate the location of the silent misconfigurations.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:19

Table 5. Rules Learned by ConfigX

Type
Software

Apache vsftpd PostgreSQL

Miss Handling Default 11 98 1

Implicit Overwrite 6 26 8

Advanced Ordering 1 0 0

Table 6. Breakdown of Silent Misconfigurations Detected by ConfigX

Type of Error Apache
Stack Overflow

Apache
Existing Benchmark

Apache
Github

vsftpd
Github

Postgres
Github

Unmatched Guards 1 7 1 0 0

Missing Module 0 142 5 0 0

Miss Handling Default 9 18 58 900 0

Implicit Overwrite 0 0 0 105 22

Advanced Ordering 2 653 310 0 0

5.2 Evaluation Results: Detecting Real Misconfigurations
We present the breakdown of all the rules of configurations derived by ConfigX in Table 5. We

had learned 151 rules, and we manually inspected them and confirmed their correctness. We apply

these rules on our five datasets: one Stack Overflow dataset, one benchmark Apache dataset, and

three Github datasets for Apache, vsftpd and PostgreSQL.

Overall, ConfigX detected 2233 silent misconfigurations in 457 configuration files across the five

datasets. The 2233 detected errors violated some of the learned rules in Table 5. Our user study

(Section 6) further confirms the usefulness and the validity of the detected misconfigurations by

ConfigX. Table 6 details these misconfigurations. Figure 5 shows several representative examples

of silent misconfigurations extracted from the results. The rest of Section 5.2 analyzes the examples

shown in Figure 5 and extracts some insights.

Miss handling default. There are two main reasons for the existence of miss handling default

misconfigurations. First, the software developers may on purpose by default turn off the function-

ality of the configuration parameter for the sake of security. Configuration RewriteEngine described

in Section 2.3 is an example. However, this design is not ideal and confuses users. To prevent this

type of silent misconfigurations, ConfigX can send users the message “To enable the functionality

of RewriteRule, RewriteEngine has to be set to On.”

Second, miss handling default misconfigurations could be triggered due to a potential system

design deficiency. For the vsftpd example in Figure 5, the default settings make both if-statements

evaluate to true. Instead of setting parameter Idle_session_timeout itself, the user has to set param-

eter Data_connect_timeout to enable the functionality of Idle_session_timeout. This is not intuitive

and even misleading to users. Instead, a useful message “To enable the functionality of parameter

Idle_session_timeout, parameter Data_connect_timeout has to be set less than or equal to zero.” is

sent by ConfigX.

Implicit overwrite. Implicit overwrite silent misconfigurations are often introduced by software

updates, and a new configuration is introduced to replace the functionality of the old, legacy one.

However, this legacy configuration may still be valid for the new version of software. For example,

in Figure 5 configuration wal_level is a newer version of configuration hot_standby. However,

wal_level overwrites hot_standby with extra functionalities. Hence, tightly coupled functionalities

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:20 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

Table 7. Effectiveness and efficiency of reachability analysis in Apache. The evaluation details for vsftpd and
PostgreSQL are manifested in the same vein.

Module in Apache False Positives
Eliminated

Running time (s)
Reachability = Off

Running time (s)
Reachability = On

mod_include 0 3.14 48.03

mod_rewrite 17 22.03 282.87

mod_access_compat 16 0.60 2.14

mod_proxy_express 0 0.10 0.78

mod_filter 8 0.59 1.68

mod_authz_core 0 1.85 5.18

enabled by two configuration settings confuse the user to set both, resulting in implicit overwrite

misconfiguration.

In addition, when implicit overwrite misconfiguration happens, the user manual is often not

helpful. For example, in the example presented Section 2.3, setting XbitHack to Full overwrites

any setting of SSILastModified. However, the Apache web server’s user manual documents that

“The SSILastModified directive takes precedence over XBitHack.” This information does not help

configuration users and actually misleads them. A similar issue arises in the PostgreSQL example

in Figure 5 shares a similar issue.

Advanced ordering. For advanced ordering misconfigurations, the root cause is that the inter-

action among three configuration parameters is too complex for users to handle. This advanced

ordering issue causes real damage to the system. It is listed as the number one cause of “HTTP

forbidden 403 error” by an Apache expert in this technical report.
1
ConfigX has detected more

than 900 cases in real-world examples. Because the number of cases is so large, we believe that

system developers should not expect end users to handle configuration interactions of this level of

complexity.

Summary. ConfigX is the first tool which not only analyzes the interactions between configu-

rations but also detects actual misconfigurations in a user’s file. As the first context-aware con-

figuration specification analysis framework, ConfigX builds a bridge from end users to system

developers. By using ConfigX as a checker to validate users’ configurations before they deploy

problematic configurations, we demonstrate ConfigX effectively detects thousands of real silent

misconfigurations in Table 6. The source of silent misconfigurations in Figure 5 is available at

https://doi.org/10.5281/zenodo.4697619.

5.3 False Positives
In misconfiguration detection, having a low false-positive rate is another important factor. To

achieve a low false positive rate, ConfigX prunes out false positives early during the specification

deriving process with reachability analysis (Section 4.2). We report the effectiveness and efficiency

of our reachability analysis in Table 7. This table shows ConfigX effectively eliminates 34 false

positives in total during the specification deriving process. Table 7 also shows that running a

reachability analysis adds reasonable time overhead to the whole system.

