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Energy harvesting battery-free embedded devices rely only on ambient energy harvesting that enables stand-

alone and sustainable IoT applications. These devices execute programs when the harvested ambient energy

in their energy reservoir is sufficient to operate and stop execution abruptly (and start charging) otherwise.

These intermittent programs have varying timing behavior under different energy conditions, hardware con-

figurations, and program structures. This article presents Energy-aware Timing Analysis of intermittent Pro-

grams (ETAP), a probabilistic symbolic execution approach that analyzes the timing and energy behavior of

intermittent programs at compile time. ETAP symbolically executes the given program while taking time and

energy cost models for ambient energy and dynamic energy consumption into account. We evaluate ETAP

by comparing the compile-time analysis results of our benchmark codes and real-world application with the

results of their executions on real hardware. Our evaluation shows that ETAP’s prediction error rate is be-

tween 0.0076% and 10.8%, and it speeds up the timing analysis by at least two orders of magnitude compared

to manual testing.
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ologies → Model development and analysis; Symbolic and algebraic algorithms; • Computer sys-
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1 INTRODUCTION

Advancements in energy-harvesting circuits and ultra-low-power microelectronics enable modern
battery-free devices that operate by using only harvested energy. Recent works have demonstrated
several promising applications of these devices, such as battery-free sensing [29, 38, 41] and au-
tonomous robotics [80]. These devices also pave the way for new stand-alone, sustainable appli-
cations and systems, such as body implants [34] and long-lived wearables [77], where continuous
power is not available and changing batteries is difficult.

Battery-free devices can harvest energy from several sporadic and unreliable ambient sources,
such as solar [58], radio-frequency [38], and even plants [43]. The harvested energy is accumu-
lated in a tiny capacitor that can only store a marginal amount of energy. The capacitor powers
the microcontroller, sensors, radio, and other peripherals. These components drain the capacitor
frequently. When the capacitor drains out, the battery-free device experiences a power failure and
switches to the harvesting of energy to charge itself. When the stored energy is above a thresh-
old, the device reboots and becomes active again to compute, sense, and communicate. Successive
charge-discharge cycles lead to frequent power failures, and in turn, intermittent execution of pro-
grams. Each power failure leads to the loss of the device’s volatile state, i.e., registers, memory, and
peripheral properties.

To cope with power failures and execute programs intermittently so the computation can
progress and memory consistency is preserved, researchers developed two recovery approaches
supported by runtime environments. The first one is to store the volatile program state into non-
volatile memory with checkpoints placed in the program source [7, 9, 40, 42, 48, 51, 63, 78, 81].
Checkpointing approaches differ based on how checkpoints are triggered. In static checkpoint-
ing [4, 48, 63, 78], programmers can place checkpoints at arbitrary points in the code or set a timer
for checkpointing. However, voltage tracker hardware triggers the CPU to get a checkpoint in the
dynamic checkpointing [7, 8, 15, 42]. In both approaches, checkpointing size can be static or dy-
namically changing at runtime. Another one is the task-based programming model [18, 50, 80], in
which programs are a collection of idempotent and atomic tasks. Several studies extended these re-
covery approaches by considering different aspects, e.g., I/O support [65], task scheduling [41, 52],
adaptation [5, 54], virtualization [23], and timely execution [39, 44].

