
Using Pre-trained Language Models to Resolve Textual and
Semantic Merge Conflicts (Experience Paper)

Jialu Zhang
Yale University

New Haven, Connecticut, USA

Todd Mytkowicz
Microsoft Research

Redmond, Washington, USA

Mike Kaufman
Microsoft Corporation

Redmond, Washington, USA

Ruzica Piskac
Yale University

New Haven, Connecticut, USA

Shuvendu K. Lahiri
Microsoft Research

Redmond, Washington, USA

ABSTRACT
Program merging is standard practice when developers integrate
their individual changes to a common code base. When the merge
algorithm fails, this is called a merge conflict. The conflict either
manifests as a textual merge conflict where the merge fails to pro-
duce code, or as a semantic merge conflict where the merged code
results in compiler errors or broken tests. Resolving these conflicts
for large code projects is expensive because it requires developers
to manually identify the sources of conflicts and correct them.

In this paper, we explore the feasibility of automatically repairing
merge conflicts (both textual and semantic) using k-shot learning
with pre-trained large neural language models (LM) such as GPT-
3. One of the challenges in leveraging such language models is
fitting the examples and the queries within a small prompt (2048
tokens). We evaluate LMs and k-shot learning for both textual and
semantic merge conflicts for Microsoft Edge. Our results are mixed:
on one-hand, LMs provide the state-of-the-art (SOTA) performance
on semantic merge conflict resolution for Edge compared to earlier
symbolic approaches; on the other hand, LMs do not yet obviate
the benefits of special purpose domain-specific languages (DSL) for
restricted patterns for program synthesis.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems.

KEYWORDS
Resolving merge conflicts, language model, GPT-3, k-shot learning

ACM Reference Format:
Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu
K. Lahiri. 2022. Using Pre-trained Language Models to Resolve Textual and
Semantic Merge Conflicts (Experience Paper). In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis

This work was performed when Jialu Zhang was an intern at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534396

(ISSTA ’22), July 18–22, 2022, Virtual, South Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3533767.3534396

1 INTRODUCTION
Merge conflicts are common causes of broken pull requests, failure
of continuous integration builds, and latent software defects in
large projects [9]. Even a single unsuccessful merge can delay the
development process from hours to days [10, 22]. It was measured
that in large projects developers sometimes spend more time resolv-
ing merge conflicts than developing the features [3]. One of the key
reasons for this trend is the increasing collaborative environment in
large modern software. A recent study showed that with thousands
of people and tens of active branches committed to the same code
base, nearly 20 percent of all the merge attempts in a large project
result in an unsuccessful merge [9].

Table 1: An Example of a Textual Merge Conflict.

Base O Variant A
(Upstream: Chromium)

Variant B
(Downstream: Edge) Resolution R

#include "o.h" #include "a.h"
#include "o.h"

#include "b.h"
#include "o.h" CONFLICT

An unsuccessful merge can originate from either a textual merge
conflict or a semanticmerge conflict. A textual merge conflict occurs
when two developers edit the same line of code differently. Table 1
shows one such an example. The “git merge” algorithm failed to
produce a merge because two independent changes, #include "a.h"

and #include "b.h", happen in the same location. Normally, in such
a situation, a developer must resolve the conflict manually (i.e.,
after executing the git merge command).
Semantic merge conflicts in a divergent fork. In contrast, a
semantic merge conflict occurs when there are no textual merge
conflicts but nevertheless the merge still results in a broken build,
failing tests, or an unintended runtime behavior. Semantic merge
conflicts can manifest in all forms of merge attempts, but they often
appear in so-called divergent forks. A divergent fork is a copy of the
source repository, usually created without the intention to merge
it back. The standard terminology refers to the source repository
as the upstream project and a fork is called the downstream project.
Once created, downstream will have their own independent devel-
opment history which is rarely merged back to the upstream [22].
For example, Microsoft Edge, Opera and Brave are all based on

77

https://doi.org/10.1145/3533767.3534396
https://doi.org/10.1145/3533767.3534396
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3533767.3534396&domain=pdf&date_stamp=2022-07-18

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K. Lahiri

Upstream
(Chromium)

fork

version N version N+1

version M

Downstream
(Edge)

version M+1 version M+2

fixed

conflict

version M+3

Func foo(){…}
Func foo(){…}

Func useFoo() {foo()}
Func bar(){…}

Func useFoo() {foo()}

version N+2

Func bar(){…}
Func useFoo() {bar()}

Func foo(){…} Func bar(){…}

version N+3

merge

merge

Func bar(){…}

Figure 1: An Example of a Semantic Merge Conflict.

the same upstream (Chromium). Each downstream branch periodi-
cally pulls the latest updates from upstream and merges them with
other branches in the downstream repository. Using divergent forks
saves a large amount of developer’s time by reusing functions and
classes already defined and tested upstream, expedites the whole
development process, and improves the maintainability of the code
repository [22].

Despite its obvious benefits, in a divergent fork downstream
developers frequently suffer from both textual and semantic merge
conflicts. The reason is that upstream and downstream have an
independent development processes and thus the downstream can
be out of sync with the upstream code changes. To have a better
understanding of the size and scalability issues, taking Microsoft
Edge as an example, a study showed that over a three-month period
there were more than 25,000 upstream commits in Chromium and
they all had to be merged downstream [22]. This level of merge
frequency makes it difficult or even infeasible for downstream
developers to inspect every upstream change before a merge.

Fig. 1 illustrates an example of a semantic merge conflict. A
function foo() was initially introduced upstream. After the original
fork, another function useFoo(), which invokes foo(), was created
downstream. Concurrently, in the upstream branch the function foo

() was renamed to bar(). Later, during the next pull from upstream,
there was no textual merge conflict between two versions circled
in red. The definition of foo() downstream did not change before
the merge, so the merging algorithm simply renamed it into bar().
Thus, a semantic merge conflict is created, as foo() now has no
definition in the downstream and will not compile.

A previous study [22] has shown that over 800 commits were
identified as attempts to solve semantic merge conflicts in Microsoft
Edge. Despite their frequent presence in a modern software devel-
opment process, semantic merge conflicts cannot be automatically
resolved and thus require manual fixes from downstream devel-
opers [22]. Repairing semantic merge conflicts is prohibitively ex-
pensive. To find a root cause of the conflict, a developer needs to
manually inspect the upstream commit history, which, for a large
project, can be measured in thousands of commits.

The motivation for this work stems from the need to have a
tool that helps programmers in repairing semantic merge conflicts
in Microsoft Edge. We developed a tool, named Gmerge, that au-
tomatically suggests merge conflict resolutions. Gmerge takes as
input a merge conflict and merge histories from both upstream and
downstream. Gmerge returns a conflict resolution which indicates
which lines of code need to change, and how. In the example from
Fig. 1, Gmerge automatically suggests that function foo() should
be renamed to function bar().

Our tool is based on k-shot learning with a large language model
(GPT-3 [4]). GPT-3 is a large language model that uses deep learning
to produce text that looks almost as if it was produced by a human.
GPT-3 has been successfully deployed in many applications such
as question-answering [14], text completion, source code genera-
tion [6] and in many other fields [13, 17]. The biggest difference
between GPT-3 and other supervised machine learning models is
that the user does not need to train the model specifically for their
application. The user only provides a few "shots" (or examples to
teach the model) as input to GPT-3 and GPT-3 achieves competitive
results, compared to other supervised machine learning models. A
shot is a standard term used in language models that describes a
question/answer pair. Motivated by GPT-3’s successful applications
in other fields, this paper investigates how to utilize GPT-3’s capa-
bilities to resolve merge conflicts. A k-shot learning approach with
GPT-3 has significant engineering benefits as it does not require
expensive task specific fine-tuning.