Note ConfigX relies on LLVM debug info to map the configuration variables to registers in LLVM

IR. If LLVM loses accuracy in the configuration-register mapping process, then it is possible for our

tool to generate a false positive. We manually inspected the rules generated by ConfigX and we did

not find any such case in practice.

1
https://www.petefreitag.com/item/793.cfm

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

https://doi.org/10.5281/zenodo.4697619

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:21

Table 8. ConfigX’s Runtime Performance

Specification Deriving Time (s) Apache vsftpd PostgreSQL
Reachability = Off 37.76 2.01 90.09

Reachability = On 389.12 577.78 3103.55

5.4 Efficiency
Apache, vsftpd and PostgreSQL are all widely used software. They all contain hundreds of thou-

sands of lines of code in their original implementation. Table 8 shows ConfigX efficiently derives

specification for configurations. The time is mainly spent in the offline specification analyzing

phase, while the checking phase, the user-facing running time takes only negligible time.

6 EXPERIENCE
To understand the user perceptions on the silent misconfigurations detected by ConfigX, we further

conduct a user study using practice described in [Santolucito et al. 2017]. We randomly selected 160

silent misconfigurations detected by ConfigX (Section 5.2). We then generate a report for each of

the selected silent misconfiguration. The report includes the location of the silent misconfiguration

in the configuration file, the consequence of the silent misconfiguration, and the corresponding

code snippets that explain the silent misconfiguration. We also attached a patch for fixing the silent

misconfiguration.

Results. So far, we have received responses of 19 of the reported silent misconfigurations and

interacted with the owners of the configuration files. This yield rate is slightly higher than in

prior studies [Santolucito et al. 2017]. We carefully reviewed each responses. Overall, the user

study confirmed the usefulness of ConfigX: in 16 out of 19 cases, the users confirmed the silent

misconfigurations, and, more importantly, they used our reports to fix them. In the remaining

three cases, the users expressed appreciation, and explained why our solution does not help. Those

reasons are: 1) They abandoned the project five years ago, and the repository is immediately

archived after checking our report. 2) The main developer passed away. 3) They used a project-

specific external plugin to overwrite the configurations before passing them to the system (which

is out of the scope of ConfigX). None of the received response was negative.

We experienced the following two interaction patterns:

Pattern 1: Silentmisconfiguration is confirmed and/or fixed by the users themselves. From
the responses we received, most (12/16) users actively investigated our reported silent miscon-

figurations, and later fixed the issue with the help of our tool by themselves. They replied with

the messages: “Thanks! Fixed.”, “Excellent job! The source code is beautiful!” and “You’re right.

Thanks for pointing this out.” We find the users’ supportive attitude encouraging and believe that

it confirms the importance of our tool.

Pattern 2: Silent misconfiguration is confirmed/fixed with extra steps. Due to the convo-

luted complexity of the detected silent misconfiguration or the fact that the misconfiguration has

existed for a long time, users sometimes needed to take an extra step to confirm or to fix the

misconfiguration. This happened in four out of 16 cases.

This extra step usually would go through the following steps: 1) The issue assignee asked

other developers to double check and confirm the reported issue. 2) Other developers joined the

discussion of the issue. As an illustration, one user filed a pull request to ask the other three

repository developers to examine the patched version suggested by ConfigX. After thorough

examination and discussion, the detected misconfiguration was confirmed and the pull request

was approved. In a different case, a lead developer joined the discussion and confirmed that the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:22 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

reported issue is indeed a misconfiguration. The developer also confirmed that the issue is already

fixed in the latest codebase as suggested in our report.

Note that in all of the 16 confirmed cases, the owner took quick actions to address the misconfig-

uration that we detected. In all of the cases, the whole misconfiguration find-fix-verify cycle was

all closed in less than two days. This is in sharp contrast to the fact that sometimes silent miscon-

figurations existed in configuration files for years without users finding a way to fix them. In our

study, the average lifetime of silent misconfiguration is more than two years, and the longest-lived

one lingered in its repository for more than five years. This validates that silent misconfigurations

are notoriously difficult for users to find and fix, while ConfigX can solve the problem in a short

span of time.

Summary. Our user study confirms the usefulness and the validity of ConfigX’s misconfiguration

detection process. What is especially encouraging is that users took an active role in responding to

the misconfigurations that we detected and demonstrated a strong willingness. The source of our

user study is available at https://doi.org/10.5281/zenodo.5173050.

7 DISCUSSION
7.1 Users’ Attitude Towards Detected Silent Misconfigurations
In the user study, most users (in 15 out of 16 cases), took an active role in troubleshooting the

misconfigurations that we detected. Interestingly, in one case, the user first confirmed that the

detectedmisconfiguration is a true positive, but he further explained that this silentmisconfiguration

was left in the configuration file on purpose as a record (flag) for the other contributors working on

the same codebase. Additionally, this silent misconfiguration was used only for future development

purpose.

This case showed that it is possible, although very unlikely, that users sometimes intentionally

leave a silent misconfiguration in their codebase for a special purpose. Nevertheless, we proactively

detect and report silent misconfigurations to users, and at a minimum they can decide how to deal

with the issue based on their specific needs.