Considerable research has been devoted to compile-time analysis to find bugs and anomalies
of intermittent programs [53, 70] and structure them (via effective task splitting and checkpoint
placement) based on worst-case energy-consumption analysis [1, 19]. Despite these efforts, no at-
tention has been paid to analyzing the timing behavior of intermittent programs affected by several
factors, such as the energy availability of the deployment environment, the power consumption
of the target hardware, capacitor size, program input space, and program structure (checkpoint
placement). Without such an analysis, programmers will never know at compile-time if their in-
termittent programs execute as they are intended to do in a real-world deployment. Worse still, it
is extremely costly and time-consuming to analyze the timing behavior of intermittent programs
on real deployments, because programmers need to run the programs multiple times on the target
hardware with various ambient energy profiles, hardware configurations, and program inputs and
structuring.
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As an example, consider a deployment environment with low ambient energy and frequent
power failures. The computing progresses slowly due to long charging periods, and in turn, the
program throughput may not meet the expectations (e.g., a batteryless long-range remote visual
sensing system takes a picture every 5 minutes and transmits the relevant ones every 20 minutes).
If the program execution time is not what is expected, then programmers might increase the capac-
itor size, change the target hardware, or remove some checkpoints. These changes may not always
lead to what is intended (e.g., the bigger the capacitor size is, the longer the charging takes). There-
fore, programmers might have to deploy their programs into the target platform several times and
run them in the operating environment to check if they meet the desired throughput. Having es-
timations at a low cost without need to test and re-test multiple times on real hardware, they can
rapidly restructure the program (e.g., add or remove checkpoints) or reconfigure the hardware (e.g.,
change the microcontroller, its frequency, or capacitor size) to improve the program execution time
and, in turn, the throughput.

Goal and Challenges. Our goal in this article is to estimate statically, at compile-time, the tim-
ing behavior of intermittent programs considering different energy modes, hardware configura-
tions, program input space, and program structure. The state-of-the-art approaches exploit sto-
chastic models to represent the dynamic energy-harvesting environments, e.g., several models
based on empirical data for RF [55, 56] and solar [26] energy-harvesting environments. Similarly,
several techniques [1, 19] extract the energy-consumption characteristics of the target microcon-
troller instruction set to model its energy consumption. These two stochastic models, capacitor
size, charging/discharging model, program input space, and program structure form a multidi-
mensional space. The main challenge that we solve is to devise a program analysis solution that
considers this multidimensional space to derive, at compile-time, the execution time probabilities
of the given intermittent program.

Probabilistic symbolic execution [27] is an ideal solution to tackle this challenge, since it is
a compile-time program analysis solution quantifying the likelihood of properties of program
states concerning program non-determinism. However, existing techniques consider only typi-
cal program non-determinism, e.g., program input probability distribution. Therefore, we need a
dedicated symbolic execution technique that integrates intermittent program non-determinism
(charging/discharging model and environment energy profile) and other intermittent program
characteristics (capacitor size and program structure).

Contributions. In this article, we propose, develop, and assess Energy-aware Timing Analysis

of intermittent Programs (ETAP), a probabilistic symbolic execution approach for estimating the
timing behavior of intermittent programs. We give an overview of ETAP’s functionality in Figure 1.
ETAP generates the execution time probability distributions of each function in the input program.
Programmers may annotate programs with timing requirements for the execution time between
any two lines of code or the time required to collect and process a given amount of data. ETAP also
reports the execution time probability distributions for those requirements. It supports the static
checkpoint programming model but can easily be extended to analyze dynamic checkpointing and
task-based programs. ETAP extends Clang [16] to recognize ETAP-specific configurations and uses
LLVM compiler [45]. It employs libraries of R environment [62] for symbolic computations and
SMT [20] solver to detect infeasible paths. Our symbolic execution technique is designed not to be
specific to any microcontroller architecture.

We compared our analysis to the program executions in a radio-frequency energy-harvesting
testbed setup. The evaluation results show that ETAP’s prediction error rate is between 0.0076%
and 10.8%. To summarize, our contributions include:
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Fig. 1. The execution time of an intermittent program depends on energy-harvesting dynamics, capacitor
size, the power consumption of the target microcontroller (MCU), and checkpoint overhead. Without hard-
ware deployment, ETAP predicts timing behavior of an intermittent program.

(1) Novel Analysis Approach. We introduce a novel probabilistic symbolic execution ap-
proach that predicts the execution times of intermittent programs and their timing behavior
considering intermittent execution dynamics.

(2) New Analysis Tool. We introduce the first compile-time analysis tool that enables program-
mers to analyze the timing behavior of their intermittent programs without target platform
deployment.