To be able to successfully use GPT-3, we needed to address two
main challenges: data curation and prompt engineering. The data
curation process automatically extracts source code changes re-
lated to merge conflicts. These changes are extracted from both
upstream and downstream commits and they are converted into
an intermediate representation (IR). Prompt engineering takes data
in the IR format and translates the data into input consumable by
GPT-3. A key challenge with prompt engineering is that GPT-3’s
input is limited to 2048 tokens and thus the shot and query must fit
within it. To tackle this challenge, Gmerge applies string pattern
analysis and heuristics in prompt engineering.

78

Using Pre-trained Language Models to Resolve Textual and Semantic Merge Conflicts (Experience Paper) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

We empirically evaluated Gmerge and we have run it on Mi-
crosoft Edge semantic merge conflicts. Our evaluation shows that
Gmerge learns the correct resolutions at the state-of-the-art (SOTA)
64.6% of accuracy; we use the developer’s actual fixes as the ground
truth. The evaluation demonstrates the effectiveness of k-shot learn-
ing, which provides a cost-effective and language-agnostic solution
for real-world semantic merge conflicts.

Generalization to textualmerge conflicts in a divergent fork.
To establish how easily our approach can be generalized, we con-
ducted a second case study, focusing on textual merge conflicts.
The main purpose was to evaluate the effectiveness of our data
curation and prompt engineering in this domain. The empirical
results show that k-shot learning performance is on par with exist-
ing SOTA tools. However, note that those tools still need special
purpose domain-specific languages (DSL) for program synthesis.
This requires a significant amount of engineering, while our k-shot
approach is relatively simpler.

In summary, we make the following contributions:

• We present a data-driven tool Gmerge that uses k-shot learn-
ing with a large language model (GPT-3) to automatically
find repairs for merge conflicts.

• We propose a method of prompt engineering that translates
conflict examples and queries to a small prompt for GPT-3.

• We evaluate Gmerge on both textual and semantic real-
world merge conflicts problems. We obtained the state-of-
the-art (SOTA) performance on semantic merge conflict res-
olutions for divergent forks and respectable performance on
textual merge conflicts resolutions for divergent forks.

2 MOTIVATING EXAMPLES
In this section we use examples to outline basic ideas of how large
language models can repair merge conflicts.

2.1 Semantic Merge Conflict in Divergent
Forks

The example in Fig. 1 is not artificially contrived: semantic merge
conflicts happen daily. Our first example shows a concrete instance
of the merge conflict from Fig. 1, taken from the Microsoft Edge
development. The downstream repository contains the following
code snippet:
1 if (browser &&
2 ...GetBrowserViewForBrowser(browser)->IsIncognito

())
3 {return;}

The merge process for this repository succeeded, but the updated
repository failed to build. The compiler returned the following
message: “no member named IsIncognito() in BrowserView”. This
left the developers confused, because the IsIncognito() function
was not changed since the last successful merge.

The root cause of this conflict is in the upstream. We could
manually execute the git diff command on hundreds of commits
in the upstream branch, and finally we can find a fragment of the log
showing that function IsIncognito()was renamed to GetIncognito().

1 ...

2 - bool IsIncognito() const;

3 + bool GetIncognito() const;

However, clearly this approach is extremely time-consuming.
Instead, running Gmerge on this example, it automatically suggests
the following repair for the downstream repository:
1 if (browser &&
2 ...GetBrowserViewForBrowser(browser)->

GetIncognito())
3 {return;}

Gmerge first detects and curates all the relevant upstream changes
to a JSON file as the conflict description. We describe the process
in Sec. 5.2 – Fig. 5 is the JSON file generated out of this particular
example. Gmerge then leverages various heuristics to translate and
fit the JSON file into the small prompt input format for GPT-3. The
details of the prompt engineering design are given in Sec. 5.3 and
Fig. 6 depicts the input to GPT-3 created from the JSON file in Fig. 5.

2.2 Textual Merge Conflict in Divergent Forks
Textual merge conflicts happen frequently in Microsoft Edge devel-
opment [16, 22]. According to the previous study, more than 1100
textual merge conflicts occurred in Edge’s development in a span
of three months [22], and each one of these conflicts needs a de-
velopers’ manual fix. Fig. 2 shows a solution of a real-world merge
conflict. The upstream file contains lines 2 and 3, and its corre-
sponding downstream file contains lines 5 and 6 at exactly the same
position, which causes a textual merge conflict. When the conflict
is reported, a downstream developer had to manually inspect the
cause of the conflict. The developer also had background knowledge
of the whole project and knew that the header file url_utils.h in the
forked branch has the same content as the header file google_util.h

in the main branch. To resolve this issue, the developer kept the
one in the forked branch and excluded the one in the main branch.
The developer also kept both lines 3 and 6, since they are referring
to two different header files.

Gmerge is able to resolve textual merge conflicts because we
teach GPT-3 how historical textual merge conflicts were resolved
with the examples in the prompt. We describe the details of this
process in Sec. 6.3. Running Gmerge on this example automatically
produces the same resolution shown below.

1 Upstream (Chromium):

2 - #include “components/google/core/common/google_util.h”

3 + #include “components/variations/net/omnibox_http_headers.h”

4 Downstream (Edge):

5 + #include “components/microsoft/core/common/url_utils.h”

6 + #include “components/variations/edge_features.h”

Figure 2: An example of a textual merge conflict resolution
in a divergent fork. The line that starts with “+” means this
line is kept in the finalmerged code. The line that startswith
“-” means this line is removed from the final merged code.

79

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K. Lahiri

3 BACKGROUND
In this section, we provide the necessary background for k-shot
learning, which is the basis of our tool. We first give a general
overview of k-shot learning and the following sections demonstrate
how to apply k-shot learning to automate merge resolution.
Language model. A language model is a probability distribution
over a sequence of words. A classic application of a language model
is to predict the next token in some text. Language models have
been used for sentiment analysis[18], question and answering[26],
or even code generation[6].
Generative Pre-trainedTransformer 3 (GPT-3).GPT-3 is a large
language model that is famous for its ability to produce general,
human-like text [4]. It was trained on a massive corpus of unlabeled
text, including Common Crawl (410 billion tokens) and Wikipedia
(3 billion tokens). GPT-3 is now generally available to the public
through its API1.

GPT-3 has been successfully deployed in many applications rang-
ing from traditional NLP tasks such as question answering and text
completion [14], to many other fields such as poem writing, and
source code generation [6, 13, 17]. A key benefit of GPT-3 is its
ability to adapt to novel input formats without re-training the un-
derlying model. Often, a user of GPT-3 can exploit the "text-in",
"text-out" nature of the GPT-3 interface to teach the model with
examples of what the user is looking for. These examples are called
"shots".
Prompt, Shot and Query. A prompt describes the input to GPT-3.
It has two components: one or more shots and the user’s query. The
distinction between the two is best described with an example:
Question: Apple?
Answer: Red

Question: Eggplant?
Answer:

In the example above, the shot (first two lines) teaches the model
with a "Question" and "Answer" pair. Likewise, the query follows
the same pattern but prompts the model to complete the "Answer".
GPT-3 is not explicitly trained on this "Question" and "Answer" pair
and yet it is often capable of completing rather complex prompts.
K-shot learning. In the prior example, we only showed a single
shot to the model. In contrast, if the prompt consists of k shots,
it is called k-shot learning. In general, significant effort goes into
developing prompts (and the corresponding shots) for complex
tasks.
Zero-shot learning. Zero-shot learning is similar to k-shot learn-
ing, with the exception that no demonstration is allowed and the
model is only given a brief task directive in the prompt. For example,
consider a zero-shot prompt:
Question: What is the capital of Spain?
Answer:

Zero-shot learning is challenging because it requires the model
to understand the task without any examples to teach it. Despite
this challenge, often a model having the size of GPT-3 can still
accurately answer such a prompt. In this example, the intuition is
that the word “Madrid” has the highest probability given the words
1https://openai.com/api/

of sequence - “What is the capital of Spain?” in its massive training
corpus.