7.2 Known Sources of Unsoundness or Incompleteness
Overall, we did not find any false positives in the empirical evaluations. Our definition of silent

misconfigurations heavily depends on the learned rules – this fact can be a possible source of

unsoundness or incompleteness of ConfigX. There could be more system errors, which manifest

behavior similar to silent misconfigurations. However, if we did not previously learn the rules

flagging such behavior, ConfigX does not detect these misconfigurations because they are not even

considered silent misconfigurations. To be recognized as a silent misconfiguration, we would need

to learn a rule classifying problematic behavior and extend the definition. We believe that extending

the definition of silent misconfigurations and learning new rules should be an ongoing process.

As the definition of silent misconfigurations is based on the learned set of rules, another source

of unsoundness and incompleteness could be learning incorrect rules. If ConfigX learns an incorrect

rule, but the user has a correct configuration, reporting this correct configuration as a misconfigu-

ration is an example of unsoundness. If ConfigX learns an incorrect rule, and the user indeed has a

misconfiguration, we might not be able to detect that misconfiguration. We illustrate this case in

Example 7.1.

Therefore, the sources of unsoundness and incompleteness in ConfigX are incorrect rules learned

in Algorithm 1. There are two stages in Algorithm 1 that could lead to incorrect rules: the initial

mapping of configuration parameters to system variables, and during the static analysis. False

positives might appear in the static analysis stage as the result of an overapproximation by LLVM,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

https://doi.org/10.5281/zenodo.5173050

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:23

but then the reachability analysis refines it to delete spurious rules (as detailed in Sec. 4.2). We,

therefore, believe that the main source of learning incorrect rules is when ConfigX cannot map

correctly configuration parameters to system variables.

Example 7.1. This example demonstrates how learning an incorrect rule can cause an incom-

pleteness of ConfigX. Consider the following configuration snippet, from the configuration for

OpenLDAP, given in its user manual
2
:

1: olcLogLevel 129

This configuration parameter is used for specifying the levels of debugging statements. According

to the user manual, the configuration olcLogLevel 129 is equivalent to:

1: olcLogLevel 128 1

This is because the configuration parameter olcLogLevel takes as input an integer and considers it as

a sum of powers of 2, in this particular case 129 = 128 + 1. Each summand is called a “level”, and levels

define where debugging statements are logged. If olcLogLevel 129 appears in the configuration file,

this will switch on two levels for debugging statements, 128 and 1. More specifically, olcLogLevel 128

enables access control list processing, while olcLogLevel 1 makes tracing function calls available. If

the user does not want any debugging, the value should be set to 0.

When olcLogLevel 129 appears in the configuration file, ConfigX maps the value 129 to the

variable olcLogLevel, while in fact olcLogLevel should bemapped to the values 128 and 1. As the result

of this incorrect mapping, we learn an incorrect rule of the form: OverWrites(olcLogLevel =
129, c1 = v1 ∨ c2 = v2), when in fact we should learn the following two rules:

OverWrites(olcLogLevel = 128, c1 = v1)

OverWrites(olcLogLevel = 1, c2 = v2)

If the user, whowants to use ConfigX, explicitely specifies in the configuration file that olcLogLevel

= 128, and c1 = v1, this is the case for the implicit overwrite silent misconfiguration (assuming that

the corresponding guards are correct). As such, a silent misconfiguration should trigger ConfigX to

raise a warning. However, our tool does not detect this silent misconfiguration, since it does not

have a proper understanding of the semantics of the assignment olcLogLevel = 129.

To correctly parse the configuration olcLogLevel 129, ConfigX’s static analyzer would first need

to understand the system-specific logic in configuration parsing, which it does not support.

To address the exemplified issue, one would either need to codify application-specific knowledge,

or explore advanced parsing techniques (e.g., using natural language processing techniques to infer

such semantics from user manuals).

7.3 Limitations and Discussions
False positivesmay occur if an error happens during the configurationmapping process. For instance,

if a system uses non-standard pointer arithmetic logic to load the configuration parameters, it is

possible that ConfigX maps the configuration parameters to incorrect variables. This initial problem

will propagate further and we might later learn incorrect rules between configurations. We have

found that this happens with OpenLDAP.

Since ConfigX employs static analysis to detect misconfiguration, we treat the system source

code and configuration statically. ConfigX is not able to detect misconfigurations that are generated

after system initialization phase or are dependent on external system inputs.

2
https://www.openldap.org/doc/admin24/slapdconf2.html

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:24 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

Internal validity. ConfigX maps each configuration parameter to program variables; thus, if the

misconfiguration is caused by the incorrect order between two configuration parameters [Santolu-

cito et al. 2017; Yin et al. 2011] in the user’s configuration file, ConfigX cannot detect them. To our

knowledge, this is a limitation of all program-analysis based configuration techniques [Wang et al.

2004; Xu et al. 2016a, 2013].

External validity. ConfigX assumes the availability of the source code and does not work on

binary code. ConfigX as a tool currently only supports C programs. On the other hand, the idea is

generically applicable to software programs written in other programming languages.

7.4 Larger Implications and Future Directions
We envision ConfigX in its current version as a silent misconfiguration checker that can be run

before users import configurations into the system. Encouraged by our detected misconfigurations

and confirmations from our users, there are two promising future directions to pursue.

Detecting misconfigurations that are dependent on users’ runtime inputs. Some systems,

such as MySQL, allow users to dynamically change the value of configurations during the system

runtime. The control flows and the execution traces of the system will then be constantly changed

and affected by the user’s external inputs. Some typical misconfigurations that are dependent

on the user’s runtime inputs are importing the configurations in an incorrect order, missing the

entry configuration parameters and so on. To detect these kinds of misconfigurations, instead of

having the user’s configuration files as the input, an image that encapsulates the whole list of user’s

configuring processes is a must. We plan to extend our analysis to support detecting these kinds of

misconfigurations in the future.