(3) Evaluation on Real Hardware. ETAP correctly predicts the execution time of intermittent
programs with a maximum prediction error less than 1.5% and speeds up the timing analysis
by at least two orders of magnitude compared to manual testing.

We share ETAP as a publicly available tool1 with the research community. We believe that ETAP
is a significant attempt to provide the missing design-time analysis tool support for developing
intermittent applications.

The rest of the article is structured as follows: Section 2 provides the background information
regarding intermittent programming, timing behavior analysis, and probabilistic symbolic analysis.
Section 3 introduces the challenges for timing analysis of intermittent programs. In Section 4, we
present an overview of ETAP. Sections 5 to 8 describe the core technical solutions. Section 9 reports
on the results of the empirical validation conducted with four benchmarks and a sense and send
application on real hardware. In Section 10, we discuss the related work. Section 11 presents some
insights into the evaluation and limitations of the approach. We conclude the article in Section 12.

2 MOTIVATION AND BACKGROUND

A typical battery-free device such as WISP [67], WISPCam [57], Engage [21], and Camaroptera [58]
includes (i) an energy harvester converting incoming ambient energy into electric current;

1https://github.com/ferhaterata/etap.
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(ii) energy storage, typically a capacitor, to store the harvested energy to power electronics; and
(iii) an ultra-low-power microcontroller orchestrating sensing, computation, and communication.
The microcontrollers in these platforms, e.g., MSP430FR series [74], comprise a combination of
volatile (e.g., SRAM) and non-volatile (e.g., FRAM [75]) memory to store data that will persist
upon power failures.

2.1 Programming Intermittent Systems

Battery-free platforms operate intermittently due to frequent power failures. Several programming
models (supported by runtimes) have been proposed to mitigate the effects of unpredictable power
failures and enable computation progress while preserving memory consistency (e.g., References [18,
44, 80]). Generally speaking, these models backup the volatile state of the processor into the non-
volatile memory so the computation can be recovered from where it left upon reboot. Moreover,
memory consistency should also be ensured so the backed-up state in the non-volatile memory will
not be different from the volatile one, or vice versa.

Programming models for intermittent computing have two classes. Checkpointing systems [44]
snapshot the volatile state, i.e., the values of registers, stack, and global variables, in persistent
memory at specific points—either defined by the programmer at compile-time or decided at run-
time. Thanks to checkpoints, the state of the computation can be recovered after a power failure
using the snapshot of the system state. Task-based systems [18, 80] employ a static task-based
model. The programmer decomposes a program into a collection of tasks at compile-time and im-
plements a task-based control flow (connecting task outputs with task inputs). The runtime keeps
track of the active task, restarts it upon recovery from intermittent power failures, guarantees its
atomic completion, and then switches to the next task in the control flow.

2.2 The Need for Timing Behavior Analysis

Using existing intermittent programming models, programmers mainly focus on the progress,
memory consistency, and functional correctness of their programs. Without analyzing the timing
behavior affected by several factors, programmers cannot be sure if their intermittent programs
meet throughput expectations in a deployment environment.

Figure 2 depicts how the execution time of a checkpointed code changes under different envi-
ronmental conditions. In high-energy environments, the capacitor charges faster, the program pro-
gresses quickly, the checkpoints are triggered more frequently, and the execution needs a shorter
time. The same program takes much longer in low-energy environments. The device is mostly off
to charge its capacitor and becomes active only for a short time to perform computation.

Some runtime environments, e.g., References [39, 44, 80], support the expression of timeliness
in program source and check if sensing and computation are handled timely at runtime. They can
catch the sensor readings that lost their timeliness due to power failures and long charging times,
throw away these values, or omit their computation. Even though catching data and computation
expiration are beneficial, programmers cannot reason about the timing behavior of their intermit-
tent program at compile time due to many factors such as power failure frequency and capacitor
charging time, or checkpoint placement. For instance, sensor readings and computations might ex-
pire continuously in specific energy-harvesting conditions due to a wrong checkpoint placement
or insufficient capacitor size. The runtime environments can catch these expirations to prevent un-
necessary processing and save precious harvested energy. However, the program does not produce
any meaningful results due to frequent data expirations. With timing behavior analysis, program-
mers will know, in advance, how their programs will execute on the target environment (e.g., if
there will be frequent data expirations) and perform the necessary actions to let their programs
meet their expectations.
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Fig. 2. Dynamics of Intermittent Execution. A sample application composed of matrix multiplication in a
nested loop. The runtime behavior of the intermittent program (e.g., execution time) depends on the envi-
ronmental factors (e.g., ambient energy), checkpoint placement and overhead, and the target platform (e.g.,
power consumption and capacitor size). Due to different ambient energy (and charging times), the same
program may have different execution times on the same hardware.