4 SYSTEM OVERVIEW

Failed
Merge

Upstream
Changes

Downstream
Changes

Data Curation

Conflict Description Prompt Engineering Prompt

GPT-3

Conflict Resolution

Figure 3: Gmerge Overview

The overview of the Gmerge tool is shown in Fig. 3. It takes as
input three parameters: a merge conflict, and both commits in the
upstream and downstream repositories that constitute the merge.
As output, Gmerge returns a merge conflict resolution.

Gmerge contains two main modules: data curation and prompt
engineering.

The data curation module takes as input the upstream and down-
stream commits alongwith the downstream semanticmerge conflict
including the compiler error messages. It generates JSON files as
the intermediate representation (IR) for the prompt engineering
module. We call this file a conflict description. This paper contains
two case studies, but data curation is extensively used only in the
first case study. However, when we run Gmerge on an existing
benchmark where the conflicts have already been curated, Gmerge
skips this module and goes directly to the next module.

The purpose of the prompt engineering module is to translate a
conflict description file into the small prompt format required as
input for GPT-3. The prompt engineering is a technical module and
for each of our case studies we needed to apply various heuristics,
described in more detail in Sections 5.3 and 6.3. This is due to the
fact that conflict description files for each case study have different
format.

In the next two sections, we describe applying Gmerge in two
different scenarios.

5 CASE STUDY 1: RESOLVING SEMANTIC
MERGE CONFLICTS FOR A DIVERGENT
FORK

5.1 Insights: Applying k-shot Learning to
Resolve Semantic Merge Conflicts

In Gmerge, we use GPT-3 to generate semantic merge conflict
resolution via k-shot learning. Fig. 4 shows the prompt that we
provide to the GPT-3. In the demonstration (line 1 to line 8), we teach
the model with an example of how the historical merge conflict
was resolved. In the following task directive (line 11 to line 17), we
provide the model of the set of relevant changes from upstream and
the conflict to be fixed in downstream. The output of the model is
the resolution of the targeted merge conflict.

80

Using Pre-trained Language Models to Resolve Textual and Semantic Merge Conflicts (Experience Paper) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

1 Question:
2 <The historical before changes from upstream >
3 <The historical after changes from upstream >
4
5 <The historical conflict line in downstream >
6
7 Answer:
8 <The ground truth resolution provided by developers >
9
10 Question:
11 <The current before changes from upstream >
12 <The current after changes from upstream >
13
14 <The conflict to be fixed in downstream >
15
16 Answer:

Figure 4: An intuitive example of how to use GPT-3 to re-
solve semantic merge conflicts. The shot is in line 1 to line
8. The query starts from line 10.

5.2 Data Collection and Curation
Merge conflicts in downstream forks are often introduced by com-
mits made in the upstream repository, so the goal of the data col-
lection and curation process is to identify and extract all the source
code changes in upstream that are related to the given merge con-
flict. In real-world software development, this is also the first step
that the programmer manually performs in trying to resolve a failed
merge. For large upstream repositories such as Chromium (of which
Microsoft Edge is a downstream divergent fork), searching through
the thousands of upstream commits is a tedious and error-prone
task. In Gmerge we automate this whole process.

Gmerge takes the commit logs of the repository, the semantic
merge conflicts including the compiler error messages as the inputs,
and outputs a JSON file for each semantic merge conflict. This JSON
file contains all code-level changes relevant to the target merge
conflict. The files are designed to be self-contained, in the sense
that it is sufficient to check the JSON file to gain all the information
relevant for the given semantic merge conflicts. Each file has three
key components: 1) the set of relevant changes from upstream,
2) the conflict to be fixed in downstream, and 3) the resolution
provided by the real-world developers. The third component is only
relevant for establishing the ground truth for our evaluation.

Fig. 5 shows an example JSON file that Gmerge generated for
the merge conflict given in Sec. 2.1. In Fig. 5, line 2 to line 12 are
the relevant changes from upstream. Line 13 is the merge conflict
and line 14 is the resolution provided by the Edge developers.
How to generate the JSON file from the compiler error? In
Gmerge, we localize the blamed upstream commits by tracing the
compiler error message to identify the relevant keywords and prune
the space of source code changes in the upstream based on these
keywords. For example, shown in Sec. 2.1, Clang results in the
error message “Cannot find the definition for function IsIncognito

().” This is a typical error message for a semantic merge conflict
due to function renaming. From this message, Gmerge identifies
IsIncognito() as the keyword relevant to this error message.

Gmerge automatically extracts the keywords for each semantic
merge conflict; it starts by extracting the strings in the quotation
marks in the error message. To be conservative, if the keyword has

1 {
2 "UpstreamChanges": [
3 {
4 "Before": "const␣bool␣incognito␣=␣

browser_view_ ->IsIncognito();",
5 "After": "const␣bool␣incognito␣=␣

browser_view_ ->GetIncognito();"
6 },
7 {
8 "Before": "bool␣IsIncognito()␣const;",
9 "After": "bool␣GetIncognito()␣const;"
10 }
11 ...
12],
13 "DownstreamConflict": "BrowserView::

GetBrowserViewForBrowser(browser)->
IsIncognito())",

14 "DownstreamFix": "BrowserView::
GetBrowserViewForBrowser(browser)->
GetIncognito())"

15 }

Figure 5: The JSON example generated by Gmerge for the
merge conflict in Sec. 2.1.

a C++ class specifier in it as the prefix, e.g., browser::IsIncognito(),
we collect both its type specifier browser and the function name
IsIncognito() as the keywords. These keywords are used as the
seeds for further search in the upstream commits. Gmerge ex-
tracts every deleted line in the upstream code diff that contains
the keywords. Gmerge additionally extracts the lines following
immediately after the deleted line, which typically contain the new
name of the renamed symbol. In Gmerge we use a heuristic that
collects all the lines until we reach an unchanged or deleted line.

For each semantic merge conflict manifested in downstream,
we extract the line of code that has a compiler error. To obtain
the user resolution (ground-truth) for such a merge conflict, we
identify the repair commit in downstream that follows the conflict
that 1) changed the same line in the same file as the semantic merge
conflict and 2) the compiler error for that specific merge conflict no
longer existed after that commit. Similar to upstream, we collect
the repair code region in downstream in the same way.

5.3 Prompt Engineering
The prompt engineering module applies various heuristics to the
JSON description of the conflicts in order to translate both merge
conflict examples and queries into succinct prompts for GPT-3. The
output of GPT-3 is the resolution of the merge conflict.
Prompt structure. When resolving semantic conflicts, Gmerge
has two prompt structures: one-shot and zero-shot. Both of them
create the same task directive in the prompt. The only difference is
that in zero-shot learning no demonstration is given. Fig. 6 is the
real-world example of how we use one-shot learning to resolve the
merge conflict in Sec. 2.1.
Prompt format. In the prompt, the lines that start with a double --

and ++ represent the conflict-related changes in upstream. The line
starting with a single - appears only at the end of the query and it
represents the merge conflict in downstream. The line starting with
a single + is not in the prompt. Instead, it is the output of GPT-3 for
the resolution of the merge conflict.