Designing a high-level language to tackle silent misconfigurations at the source. Design-
ing a configuration language to avoid silent misconfigurations is another exciting research direction.

Having a high-level declarative language could help users remove redundancies in their configura-

tions and reduce the size of their configuration files. We have already seen such languages designed

successfully for modular router configurations [Morris et al. 1999] and cloud systems [Huang et al.

2015].

In fact, the results of ConfigX could be regarded as the foundations of a configuration language

design. The syntax-related silent misconfigurations are directly detected by a language-level type

checker. Also, a collection of our learned rules could be viewed and used as semantic constraints

on the configurations used in the system.

However, designing such a high-level declarative language to avoid silent misconfigurations is

challenging because:

(1) The redundancies in a user’s software configuration may not be as noticeable as they are in

router configurations or in cloud systems. We have yet to determine the reduction percentage

in terms of lines of software configuration.

(2) It is difficult to properly translate user’s high-level intentions to low-level configurations. For

example, users sometimes intentionally left a silent misconfiguration in their codebase for a

special developmental purpose.

(3) When users need to change configurations due to undesired system behaviors, since the

system outputs error messages of misconfigurations at a low level, it is difficult for users to

change the high-level configuration descriptions to meet the requirements.

(4) It adds extra complexity for users to learn a new language at first, start to write language-

level configurations from scratch, and then maintain them. There is no straightforward

way to reuse legacy configurations. All existing assistance sources (official user manuals,

publicly available online discussion forums) target low-level configurations. Moreover, the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:25

previous study shows that the abuse of language support might impair the usability of

configuration [Mason 2011].

8 RELATEDWORK
Silent misconfigurations have long been known as a severe and challenging problem, as reported

in prior studies [Tang et al. 2021; Tian et al. 2019; Xu et al. 2016b; Xu and Zhou 2015; Ye et al. 2020;

Yin et al. 2011; Zhai et al. 2020; Zhang and Ernst 2013; Zhang et al. 2021]. First, the silence leads to

unexpected behavior which can hardly be observed from the system’s perspective, because the

runtime execution does not reveal anomalies. As a result, misconfiguration detection approaches

(such as Ctest [Cheng et al. 2021; Sun et al. 2020; Xu and Legunsen 2020] and PCheck [Xu et al.

2016a]) that rely on runtime failure behavior and/or performance anomalies can hardly deal with

silent misconfigurations. For the similar reason, silent misconfigurations are notoriously difficult to

diagnose, as most diagnosis tools need to identify a crashing point or degraded performance metric

as the starting points [Attariyan et al. 2012; Attariyan and Flinn 2010; Rabkin and Katz 2011b; Su

et al. 2007; Wang et al. 2004, 2003; Yuan et al. 2006].

The challenges of detecting silent misconfigurations are rooted in reasoning about interactions

among the configurations and the corresponding code affected by the configurations. Data-driven

approaches, such as Encore [Zhang et al. 2014], ConfigC [Santolucito et al. 2016], ConfigV [San-

tolucito et al. 2017], PracExtractor [Xiang et al. 2020], and ConfSeer [Potharaju et al. 2015] can

potentially infer coarse-grained dependencies among configuration parameters using data min-

ing [Mehta et al. 2020; Santolucito et al. 2017, 2016; Zhang et al. 2014] or NLP techniques [Potharaju

et al. 2015; Xiang et al. 2020]. However, none of them are able to analyze the interactions at the

level of source code; therefore, they cannot capture deep interactions in the way that ConfigX can.

As discussed in Section 2, silent misconfigurations are often rooted in configuration-related code

that overwrites the effect of other configurations.

A few efforts analyzed the dependencies between different configuration parameters, includ-

ing Spex [Xu et al. 2013] and cDep [Chen et al. 2020]. Unlike ConfigX, they are limited to the

configuration values themselves and do not further analyze the code affected by the configura-

tion values. Therefore, silent misconfiguration patterns such as miss handling default, implicit

overwrite, and advanced ordering are out of their scope, because they do not understand deep

interactions between code and configurations. More importantly, neither Spex nor cDep can detect

silent misconfigurations—the former is designed for finding defects in the code, while the latter

stops at analyzing the dependencies without use cases.

Configuration dependencies have also been studied in other contexts, such as compile-time

feature flags for variability modeling [Franz et al. 2020; Kuo et al. 2020; Medeiros et al. 2020; Nadi

et al. 2014; Nadi et al. 2015; Tartler et al. 2014], performance modeling [Herodotou et al. 2011; Hu

et al. 2020; Jamshidi et al. 2017, 2018; Li et al. 2020; Nair et al. 2018; Van Aken et al. 2017], and

security [Bauer et al. 2011; Bouchet et al. 2020; Das et al. 2010; Xiang et al. 2019]. Nadi et al. provides
an empirical study of configuration constraints of compile-time features in kconfig (Linux kernel

configuration) and develops tooling to extract the constraints [Nadi et al. 2015]. ConfigX focuses

on runtime, user-facing configurations, instead of compile-time configurations (the differences are

discussed in [Meinicke et al. 2020]). Techniques designed for compile-time feature flags cannot

be directly applied to user-facing, runtime configurations—the former are mostly boolean values

in the form of C preprocessors, while the latter have more complex types and transformations in

the program. A performance model often takes configuration values as inputs [Herodotou et al.