2.3 Factors Affecting Timing Behavior

Energy Harvesting Environment. The availability of ambient energy sources is unpredictable. The
harvested energy depends on several factors, such as the energy source type (e.g., solar or radiofre-
quency), distance to the energy source, and the efficiency of the energy-harvesting circuit. A prob-
abilistic model of the energy-harvesting environment can be derived based on observations and
profiling [26, 55, 56]. When incoming power is strong enough, the capacitor charges rapidly, and
the device becomes available quickly after a power failure. At low input power, the charging is
slower and takes more time.

Energy Storage. The interaction between the capacitor and the processor in battery-free devices
plays a crucial role in the program execution time. When the capacitor is fully charged, the device
turns on and starts program execution. When the stored energy in the capacitor drops below a
threshold, the device dies. One of the factors that affect the device on time is the capacitor size. If
the capacitor size is large, then the device has more energy to spend until the power failure, but
charging the capacitor takes more time. Prior works, e.g., Reference [55], proposed models that
capture the charging behavior of capacitors.

Target Platform. The power requirements of the target platform affect the end-to-end delay of
the program execution. A program might take a long time to finish on platforms with high power
requirements, since the capacitor discharges faster. Hence, the program might drain the capacitor
more frequently (since instructions consume more energy in a shorter time). Therefore, the device
is interrupted by frequent power failures, and it is unavailable and charging its capacitor for long
periods. We can model the target platform by using the instruction-level energy-consumption pro-
files, as suggested in References [1, 19]. Another factor that affects the energy consumption of
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the target platform is the condition of the peripherals. Since peripherals have different energy
consumption and timing behavior, they can not be standardized. Therefore, programmers should
model peripherals and give the models as input to ETAP. For instance, programmers should mea-
sure the sensor energy consumption and sensing time in a sensing application for ETAP inputs.
They should also annotate the sensing function in the intermittent program to be analyzed.

Intermittent Runtime. The programming model and the underlying runtime affect the execution
time of intermittent programs. For instance, the checkpointing overhead is architecture-dependent,
since the number of registers and the volatile memory size change from target to target. Moreover,
checkpoint placement is also crucial: The more frequent the checkpoints are, the more energy
consumed, but less computation is lost upon a power failure.

Program Inputs. Intermittent program inputs are mostly the sensor readings that depend on the
environmental phenomena. Different inputs lead to different execution flow, and in turn, energy
consumption. The energy consumption affects the frequency of power failures and the charging
time.

3 CHALLENGES FOR TIMING ANALYSIS OF INTERMITTENT PROGRAMS

The main challenge is to devise a technique that facilitates the compile-time timing analysis of in-
termittent programs, considering the factors mentioned in the previous section. Since these factors
can be represented using stochastic models [1, 19, 26, 55, 56], probabilistic symbolic execution—a
static analysis technique calculating the probability of executing parts of a program [27]—becomes
an excellent fit for timing behavior analysis. Unfortunately, existing probabilistic symbolic execu-
tion engines [14, 25, 27] do not support low-level code analysis; they are built on top of Symbolic
PathFinder, which is a symbolic execution engine for Java bytecode. Furthermore, they consider
only typical program non-determinism, e.g., program input probability distribution. Most impor-
tantly, ETAP needs a symbolic memory model with a non-volatile memory abstraction for back-
ups, program restarts, and energy awareness to steer the path exploration algorithm by visiting
all potential divergent power-failure paths in an intermittent program. Therefore, it is not feasi-
ble to integrate or reuse the existing probabilistic symbolic execution techniques for analyzing
intermittent programs. Thus, we introduce a hand-rolled probabilistic symbolic execution engine
supporting intermittent program semantics.