81

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K. Lahiri

1 Question:
2 --web_app_info ->app_url = url;
3 ++web_app_info ->start_url = url;
4
5 -web_app_info ->app_url = url;
6
7 Answer:
8 +web_app_info ->start_url = url;
9
10 Question:
11 --if (browser_view_ ->IsIncognito()||!browser_view_ ->

IsBrowserTypeNormal())
12 ++if (browser_view_ ->GetIncognito()||!browser_view_

->GetIsNormalType())
13
14 --bool IsIncognito() const;
15 ++bool GetIncognito() const;
16
17 - ...GetBrowserViewForBrowser(browser)->IsIncognito

())
18
19 Answer:
20 + ...GetBrowserViewForBrowser(browser)->GetIncognito

())

Figure 6: An example ofmerge conflict resolution using one-
shot learning in GPT-3. The shot is represented in line 1 to
line 8. The query starts from line 10 and ends on line 19. Line
20 is not in the prompt, and it is the output of GPT-3 for the
resolution of the merge conflict.

Prompt content. GPT-3 has a fixed input size, 2048 tokens. This is
in sharp contrast to the massive code diffs of thousands of commits.
A single JSON file could contain thousands of lines of code changes
related to a merge conflict. To leverage the power of GPT-3, one of
the key technical challenges in Gmerge is to fit the examples and
the queries into this small prompt.

We adopt a heuristic to ensure that we prioritize diverse repre-
sentations of “UpstreamChanges” (in the JSON file) in the prompt.
Our intuition is that we want each pair of “UpstreamChanges” to
have a distinct string edit sequence. Each edit sequence is a list of
operations that are applied to strings. Applying the edit sequence

on the first string produces the second one. There are three kinds
of operations, the addition +, the deletion - or the replacement | in
the edit. We omit the space padding in our edit sequence definition.

We use the Python library difflib.ndiff to compute the string
difference. Gmerge ensures that every selected -- and ++ string
pairs in the prompt has a distinct edit sequence pattern. In this way,
we managed to fit the shots and the queries into the small prompt
(2048 tokens). In Sec. 5.4, we demonstrate the effectiveness of our
prompt content design.

5.4 Evaluation
We evaluate the efficacy of Gmerge on semantic merge conflicts by
answering the following questions:

(1) How does Gmerge resolve semantic merge conflicts in di-
vergent forks?

(2) Does prompt engineering positively affect the accuracy?
(3) Are larger language models more accurate than smaller

ones?

Table 2: Evaluation of Gmerge with baselines on merge con-
flict resolution accuracy.

Accuracy
Gmerge (GPT-3) 64.6% (245/379)
Gmerge (GPT-J) 39.1% (148/379)
StringMerge 30.1% (114/379)
Transformation.Text 25.9% (98/379)

Experiment setup.We collected all Edgemerge conflicts fromAug
2020 to April 2021 wherein one of four clang compiler messages
occurred. The four selected types of error messages cover more
than 70 percent of semantic merge conflicts. The rest of the errors
constitute a long tail. These four errors are:

• err_no_member

• err_no_member_suggest

• err_undeclared_var_use_suggest

• err_undeclared_use_suggest

In total, we obtained 379 semantic merge conflicts. We process each
conflict into a JSON file for downstream evaluation. The data are
available at: https://doi.org/10.5281/zenodo.5911767.

In concert, we extract the actual user-defined fix for each con-
flict and use that as ground truth for Gmerge’s suggested fix. In
particular, it will be assumed that Gmerge suggests the correct fix
if the user-defined fix is a prefix of our model generated solution.
We adopted this metric mainly because GPT-3 is an auto-regressive
model, which often outputs text up to a fixed pre-specified length.
This was the internal design for GPT-3 to complete existing text at
the time when the paper was written2. Although the prefix metric
might allow extra tokens after the correct resolution, we sampled
our generated resolution and noticed that it did not happen very
often. This prefix metric is also accepted by the Edge developers
since the actual fix by users (ground truth) is the prefix of our reso-
lution and humans can remove the extra tokens when surfaced as
a suggestion. We ran all experiments on a Windows VM with an
Intel i7 CPU and 48 GB of RAM.
Can Gmerge resolve semantic merge conflicts in divergent
forks? Table 2 shows the performance of Gmerge on our dataset.
Gmerge has an overall accuracy of 64.6% after ten model trials.
Table 2 also includes a comparison ofGmerge to three baselines. We
first compared Gmerge to a heuristic-based approach, StringMerge.
Following this, we compared Gmerge to the state-of-the-art string-
based program synthesis approach [24], Transformation.Text. Finally,
we evaluated how the choices of language model (GPT-3 and GPT-J)
affected the results.

Our first baseline StringMerge, is a heuristic-based approach de-
signed by analyzing patterns in the upstream and then using those
patterns to generate merge conflict resolutions in the downstream.
StringMerge implements themain algorithm described inMrgBldBrk-
Fixer [22] but operates on and generates merge conflict resolutions
as strings rather than ASTs (we use strings because we do not have
access to changes that might not be parsable into ASTs). For each
conflict, StringMerge identifies the symbol that is responsible for the

2Recently, a new GPT-3 version https://openai.com/blog/gpt-3-edit-insert/ was re-
leased that allows for insertions and edits to the input text. We leave exploring this
direction in our future work.

82

https://doi.org/10.5281/zenodo.5911767
https://openai.com/blog/gpt-3-edit-insert/

Using Pre-trained Language Models to Resolve Textual and Semantic Merge Conflicts (Experience Paper) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

conflict by checking compiler error messages. It then infers a set
of possible function/class/type renaming patches on the symbol
by computing the textual difference between two strings. Finally,
for each patch, StringMerge applies it to the downstream string to
obtain a possible conflict resolution.

Note that the high-fidelity static analysis based approach (e.g.
based on clang) is not possible in our setting due to the fact that
it needs the Edge project to be built, and we only have access to
the project file contents. This baseline StringMerge is the closest
we get to a static analysis baseline and it mimics the way Edge
developers manually fix such a merge conflict in the real world.
Table 2 shows StringMerge’s performance. Gmerge performs better
in terms of resolution accuracy (64.6% vs 30.1%).

Our second baseline, Transformation.Text is the state-of-the-art
program synthesis approach specialized in string transformation
[24]. Transformation.Text takes several pairs of strings as examples.
It then synthesizes a program that takes the first string in each pair
as input and outputs the second string. After that, the synthesized
program is used to produce the transformation on unseen strings.

The intuition of using Transformation.Text, such a SOTA program
synthesis approach to generate merge conflict resolution is that
the upstream code changes could be represented as examples in a
programming-by-example based synthesis approach. After learning
such a program, Transformation.Text outputs its transformation on
the downstream string as the conflict resolution.

Our evaluation shows that Transformation.Text is able to generate
resolutions. However, Gmerge performs much better in terms of
resolution accuracy (64.6% vs 25.9%) and surprisingly even the
heuristic-based StringMerge outperforms it. One possible reason is
that Transformation.Text is a generic string transformation tool, so
the pattern in semantic merge conflict resolution is too complex
for it to learn. Fig. 9 is such a challenging example that is difficult
for the existing SOTA program synthesis approach to resolve.