2011; Hu et al. 2020; Jamshidi et al. 2017, 2018; Li et al. 2020; Nair et al. 2018; Van Aken et al. 2017].

LearnConf [Li et al. 2020] identifies the dependencies among configurations that affect system

performance via static analysis. Violet [Hu et al. 2020] outputs a performance impact model for

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

140:26 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

poor configuration values via symbolic execution. Security misconfigurations (e.g., access-control

misconfigurations) could also be silent, in the sense that the resultant vulnerabilities are typically

not revealed till security incidents (e.g., data breaches) happen. Some recent work studies specific

configurations for access-control policies and rules [Bauer et al. 2011; Bouchet et al. 2020; Das

et al. 2010; Xiang et al. 2019]. ConfigX focuses on functional properties instead of performance or

security. Other studies verify and repair for a domain specific configuration language: Puppet [Fu

et al. 2017; Shambaugh et al. 2016; Sharma et al. 2016; Weiss et al. 2017], while ConfigX has different

scope on user-facing configurations.

ConfigX stands on the shoulders of state-of-the-art configuration analysis techniques based on

static program analysis [Chen et al. 2020; Dong et al. 2015; Lillack et al. 2014, 2018; Rabkin and

Katz 2011a,b; Xu et al. 2016a, 2013], including mapping configuration values to program variables,

tracking propagation and transformation of configuration values, identifying code affected by

configuration values, etc. Our contributions are: 1) a comprehensive analysis on the complex

interaction of code blocks related to configurations, 2) a sound reachability analysis to systematically

prune out the spurious rules, and 3) considering the default values in the analysis.

9 CONCLUSION
This paper presents ConfigX, a tool for detecting possible silent misconfigurations. By deriving

the specification of configurations, ConfigX detects silent misconfigurations which the state of the

art cannot detect. Inspired by the fact that silent misconfigurations are prohibitively expensive

for users to troubleshoot, we build a ConfigX tool that proactively detects and reports silent

misconfigurations.

ACKNOWLEDGMENTS
We thank OOPSLA reviewers for their insightful comments. We also thank Mark Santolucito and

Julien Lepiller for their valuable feedback on the early version of this work. We also thank John

Kolesar and Matt Elacqua for proofreading this work. Jialu Zhang is supported in part by NSF

grants, CCF-1715387. Ruzica Piskac is supported in part by NSF grants, CCF-1715387, CCF-1553168

and CNS-1565208. Tianyin Xu is supported in part by NSF grants, SHF-1816615, CNS-1956007,

CCF-2029049, and CNS-2130560, and a Facebook Distributed Systems Research award.

REFERENCES
2012. Silent misconfiguration: Advanced Ordering. https://stackoverflow.com/questions/9943042/htaccess-order-deny-

allow-deny

2014. Microsoft service outage on November 20th, 2014. https://www.datacenterknowledge.com/archives/2014/11/20/

microsoft-says-config-change-caused-azure-outage

2014. Silent misconfiguration: Implicit Overwrite. https://stackoverflow.com/questions/21338450/conditional-request-not-

honored-in-includes

2017. Amazon service outage on February 28th, 2017. https://aws.amazon.com/message/41926

2018. Google service outage on July 17th, 2018. https://status.cloud.google.com/incident/cloud-networking/18012

2021a. Apache. https://httpd.apache.org

2021b. Apache User Manual. https://httpd.apache.org/docs/

2021. PostgreSQL. https://www.postgresql.org

2021. Server Fault. https://serverfault.com

2021. Stack Overflow. https://stackoverflow.com

2021. vsftpd. https://security.appspot.com/vsftpd.htmlg

Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automating root-cause diagnosis of performance anomalies

in production software. In 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI) (Hollywood,
CA).

Mona Attariyan and Jason Flinn. 2010. Automating configuration troubleshooting with dynamic information flow analysis.

In 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI) (Vancouver, Canada).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

https://stackoverflow.com/questions/9943042/htaccess-order-deny-allow-deny
https://stackoverflow.com/questions/9943042/htaccess-order-deny-allow-deny
https://www.datacenterknowledge.com/archives/2014/11/20/microsoft-says-config-change-caused-azure-outage
https://www.datacenterknowledge.com/archives/2014/11/20/microsoft-says-config-change-caused-azure-outage
https://stackoverflow.com/questions/21338450/conditional-request-not-honored-in-includes
https://stackoverflow.com/questions/21338450/conditional-request-not-honored-in-includes
https://aws.amazon.com/message/41926
https://status.cloud.google.com/incident/cloud-networking/18012
https://httpd.apache.org
https://httpd.apache.org/docs/
https://www.postgresql.org
https://serverfault.com
https://stackoverflow.com
https://security.appspot.com/vsftpd.htmlg

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:27

Lujo Bauer, Scott Garriss, and Michael K. Reiter. 2011. Detecting and Resolving Policy Misconfigurations in Access-Control

Systems. ACM Transactions on Information and System Security (TISSEC) 14, 1 (May 2011), 1–28.