3.1 Probabilistic Symbolic Analysis

Symbolic execution analyzes a program to discover which program inputs execute which program
parts. It searches the execution tree of a program using symbolic values for program inputs. From
the execution tree, it generates program paths with a path condition, i.e., a conjunction of con-
straints on program inputs (path constraints). When symbolic execution reaches a node of the
execution tree, it evaluates the path condition describing the path from the root to that node. If
the condition is satisfiable, then it continues in that branch of the tree. If not, then the branch is
known to be unreachable. The output of satisfiability checking is either false or true. It does not
provide how frequently a path or a basic block executes. However, probabilistic symbolic execu-
tion estimates finer approximations of the probability of path conditions being true [27]. For a
random input following a discrete uniform distribution, we can count the number of solutions to
a path constraint and divide it by the product of the input domain to get the probability of the
path condition. One approach for counting the number of a set of path constraints is to use model

counters. Model counting is known as the problem of determining the number of assignments sat-
isfying a given formula [32, 68, 76]. Its procedures are employed to compute the path probabilities
in probabilistic symbolic execution [24, 27, 59].
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ETAP follows a different approach to support sensor inputs as random variables following com-
plex distributions. It models path execution environments with instances of an abstract memory
model in which LLVM instructions are probabilistically interpreted. We employ two methods in
evaluating probabilities of arithmetic instructions: the linear location-scale transformation of a ran-

dom variable and the sum of two random variables (a.k.a. convolution). Linear transformations of
named distributions have mostly analytical solutions; however, we need to employ computational
approaches for non-linear transformations. It is the same for convolution operations. For instance,
the sum of two independent normally distributed (Gaussian) random variables also follows a normal

distribution (its mean is the sum of the two means, and its variance being the sum of the two vari-
ances). However, the sum of two random variables, which follow Uniform and Normal distributions,
cannot be expressed with a closed-form expression. Therefore, in these cases, ETAP approximates
these probabilities using numerical methods provided by libraries of the R framework.

3.2 Probabilistic Symbolic Storage for Checkpoints/Backups and Restarts

A symbolic memory model (a.k.a. symbolic environment or symbolic store) describes the approach
used by a symbolic execution engine to handle memory operations such as loads and stores per-
formed by the analyzed program. We could perform these operations concerning a specific memory
object or a memory address [6, 12] in symbolic execution engines for low-level code. Since ETAP
employs LLVM, its implementation tracks objects stored in memory, including their memory loca-
tion and type and size information. While simulating restarts after power failures, it moves those
objects to a separate “non-volatile region’’ to provide an infrastructure for different checkpoint-

ing or backup strategies (e.g., static checkpointing [4, 48, 63, 78] or hardware-triggered (dynamic)
checkpointing [7, 8, 42]) in its symbolic memory model.

LLVM arithmetic and logical operators (instructions) on random variables are overloaded to
produce transformed probability distributions. Once the symbolic execution reaches a branch
point, ETAP integrates the probability function of the transformed distribution into the execution
branches over the region of interest. This function tells us the probability of taking that branch.
After stepping over a branch point, we update the random variables in the symbolic store of the
path with the information gained.

3.3 Energy-awareness

Another challenge for probabilistic timing analysis of intermittent programs is to model power
failures over program executions: divergent execution paths induced by power failures and their
emergent behavior. Our key insight is to drive probabilistic symbolic execution with a probability
distribution representing the remaining energy budget at the capacitor that gets updated after
executing each basic block. Since each basic block’s energy-consumption behavior depends on
executed instructions and called function, ETAP must also consider the probability distribution of
energy consumption of each basic block as well as function calls.

All these aspects will be elaborated on in the subsequent sections.