Our third baseline is actually Gmerge itself, but with a different
language model, namely GPT-J[25]. It is introduced to evaluate how
the size of the language model affects the result. GPT-3 and GPT-J
have similar architectures, but GPT-3 has 175 billion parameters
while GPT-J has 6 billion. Our evaluation shows that the size of the
model indeed affects its ability to resolve semantic merge conflicts.
Gmerge performs much better than Gmerge (GPT-J) in terms of res-
olution accuracy (64.6% vs 39.1%). Gmerge (GPT-J) has performed
better than StringMerge and Transformation.Text. This shows that
resolving semantic merge conflicts is a non-trivial problem, and a
large language model is able to automatically generate a resolution
for semantic merge conflicts with high accuracy.

Ablation study over Gmerge. We now present results on experi-
ments to analyze different design choices in Gmerge. Table 3 shows
how prompt engineering affects the accuracy of merge conflict
resolution in Gmerge. One of the advantages of GPT-3 is that it
only needs a few examples (shots) for "training". One key question,
however, is what impact does the shot have on accuracy? We eval-
uated Gmerge in two prompt structures: one shot and zero shot.
In our setting, zero-shot learning is identical to one-shot learning,
except no example is allowed and the model is given the same task
directive in the prompt.

Table 3: Ablation study overGmerge. Evaluation for different
prompt designs in Gmerge.

First Pair Maximal Test
(without heuristics)

Maximal Test
(with heuristics)

One-shot 44.1% 60.4% 64.6%
Zero-shot 33.2% 35.1% 40.0%

One of the major technical challenges in Gmerge is to fit the
shot and the query into the fixed-sized prompt. We have evaluated
Gmerge on three different prompt structures in Table 3. “First pair”
means that we only choose the first conflict-related source code
change in the JSON file to form the query. “Maximal Test (without
heuristics)” takes as many changes as possible in the original se-
quence until the size of the prompt reaches its limit. “Maximal Test
(with heuristics)” takes the heuristics described in Sec. 5.3 as the
filtering method to prioritize some changes in the prompt. Each of
these prompt representations differs in size and content and thus
this section investigates their impact on model accuracy.

The evaluation shows that having a shot as the input to the
language model significantly improves the results in all prompt
structures. This meets our expectations because having a shot not
only clearly pinpoints the current task to the model but also pro-
vides an example of what is the expected output from the model.
Moreover, the evaluation shows that providingmore conflict-related
code changes as the context improves the accuracy of the model.
It further shows that with the heuristics, Gmerge achieved the
highest accuracy of 64.6%.

We found that increasing the number of shots used in our eval-
uation did not achieve better accuracy. The reasons are that 1) In
this case study, shots teach GPT-3 and show how the output format
should be. The content in the shot is not designed to be relevant to
the actual merge conflict. Based on our experience, having more
shots will add noise in the prompt and it might misguide the model.
2) The prompt size is very limited to only 2048 tokens (in GPT-3).
Therefore, we chose the most compact shot (line 1 to line 8 in Fig. 6)
in our setting to save the token space for providing more context
(related code changes in upstream and downstream) to GPT-3 in
the task directive.
Are larger languagemodelsmore accurate than smaller ones?
GPT-3 and GPT-J have similar architecture designs, but different
size of the models. In this section, we show that the size of the
model has a significant impact on Gmerge’s task specific accuracy.

GPT-3 and GPT-J each output one resolution at one model trial.
In our experiment, we repeatedly query the language models, and
if the resolution is produced in any of the trials, we mark the merge
conflict as “resolved”. The intuition here is that each resolution is a
possible fix and because a query is inexpensive (in comparison to
a developer fixing it) we can help automate the costly process of
merge resolution by using the model to synthesize these fixes. To
that end, we evaluate how the number of trials affects the model
accuracy. Fig. 7 shows that the overall accuracy of GPT-3 and GPT-J
both increased with the number of model trials, but the overall accu-
racy of GPT-3 increased more sharply than GPT-J with the increase
of model queries. For example, for GPT-3, having ten independent
trials achieves the accuracy of 64.6% in contrast to the accuracy of
37.2% with only one trial. Compared to the GPT-3 model, we only

83

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K. Lahiri

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

Number of Model Queries

A
cc
ur
ac
y
Ra

te
(%
)

Gmerge (GPT-3)
Gmerge (GPT-J)
StringMerge

Transformation.Text

Figure 7: Accuracy comparison for Gmerge on resolving se-
mantic merge conflicts.

observed a modest accuracy gain in the GPT-J model. StringMerge
and Transformation.Text have no accuracy gain because they pro-
duce a deterministic result in every run.

Based on what we observed from the result, a larger size of the
language model has better overall accuracy on both settings: one
single model trial or multiple model trials. The larger model is more
likely to produce extra merge conflict resolution when multiple
numbers of model trials are allowed.

5.5 More Than Renaming: Challenging
Examples Resolved by Gmerge

The motivating example from Sec. 2.1 was resolved using function
renaming. However, in a real-world setting, the semantic merge
conflicts that downstream developers face are not limited to sim-
ple function/class/type renaming. In this subsection, we illustrate
the complexity of real-world merge conflicts that downstream de-
velopers face in daily development. A key observation is that the
patterns here are very difficult to write down as general cases, but
the fixes are intuitive once viewing the code. GPT-3 with k-shot
learning is able to extract these intuitive fixes where other more
rigid pattern-based approaches fail. We closely inspect the example
of a broken build taken from the Edge repository.

A challenging but typical merge conflict example is shown in
Fig. 8, after a merge, the compiler sent an error message indicating
that it could not find a definition for PermissionRequestType. How-
ever, PermissionRequestType has not been changed before the last
successful merge in the downstream.

1 - PermissionRequestType::PERMISSION_CAMERA_PAN_TILT_ZOOM:

Figure 8: A challenging but typical semantic merge conflict
in Microsoft Edge. This line has not been changed since
last successfulmerge attempt. However, after themerge, the
compiler can not find the definition for PermissionRequestType.

To correctly resolve such a merge conflict, developers need to
learn how the upstream context has changed from the last success-
ful merge attempt to this specific merge and then apply the similar
changes to the downstream context. To derive this particular res-
olution, it was not enough to find the relevant file in the commit
history and then propagate the changes: the developer needed to
find three different files and manually combine the changes de-
scribed in those files to derive the required resolution. We list the
most relevant changes in Fig. 9.

1 - permissions::PermissionRequestType::PERMISSION_NOTIFICATIONS

2 + permissions::RequestType::kNotifications

3
4 - permissions::PermissionRequestType request_type

5 + permissions::RequestType request_type

6
7 - permissions::PermissionRequestType::PERMISSION_NOTIFICATIONS)

8 + if (request_type == permissions::RequestType::kNotifications)

Figure 9: Upstream changes related to the conflict in Fig. 8.

1 + RequestType::kCameraPanTiltZoom:

Figure 10: The conflict resolution given by Edge downstream
developers to the conflict in Fig. 8.

The developers first detected that the root cause of this com-
piler error was due to fact that PermissionRequestType has been re-
named to RequestType in upstream. However, applying these renam-
ing changes to the PermissionRequestType in downstream still did not
resolve this conflict. This was because the PERMISSION_NOTIFICATIONS

in upstream was changed to kNotifications. After the developer
learned how the upstream context changed and applied similar
changes to the downstream context, the merge conflict was resolved
by changing PERMISSION_CAMERA_PAN_TILT_ZOOM to kCameraPanTiltZoom.
The correct resolution to this particular problem is given the line
annotated with + in Fig. 10 and this was a repair that the developer
committed. Gmerge managed to automatically learn not only the
renaming cases to RequestType but also learn and apply the related
context change near the RequestType in the downstream to produce
the exact resolution as developers did.