Malik Bouchet, Byron Cook, Bryant Cutler, Anna Druzkina, Andrew Gacek, Liana Hadarean, Ranjit Jhala, Brad Marshall,

Daniel Peebles, Neha Rungta, Cole Schlesinger, Chriss Stephens, Carsten Varming, and Andy Warfield. 2020. Block public

access: trust safety verification of access control policies. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem
Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 281–291. https://doi.org/10.1145/3368089.3409728

Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu. 2020. Understanding and Discovering

Software Configuration Dependencies in Cloud and Datacenter Systems. In In Proceedings of the 2020 ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’20). Virtual Event.

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. 2021. Test-Case Prioritization for Configuration Testing.

In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’21).
Tathagata Das, Ranjita Bhagwan, and Prasad Naldurg. 2010. Baaz: A System for Detecting Access Control Misconfigurations.

In Proceedings of the 19th USENIX Security Symposium.

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and
Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340.

Zhen Dong, Artur Andrzejak, and Kun Shao. 2015. Practical and Accurate Pinpointing of Configuration Errors using Static

Analysis. In Proceedings of the 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME’15).
Bremen, Germany.

Patrick Franz, Thorsten Berger, Ibrahim Fayaz, Sarah Nadi, and Evgeny Groshev. 2020. ConfigFix: Interactive Configuration

Conflict Resolution for the Linux Kernel. CoRR abs/2012.15342 (2020). arXiv:2012.15342 https://arxiv.org/abs/2012.15342

Weili Fu, Roly Perera, Paul Anderson, and James Cheney. 2017. muPuppet: A Declarative Subset of the Puppet Configuration

Language. In 31st European Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,
Spain (LIPIcs, Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 12:1–12:27. https:

//doi.org/10.4230/LIPIcs.ECOOP.2017.12

Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong, Fatma Bilgen Cetin, and Shivnath Babu. 2011.

Towards Automatic Optimization of MapReduce Programs.

Yigong Hu, Gongqi Huang, and Peng Huang. 2020. Automated Reasoning and Detection of Specious Configuration in Large

Systems with Symbolic Execution. In 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020. USENIX Association, 719–734. https://www.usenix.org/conference/osdi20/

presentation/hu

Peng Huang, William J. Bolosky, Abhishek Singh, and Yuanyuan Zhou. 2015. ConfValley: A systematic configuration

validation framework for cloud services. In 10th European Conference on Computer Systems (EuroSys) (Bordeaux, France).
Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay Patel, and Yuvraj Agarwal. 2017. Transfer

learning for performance modeling of configurable systems: an exploratory analysis. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03,
2017, Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen (Eds.). IEEE Computer Society, 497–508. https:

//doi.org/10.1109/ASE.2017.8115661

Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. 2018. Learning to sample: exploiting similarities

across environments to learn performance models for configurable systems. In Proceedings of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu

(Eds.). ACM, 71–82. https://doi.org/10.1145/3236024.3236074

Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. 2020. Set the Configuration for the Heart of the OS:

On the Practicality of Operating System Kernel Debloating. In Proceedings of the 2020 ACM SIGMETRICS Conference
(SIGMETRICS’20).

C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong program analysis transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/CGO.2004.1281665

Chi Li, Shu Wang, Henry Hoffmann, and Shan Lu. 2020. Statically Inferring Performance Properties of Software Config-

urations. In Proceedings of the Fifteenth European Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20).
Association for ComputingMachinery, NewYork, NY, USA, Article 10, 16 pages. https://doi.org/10.1145/3342195.3387520

Max Lillack, Christian Kästner, and Eric Bodden. 2014. Tracking load-time configuration options. In ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, Ivica Crnkovic, Marsha

Chechik, and Paul Grünbacher (Eds.). ACM, 445–456. https://doi.org/10.1145/2642937.2643001

Max Lillack, Christian Kästner, and Eric Bodden. 2018. Tracking Load-time Configuration Options. IEEE Transactions on
Software Engineering (TSE) 44, 12 (Dec. 2018), 1269–1291.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

https://doi.org/10.1145/3368089.3409728
https://arxiv.org/abs/2012.15342
https://arxiv.org/abs/2012.15342
https://doi.org/10.4230/LIPIcs.ECOOP.2017.12
https://doi.org/10.4230/LIPIcs.ECOOP.2017.12
https://www.usenix.org/conference/osdi20/presentation/hu
https://www.usenix.org/conference/osdi20/presentation/hu
https://doi.org/10.1109/ASE.2017.8115661
https://doi.org/10.1109/ASE.2017.8115661
https://doi.org/10.1145/3236024.3236074
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3342195.3387520
https://doi.org/10.1145/2642937.2643001

140:28 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

Justin Mason. 2011. Against The Use Of Programming Languages in Configuration Files. http://taint.org/2011/02/18/

001527a.html

Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Larissa Braz, Christian Kästner, Sven Apel, and Kleber Santos. 2020. An

Empirical Study on Configuration-Related Code Weaknesses. In SBES ’20: 34th Brazilian Symposium on Software Engi-
neering, Natal, Brazil, October 19-23, 2020, Everton Cavalcante, Francisco Dantas, and Thaís Batista (Eds.). ACM, 193–202.

https://doi.org/10.1145/3422392.3422409

Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, B. Ashok, Chetan Bansal, Chandra Maddila, Christian Bird, Sumit Asthana,

and Aditya Kumar. 2020. Rex: Preventing Bugs and Misconfiguration in Large Services using Correlated Change Analysis.

In Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI’20).
Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, and Christian Kästner. 2020. Exploring Differences and Commonalities

between Feature Flags and Configuration Options. In ICSE SEIP.
Robert Tappan Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. 1999. The Click modular router. In Proceedings of

the 17th ACM Symposium on Operating System Principles, SOSP 1999, Kiawah Island Resort, near Charleston, South Carolina,
USA, December 12-15, 1999, David Kotz and John Wilkes (Eds.). ACM, 217–231. https://doi.org/10.1145/319151.319166

Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. 2014. Mining configuration constraints: static

analyses and empirical results. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India
- May 31 - June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 140–151. https:

//doi.org/10.1145/2568225.2568283

S. Nadi, T. Berger, C. Kastner, and K. Czarnecki. 2015. Where Do Configuration Constraints Stem From? An Extraction

Approach and an Empirical Study. IEEE Transactions on Software Engineering 41, 8 (2015), 820–841.

Vivek Nair, Rahul Krishna, Tim Menzies, and Pooyan Jamshidi. 2018. Transfer Learning with Bellwethers to find Good

Configurations. CoRR abs/1803.03900 (2018). arXiv:1803.03900 http://arxiv.org/abs/1803.03900

Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-Rotaru, Mingshi Wang, Liyuan Zhang, and Navendu Jain. 2015.

ConfSeer: Leveraging Customer Support Knowledge Bases for Automated Misconfiguration Detection. In Proceedings of
the 35th International Conference on Very Large Data Bases (VLDB’15).

Ariel Rabkin and Randy Katz. 2011a. Static Extraction of Program Configuration Options. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE’11).

Ariel Rabkin and Randy H. Katz. 2011b. Precomputing possible configuration error diagnoses. In 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011, Perry
Alexander, Corina S. Pasareanu, and John G. Hosking (Eds.). IEEE Computer Society, 193–202. https://doi.org/10.1109/

ASE.2011.6100053

Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron Shim, and Ruzica Piskac. 2017. Synthesizing configuration file

specifications with association rule learning. PACMPL 1, OOPSLA (2017), 64:1–64:20. https://doi.org/10.1145/3133888

Mark Santolucito, Ennan Zhai, and Ruzica Piskac. 2016. Probabilistic Automated Language Learning for Configuration Files.

In 28th Computer Aided Verification (CAV) (Toronto, CAN).
Rian Shambaugh, Aaron Weiss, and Arjun Guha. 2016. Rehearsal: a configuration verification tool for puppet. In Proceedings

of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 416–430. https://doi.org/10.1145/2908080.2908083

Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does your configuration code smell?. In Proceedings of the
13th International Conference on Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, Miryung Kim,

Romain Robbes, and Christian Bird (Eds.). ACM, 189–200. https://doi.org/10.1145/2901739.2901761

Todd Spangler. 2019. Facebook Apologizes for Outages, Says It Has Resolved “Server Configuration” Error. https:

//variety.com/2019/digital/news/facebook-apologizes-outages-server-configuration-error-1203163429/#!/

StackOverflow #43239190. 2017. Apache mod rewrite rule not working. https://stackoverflow.com/questions/43239190

StackOverflow #6070335. 2011. Retain original request URL on mod_proxy redirect. https://stackoverflow.com/questions/

6070335

Ya-Yunn Su, Mona Attariyan, and Jason Flinn. 2007. AutoBash: Improving configuration management with operating

systems. In 21st ACM Symposium on Operating Systems Principles (SOSP) (Stevenson, Washington).

Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Legunsen, and Tianyin Xu. 2020. Testing Configuration

Changes in Context to Prevent Production Failures. In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’20). Virtual Event.

Alan Tang, Siva Kesava Reddy Kakarla, Ryan Beckett, Ennan Zhai, Matt Brown, Todd D. Millstein, Yuval Tamir, and George

Varghese. 2021. Campion: debugging router configuration differences. In ACM SIGCOMM (SIGCOMM).
Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-Preikschat, and Daniel Lohmann. 2014. Static Analysis

of Variability in System Software: The 90,000 #ifdefs Issue. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX Association, USA.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

http://taint.org/2011/02/18/001527a.html
http://taint.org/2011/02/18/001527a.html
https://doi.org/10.1145/3422392.3422409
https://doi.org/10.1145/319151.319166
https://doi.org/10.1145/2568225.2568283
https://doi.org/10.1145/2568225.2568283
https://arxiv.org/abs/1803.03900
http://arxiv.org/abs/1803.03900
https://doi.org/10.1109/ASE.2011.6100053
https://doi.org/10.1109/ASE.2011.6100053
https://doi.org/10.1145/3133888
https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1145/2901739.2901761
https://variety.com/2019/digital/news/facebook-apologizes-outages-server-configuration-error-1203163429/#!/
https://variety.com/2019/digital/news/facebook-apologizes-outages-server-configuration-error-1203163429/#!/
https://stackoverflow.com/questions/43239190
https://stackoverflow.com/questions/6070335
https://stackoverflow.com/questions/6070335

Static Detection of Silent Misconfigurations with Deep Interaction Analysis 140:29

Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye, Chunsheng Wang, Xin Wu, Zhiming Ji,

Yihong Sang, Ming Zhang, Da Yu, Chen Tian, Haitao Zheng, and Ben Y. Zhao. 2019. Safely and automatically updating

in-network ACL configurations with Intent language. In ACM SIGCOMM (SIGCOMM).
Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017. Automatic Database Management System

Tuning Through Large-Scale Machine Learning (SIGMOD ’17). Association for Computing Machinery, New York, NY,

USA. https://doi.org/10.1145/3035918.3064029

Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang. 2004. Automatic Misconfiguration Troubleshooting

with PeerPressure. In Proceedings of the 6th USENIX Conference on Operating Systems Design and Implementation (OSDI’04).
Yi-Min Wang, Chad Verbowski, John Dunagan, Yu Chen, Helen J. Wang, Chun Yuan, and Zheng Zhang. 2003. STRIDER: A

Black-box, State-based Approach to Change and Configuration Management and Support. In Proceedings of the 17th
Large Installation Systems Administration Conference (LISA’03).