The existing merge conflict resolution approaches [16, 22, 24]
are not helpful in such cases, because their learning algorithms are
limited when it comes to learning and combining complex string
transformation. Indeed, in our evaluation, given in Sec. 5.4, we
show that none of our baseline methods could resolve this merge
conflict. With the prompt shown in Fig. 11, Gmerge generated line
25 as the resolution to this conflict.

5.6 Discussion
Practical value and tool development. Gmerge achieved the
overall accuracy of 64.6% in solving semantic merge conflicts in
Microsoft Edge. The practical value of Gmerge lies in its ability to

84

Using Pre-trained Language Models to Resolve Textual and Semantic Merge Conflicts (Experience Paper) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

1 Question:
2 --web_app_info ->app_url = url;
3 ++web_app_info ->start_url = url;
4
5 -web_app_info ->app_url = url;
6
7 Answer:
8 +web_app_info ->start_url = url;
9
10 Question:
11 ...
12
13 --"request", permissions::PermissionRequestType::

PERMISSION_NOTIFICATIONS ,
14 ++"request", permissions::RequestType::

kNotifications , requesting_origin);
15
16 --permissions::PermissionRequestType request_type ,
17 ++permissions::RequestType request_type ,
18
19 --permissions::PermissionRequestType::

PERMISSION_NOTIFICATIONS) {
20 ++if (request_type == permissions::RequestType::

kNotifications) {
21
22 - case permissions::PermissionRequestType::

PERMISSION_CAMERA_PAN_TILT_ZOOM:
23
24 Answer:
25 + case permissions::RequestType::kCameraPanTiltZoom:

Figure 11: The merge conflict resolution to the conflict in
Fig. 8. Line 1 to line 8 are the shot, line 10 to line 24 are the
query to GPT-3. Line 25 is not included in the prompt, and
it is the output of GPT-3 for the resolution of the conflict.

automate 64.6% of such merge conflicts. To the day, Gmerge is on
the process of being productized in Microsoft Edge development.
Automation level. The motivation of our work is in the fact that it
often costs developers a large amount of time to manually identify
the source of conflicts and correct them. Because of this, automation
is important in resolving semantic merge conflicts for a divergent
fork. MrgBldBrkFixer [22] also investigated the feasibility of fixing
the semantic merge conflicts in Microsoft Edge.

However, MrgBldBrkFixer is not fully automated, contrary to
Gmerge. It needs downstream developers to manually classify the
semantic conflicts and assign a type for these conflicts. Therefore,
MrgBldBrkFixer still requires manual labor in resolving merge con-
flicts. This is the reasonwhywe cannot directly useMrgBldBrkFixer
as the baseline in our evaluation. We manage to automate the major
algorithm described in MrgBldBrkFixer [22] into our first baseline:
StringMerge, and we include the result comparison in Table 2.
Limitations. Gmerge cannot provide any guarantee to the resolu-
tion of merge conflicts. Gmerge relies on Clang compiler message
to locate the conflict-related changes in upstream. Therefore, if
the compiler fails to pinpoint where the error is or the git commit
history is not accurate, Gmerge cannot handle such merge conflicts.
Future directions.We envision Gmerge in its current version to
resolve merge conflicts related to compiler errors in Microsoft Edge.
Encouraged by our results, generating test failure resolution is a
promising future direction to pursue. The lack of compiler errors
in the merged code is the prerequisite for the execution of unit and
integration tests. Also, from the existing work [22], only 9.9% of

1 Question:
2 <<<<<<< HEAD
3 The historical conflict region in upstream
4 =======
5 The historical conflict region in downstream
6 >>>>>>>
7
8 Answer:
9 The ground truth resolution provided by the

developers
10 ...
11
12 Question:
13 <<<<<<< HEAD
14 The current conflict region in upstream
15 =======
16 The current conflict region in downstream
17 >>>>>>>
18
19 Answer:

Figure 12: An intuitive example of how to use GPT-3 to re-
solve textual merge conflicts. Shot(s) are shown in line 1 to
line 10. The query starts from line 12.

merge conflicts in Edge are from test failures. Moreover, the issue
of root causing the fixes for test failures (for ground truth) is a
non-trivial exercise. Therefore, Gmerge serves as our first step in
resolving merge conflicts related to compiler errors in Edge, but we
plan to address the test failure resolution in our future work.

6 CASE STUDY 2: RESOLVING TEXTUAL
MERGE CONFLICTS FOR A DIVERGENT
FORK

6.1 Insights: Applying k-shot Learning to
Resolve Textual Merge Conflicts

Similar to semantic merge conflict, inGmerge, we use GPT-3 to gen-
erate textual merge conflict resolution via k-shot learning. Fig. 12
shows the prompt that we provide to the GPT-3. In the demon-
stration (line 1 to line 10), we teach the model with examples of
how the historical merge conflicts were resolved. In the following
task directive (line 12 to line 19), we provide the model with the
current conflict region in upstream and downstream respectively.
The output of GPT-3 is the resolution to the merge conflict.

6.2 Study Setup: Benchmark Description
The problem of textual merge conflict resolution for divergent forks
has been studied in the paper [16] and the benchmark is publicly
available. This benchmark is collected from the Microsoft Edge
development repository in an eight-week period (March 30 2020 to
April 24 2020). For each merge conflict in the benchmark, it is either
a C++ header file conflict or a Macro related conflict, and the size of
the merge conflict has up to two lines of changes. Each conflict has
three parts, the upstream conflict region, the downstream conflict
region and the ground truth: the actual resolution by developers. In
total, this benchmark has 122 textual merge conflicts due to header
file conflicts and 38 conflicts due to Macro conflicts.

Note that in this benchmark, the repositories that contain the
merge conflicts are not included and released, thus making Gmerge

85

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K. Lahiri

1 Question:
2 <<<<<<< HEAD
3 #include "chrome/browser/ui/views/accessibility/

caption_bubble_controller_views.h"
4 =======
5 #include "chrome/browser/ui/views/accessibility/

hc_with_theme_bubble_view.h"
6 >>>>>>>
7
8 Answer:
9 #include "chrome/browser/ui/views/accessibility/

caption_bubble_controller_views.h"
10 #include "chrome/browser/ui/views/accessibility/

hc_with_theme_bubble_view.h"
11
12 Question:
13 <<<<<<< HEAD
14 #include "base/notreached.h"'
15 =======
16 #include "base/metrics/histogram_macros.h"'
17 >>>>>>>
18
19 Answer:
20 #include "base/metrics/histogram_macros.h"'
21 #include "base/notreached.h"'
22
23 Question:
24 <<<<<<< HEAD
25 #include "build/build_config.h"
26 =======
27 #include "media/media_buildflags.h"
28 >>>>>>>
29
30 Answer:

Figure 13: An example of prompt in textual merge conflict
resolution by Gmerge.

infeasible to do the data curation. We run Gmerge on the existing
benchmark [16] to resolve merge conflicts using only the prompt
engineering module.

6.3 Prompt Engineering
Using the prompt format shown in Fig. 12, we evaluated how differ-
ent selection strategies of demonstrations affected the final result in
Gmerge. We have two prompt engineering methods here. First, we
randomly selected a few examples from each category to form the
shot. We adopted the same categories used in the existing work [8]
to handle textual merge conflicts. This resulted in five header file
examples and two Macro examples in the shot. We named this
prompt engineering method as the “Randomly selected shots”. Sec-
ond, we use our domain-specific knowledge to pick two typical
examples as the shot. We name this prompt engineering method as
the “Representative shots”.