Aaron Weiss, Arjun Guha, and Yuriy Brun. 2017. Tortoise: interactive system configuration repair. In Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 -
November 03, 2017, Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen (Eds.). IEEE Computer Society, 625–636.

https://doi.org/10.1109/ASE.2017.8115673

Chengcheng Xiang, Haochen Huang, Andrew Yoo, Yuanyuan Zhou, and Shankar Pasupathy. 2020. PracExtractor: Extracting

Configuration Good Practices from Manuals to Detect Server Misconfigurations. In 2020 USENIX Annual Technical
Conference, USENIX ATC 2020, July 15-17, 2020, Ada Gavrilovska and Erez Zadok (Eds.). USENIX Association, 265–280.

https://www.usenix.org/conference/atc20/presentation/xiang

Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao Shen, Haochen Huang, Tianyin Xu, Yuanyuan Zhou, Cindy Moore,

Xinxin Jin, and Tianwei Sheng. 2019. Towards Continuous Access Control Validation and Forensics. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security (CCS’19).

Tianyin Xu. 2017. Misconfiguration dataset. https://github.com/tianyin/configuration
d
atasets.

Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma Talwadker. 2015. Hey, you have given

me too many knobs!: understanding and dealing with over-designed configuration in system software. In 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE) (Bergamo, Italy).

Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and Shankar Pasupathy. 2016a. Early detection of

configuration errors to reduce failure damage. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI) (Savannah, GA).

Tianyin Xu and Owolabi Legunsen. 2020. Configuration Testing: Testing Configuration Values as Code and with Code.

CoRR abs/1905.12195 (2020). arXiv:1905.12195 https://arxiv.org/abs/1905.12195

Tianyin Xu, Vineet Pandey, and Scott Klemmer. 2016b. An HCI View of Configuration Problems. arXiv:1601.01747 (Jan.

2016).

Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy. 2013.

Do not blame users for misconfigurations. In 24th ACM Symposium on Operating Systems Principles (SOSP) (Farmington,

PA).

Tianyin Xu and Yuanyuan Zhou. 2015. Systems approaches to tackling configuration errors: A survey. ACM Comput. Surv.
47, 4 (2015), 70.

Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen

Guo, Cheng Jin, Duncheng She, Qing Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and Rodrigo Fonseca. 2020.

Accuracy, Scalability, Coverage: A Practical Configuration Verifier on a Global WAN. In ACM SIGCOMM (SIGCOMM).
Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram, and Shankar Pasupathy. 2011. An

empirical study on configuration errors in commercial and open source systems. In 23rd ACM Symposium on Operating
Systems Principles (SOSP) (Cascais, Portugal).

Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng Zhang, Yi-Min Wang, and Wei-Ying Ma. 2006. Automated Known Problem

Diagnosis with Event Traces. In Proceedings of the 1st ACM European Conference on Computer Systems (EuroSys’06).
Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Verbowski, and Arunvijay Kumar. 2011. Context-based online

configuration-error detection. In USENIX Annual Technical Conference (USENIX ATC) (Portland, OR).
Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakrishnan, Bingchuan Tian, Bo Song, and Haoliang Zhang. 2020. Check

before You Change: Preventing Correlated Failures in Service Updates. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou.

2014. EnCore: Exploiting system environment and correlation information for misconfiguration detection. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (Salt Lake City, UT).

Sai Zhang and Michael D. Ernst. 2013. Automated Diagnosis of Software Configuration Errors. In Proceedings of the 35th
International Conference on Software Engineering (ICSE’13).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1109/ASE.2017.8115673
https://www.usenix.org/conference/atc20/presentation/xiang
https://github.com/tianyin/configuration_datasets
https://arxiv.org/abs/1905.12195
https://arxiv.org/abs/1905.12195

140:30 Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu

Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei Dong, and Tianyin Xu. 2021. An Evolutionary Study

of Configuration Design and Implementation in Cloud Systems. In In Proceedings of the 43rd International Conference on
Software Engineering (ICSE’21).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 140. Publication date: October 2021.

	Abstract
	1 Introduction
	2 Understanding Silent Misconfigurations
	2.1 Methodology
	2.2 General Findings
	2.3 Patterns and Examples
	2.4 Insights

	3 Defining Silent Misconfigurations
	4 ConfigX Design
	4.1 Translator
	4.2 Specification Analyzer

	5 Evaluation
	5.1 Implementation and Experimental Setup
	5.2 Evaluation Results: Detecting Real Misconfigurations
	5.3 False Positives
	5.4 Efficiency

	6 Experience
	7 Discussion
	7.1 Users' Attitude Towards Detected Silent Misconfigurations
	7.2 Known Sources of Unsoundness or Incompleteness
	7.3 Limitations and Discussions
	7.4 Larger Implications and Future Directions

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