Fig. 13 shows an example of using the “Representative shots”
method to resolve textual merge conflicts in Gmerge. Line 1 to line
10 is the first shot, and line 12 to line 21 is the second shot. The task
directive (the target merge conflict) is shown from line 23 to line
30. In Gmerge, it outputs:
1 #include "build/build_config.h"
2 #include "media/media_buildflags.h"

and this is the exact resolution provided by the Edge developers.

Table 4: Merge conflict resolving accuracy for Gmerge on
Edge header file and Macro textual merge conflict dataset.

SOTA [16] Randomly Selected Shots Representative Shots
Header File 91.8%(112/122) 49.6% (58/117) 60.0% (72/120)
Macro 94.4%(35/38) 100% (36/36) 100% (36/36)

6.4 Evaluation and Discussion
Table 4 shows the accuracy of resolution on Edge header file and
Macro textual merge conflict dataset. The prompt engineering
method “Representative shots” has fewer shots than the “Randomly
selected shots” but it has slightly better accuracy than “Randomly
selected shots”. This shows the importance of prompt engineer-
ing in using language models to resolve merge conflicts, including
selecting the most effective demonstrations.

We did evaluate the zero-shot learning in our textual conflict
at first, but the result is largely worse. This is expected because
GPT-3 does not have any insights about the task if only few lines
of the conflict regions are given in the task directive. Also, conflict
markers (namely strings <<<<<<< and >>>>>>>) are seldom
seen in GPT-3’s training set, making GPT-3 even more difficult to
output meaningful resolution.

Compared to the existing SOTA work [16], which requires a
careful design of domain-specific language, our tool Gmerge has
better accuracy onMacro related textual merge conflicts. For header
file related merge conflicts, Gmerge has a modest accuracy of 60.0%.
This is mainly because Gmerge does not have the domain-specific
knowledge for the repository in the input, which is used to resolve
header file related merge conflicts. Fig. 14 is such an example that
can only be resolved by using prior domain-specific knowledge.

1 Upstream (Chromium):

2 + #include “base/notreached.h”

3 Downstream (Edge):

4 - #include “base/logging.h”

5 + #include “base/mojom/scoped_native_library.h”

Figure 14: A merge conflict that cannot be resolved with-
out prior domain-specific knowledge. The “base/logging.h”
should always be removed from the merge resolution be-
cause Edge uses a different logging system.

To resolve such amerge conflict, the existing solution [16] crafted
a new domain-specific language that captures the patterns from
historical data as resolution strategies, and used program synthesis
to learn such repeated resolutions. Applying the learned strategies
to the new unseen merge conflicts will automatically synthesize
a resolution. However, without access to the historical data of the
full repository, the following “ always deleting logging.h” pattern
cannot be inferred by Gmerge.

Gmerge uses a pre-trained GPT-3 model to resolve merge con-
flicts, which has significant engineering benefits as it does not
require expensive, task-specific fine-tuning. However, for some
specific types of textual merge conflicts, for example, the conflict

86

Using Pre-trained Language Models to Resolve Textual and Semantic Merge Conflicts (Experience Paper) ISSTA ’22, July 18–22, 2022, Virtual, South Korea

resolution is strictly composed of lines from the input [8], fine-
tuning the model could be a promising direction to pursue. We plan
to explore this possibility in future work.

In summary, this case study shows that Gmerge has competitive
performance on problems where current SOTA approaches require
special-purpose domain-specific languages (DSL) for program syn-
thesis. It highlights that language models still do not obviate the
need for domain-specific investments for the merge conflict prob-
lem. Furthermore, even when the data curation is not feasible due
to the lack of repository information, we show that prompt engi-
neering is still useful to improve the accuracy of Gmerge.

7 RELATEDWORK
Semantic merge conflict. Semantic merge conflicts occur when
the merged code cannot be successfully compiled. This problem
was first introduced by Horwitz et al. [12] and later formalized
by Yang et al. [28] in the 1990s. Recent studies [7, 9] have shown
that such a bad merge in the code delayed the development cy-
cle or caused damage by simply leaving bugs in the code. As a
result, semantics merge conflict detection [21] and resolution ap-
proaches [19, 22] have been proposed. FSTMERGE [2] is the first
semi-structured merge tool. JDIME [1] automatically tunes a semi-
structured merge based conflict locations detection and resolution.
NLX_REG [17] uses a large language model to synthesize regular
expressions. SAFEMERGE [21] prevents merge conflicts by defining
formal specifications for the based code, variants of the code and
the final merged code. However, it did not directly produce the
merge conflict resolutions as Gmerge does.

The closest work to ours is the MrgbldBrkFixer [22]. It analyzes
the AST diffs for changes in the upstream to construct a patch for
merge conflicts. However, MrgbldBrkFixer still requires developers’
manual work to classify the build breaks, and the tool heavily
relies on the AST analysis for C++ code only. In contrast, Gmerge
is scalable, fully automated and language-agnostic by leveraging
large scale language models.
Textual merge conflict. Textual merge conflicts have been long
known as a severe and challenging problem, as reported in prior
studies [9, 16]. As a result, textual merge conflict mining and de-
tection approaches [1, 5, 11, 15] have been proposed. Going one
step further than bad merge prevention [27], we have recently
witnessed great progress via program synthesis[16] and machine
learning [8] to directly resolve merge conflicts. Deepmerge [8] and
MergeBERT [23] required customized and expensive machine learn-
ing models. Pan et al.[16] studied the historical data of bad merge to
design special purposed domain-specific languages (DSL) for pro-
gram synthesis to a single C++ project. IntelliMerge [20] studied
refactoring caused merge conflicts in software development and
evolution in Java programs.

8 CONCLUSION
In this paper, we explored the feasibility of leveraging k-shot learn-
ingwith large languagemodels for resolving variousmerge conflicts
(both textual and semantic). Our results demonstrate that language
models have the potential to be useful for this important problem in
software engineering by providing cost-effective solutions ranging
from SOTA performance on some domains (e.g., semantic merge

conflicts in Edge), while providing competitive performance on
other domains (e.g., textual merge conflicts in Edge). Our work also
illustrates the importance of prompt engineering for these language
models as an avenue for research, including automating the most
effective prompts given data from a domain.

ACKNOWLEDGMENTS
We thank ISSTA reviewers for their insightful comments. We thank
Pallavi Choudhury and Jessica Wolk for their data collection and
valuable feedback for this work. We also thank Matt Elacqua for
proofreading this work. Jialu Zhang is supported in part by NSF
grants, CCF-1715387. Ruzica Piskac is supported in part by NSF
grants, CCF-2131476, CCF-1553168 and CNS-1565208.

REFERENCES
[1] Sven Apel, Olaf Leßenich, and Christian Lengauer. 2012. Structured Merge with

Auto-Tuning: Balancing Precision and Performance. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering (Essen,
Germany) (ASE 2012). ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/2351676.2351694

[2] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian
Kästner. 2011. Semistructured Merge: Rethinking Merge in Revision Control
Systems. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Eu-
ropean Conference on Foundations of Software Engineering (Szeged, Hungary)
(ESEC/FSE ’11). Association for Computing Machinery, New York, NY, USA,
190–200. https://doi.org/10.1145/2025113.2025141

[3] Christian Bird and Thomas Zimmermann. 2012. Assessing the Value of Branches
with What-If Analysis (FSE ’12). Association for Computing Machinery, New
York, NY, USA, Article 45, 11 pages. https://doi.org/10.1145/2393596.2393648

[4] Tom B. Brown et al. 2020. Language Models are Few-Shot Learners. In NeurIPS
2020, December 6-12, 2020, virtual. https://proceedings.neurips.cc/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[5] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Proactive
Detection of Collaboration Conflicts. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (Szeged, Hungary) (ESEC/FSE ’11). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/2025113.2025139

[6] Mark Chen et al. 2021. Evaluating Large Language Models Trained on Code.
arXiv:2107.03374 [cs.LG]

[7] Cleidson R. B. de Souza, David Redmiles, and Paul Dourish. 2003. "Breaking
the Code", Moving between Private and Public Work in Collaborative Software
Development (GROUP ’03). ACM, New York, NY, USA, 105–114. https://doi.org/
10.1145/958160.958177

[8] Elizabeth Dinella, Todd Mytkowicz, Alexey Svyatkovskiy, Christian Bird, Mayur
Naik, and Shuvendu K. Lahiri. 2021. DeepMerge: Learning to Merge Programs.
arXiv:2105.07569 [cs.SE]

[9] Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and André van der Hoek. 2020.
On the Nature of Merge Conflicts: A Study of 2,731 Open Source Java Projects
Hosted by GitHub. IEEE Transactions on Software Engineering (2020). https:
//doi.org/10.1109/TSE.2018.2871083

[10] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work Prac-
tices and Challenges in Pull-Based Development: The Contributor’s Perspective
(ICSE ’16). 285–296. https://doi.org/10.1145/2884781.2884826

[11] Mário Luís Guimarães and António Rito Silva. 2012. Improving Early Detection
of Software Merge Conflicts. In Proceedings of the 34th International Conference
on Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press.

[12] S. Horwitz, J. Prins, and T. Reps. 1988. Integrating Non-Intering Versions of
Programs. In POPL (San Diego, California, USA). ACM, 133–145.

[13] Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram K. Rajamani, and Rahul Sharma. 2022. Jigsaw: Large
Language Models meet Program Synthesis. In ICSE. IEEE, 1219–1231.

[14] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina
Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu
Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew
Knight, Benjamin Chess, and John Schulman. 2021. WebGPT: Browser-assisted
question-answering with human feedback. arXiv:2112.09332 [cs.CL]

[15] Hung Viet Nguyen, My Huu Nguyen, Son Cuu Dang, Christian Kästner, and
T. Nguyen. 2015. Detecting semantic merge conflicts with variability-aware
execution. Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (2015). https://doi.org/10.1145/2786805.2803208

[16] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu K. Lahiri,
andMike Kaufman. 2021. Can Program Synthesis be Used to LearnMerge Conflict

87

https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/2393596.2393648
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/2025113.2025139
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/958160.958177
https://doi.org/10.1145/958160.958177
https://arxiv.org/abs/2105.07569
https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1145/2884781.2884826
https://arxiv.org/abs/2112.09332
https://doi.org/10.1145/2786805.2803208

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K. Lahiri

Resolutions? An Empirical Analysis. In ICSE 2021, Madrid, Spain, 22-30 May 2021.
IEEE.

[17] Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun
Radhakrishna, Gustavo Soares, and Ashish Tiwari. 2021. Multi-Modal Program
Inference: A Marriage of Pre-Trained Language Models and Component-Based
Synthesis. Proc. ACM Program. Lang. 5, OOPSLA, Article 158 (oct 2021), 29 pages.
https://doi.org/10.1145/3485535

[18] Victor Sanh et al. 2021. Multitask Prompted Training Enables Zero-Shot Task
Generalization. arXiv:2110.08207 [cs.LG]

[19] Danhua Shao, Sarfraz Khurshid, and Dewayne E. Perry. 2009. SCA: A Semantic
Conflict Analyzer for Parallel Changes (ESEC/FSE ’09). ACM, New York, NY, USA,
291–292. https://doi.org/10.1145/1595696.1595747

[20] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianxiang
Wang. 2019. IntelliMerge: A Refactoring-Aware Software Merging Technique. 3,
OOPSLA (2019). https://doi.org/10.1145/3360596

[21] Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri. 2018. Verified Three-Way
Program Merge. Proc. ACM Program. Lang. 2, OOPSLA, Article 165 (Oct. 2018).
https://doi.org/10.1145/3276535

[22] Chungha Sung, Shuvendu K. Lahiri, Mike Kaufman, Pallavi Choudhury, and Chao
Wang. 2020. Towards understanding and fixing upstreammerge induced conflicts
in divergent forks: an industrial case study. In ICSE-SEIP 2020: Seoul, South Korea,

27 June - 19 July, 2020. ACM. https://doi.org/10.1145/3377813.3381362
[23] Alexey Svyatkovskiy, Todd Mytkowicz, Negar Ghorbani, Sarah Fakhoury, Eliz-

abeth Dinella, Christian Bird, Neel Sundaresan, and Shuvendu Lahiri. 2021.
MergeBERT: Program Merge Conflict Resolution via Neural Transformers.
arXiv:2109.00084 [cs.SE]

[24] Gust Verbruggen, Vu Le, and Sumit Gulwani. 2021. Semantic programming by
example with pre-trained models. In OOPSLA. ACM. https://doi.org/10.1145/
3485477

[25] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Autore-
gressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax.

[26] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. 2021. Finetuned Language
Models Are Zero-Shot Learners. arXiv:2109.01652 [cs.CL]

[27] Jan Wloka, Barbara G. Ryder, Frank Tip, and Xiaoxia Ren. 2009. Safe-commit
analysis to facilitate team software development. In 31st International Confer-
ence on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings. IEEE, 507–517. https://doi.org/10.1109/ICSE.2009.5070549

[28] Wuu Yang, Susan Horwitz, and Thomas Reps. 1990. A Program Integration
Algorithm That Accommodates Semantics-Preserving Transformations. SIGSOFT
Softw. Eng. Notes 15, 6 (Oct. 1990), 11 pages. https://doi.org/10.1145/99278.99290

88

https://doi.org/10.1145/3485535
https://arxiv.org/abs/2110.08207
https://doi.org/10.1145/1595696.1595747
https://doi.org/10.1145/3360596
https://doi.org/10.1145/3276535
https://doi.org/10.1145/3377813.3381362
https://arxiv.org/abs/2109.00084
https://doi.org/10.1145/3485477
https://doi.org/10.1145/3485477
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2109.01652
https://doi.org/10.1109/ICSE.2009.5070549
https://doi.org/10.1145/99278.99290

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Semantic Merge Conflict in Divergent Forks
	2.2 Textual Merge Conflict in Divergent Forks

	3 Background
	4 System Overview
	5 Case Study 1: Resolving Semantic Merge Conflicts for A Divergent Fork
	5.1 Insights: Applying k-shot Learning to Resolve Semantic Merge Conflicts
	5.2 Data Collection and Curation
	5.3 Prompt Engineering
	5.4 Evaluation
	5.5 More Than Renaming: Challenging Examples Resolved by Gmerge
	5.6 Discussion

	6 Case Study 2: Resolving Textual Merge Conflicts for A Divergent Fork
	6.1 Insights: Applying k-shot Learning to Resolve Textual Merge Conflicts
	6.2 Study Setup: Benchmark Description
	6.3 Prompt Engineering
	6.4 Evaluation and Discussion

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