4 ETAP: SYSTEMS OVERVIEW

The process in Figure 3 presents an overview of ETAP. Its steps are fully automated. Sections 6–8
provide details of each step. In Step 1, ETAP takes an intermittent program and time and energy
cost profiles of the target architecture (main.c and msp430 in Figure 3). It automatically generates
a cost model with the program having split program blocks in LLVM IR [45] (cost.R and main.ll).
The cost model is an R specification having LLVM program blocks to which time and energy costs
are assigned as probabilistic cost expressions.
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Fig. 3. ETAP consists of three stages after inputs are specified (see Section 5): (i) Generation of cost models
using binary analysis and program transformation (see Section 6), (ii) Probabilistic Path Exploration that
generates probabilities of execution traces based on sensor input distributions and program semantics (see
Section 7), and (iii) Energy-aware symbolic execution based on intermittent execution of program semantics,
microcontroller’s energy consumption, and capacitor’s energy capacity (see Section 8). Under given config-
urations, ETAP generates reports about timing distributions.

We designed our symbolic execution technique not to be specific to any microcontroller ar-
chitecture and instruction set. Therefore, our symbolic execution runs not on microcontroller in-
structions but the program blocks in LLVM IR. This design choice contributes to the scalability
of ETAP, since generating paths on program block-level leads to fewer divergent power failure

paths to be analyzed. ETAP needs the time and energy cost profiles of the instruction types of
each new target architecture platform organized under addressing modes. In Section 9, we derived
the cost profiles for the MSP430FR5994 platform [74] through empirical data collection. It is a
one-time effort for each new platform. ETAP models power failures during the transition from
one basic block to another instead of after each instruction execution. However, compilers may
generate relatively big basic blocks and, thus, symbolic execution over program blocks observe
less power failures, which may lead to coarse approximations of energy costs in explored paths.
Therefore, to increase the precision of the symbolic analysis, in Step 1, ETAP automatically splits
blocks having outlier energy costs (maximum outliers) among all the program block energy costs.
We employed the IQR method [47] to detect outlier blocks in a given program based on energy
costs.

In Step 2, ETAP symbolically executes the program blocks in LLVM IR (main.ll) with the cost
model (cost.R) to generate program paths and path execution probabilities (main.paths) based on
the sensor input distribution. In Step 3, ETAP takes the ambient energy profile, capacitor size,
program paths, and path execution probabilities as input. Each path is symbolically executed with
stochastic ambient energy to estimate execution time probability distributions of program paths
and functions for intermittent execution.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 23. Publication date: January 2023.
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Fig. 4. Example Intermittent Program with ETAP Pragmas. In the classify function, featurize and
alert function calls are expected to take relatively more time and consume more energy. Therefore, to
save the progress of computation, the programmer may apply alternative checkpoint configurations such
as adding checkpoints before and after every major computation conservatively (Program Variant #2 has
checkpoints 1, 2, 3, and 4); or placing checkpoints at enter and exit of the function (Variant #1 has
only checkpoint 1 and 4 —checkpoints colored with red in the figure); or saving the progress of featurize
or alert computations separately (Variant #3 has checkpoints 2 and 3 —checkpoints colored with blue
in the figure). The question that ETAP can answer is which checkpoint placement strategy would meet the
given timing requirement best under a set of given capacitor alternatives.

5 SPECIFICATION OF ETAP INPUTS

Engineers specify ETAP inputs (e.g., timing requirements and probability distributions of sensor in-
puts) via the “#pragma’’ directive [28]. Figure 4 presents an example intermittent program (main.c)
and a header file (checkpoint.h) for the checkpoint operation. The runtime environment provides
the header file [44], which programmers extend with pragmas for the time and energy cost distri-
butions of the checkpoint operation (τcp ,Ecp ), ambient energy-harvesting time profile (τharvest ),
and capacitor size (Emin ,Emax ).

The main function of the example program samples, classifies, and sends the input data in a loop
(main.c); each loop iteration should execute in less than 1.5 second (“#pragma etap expires(1.5s)”
in main.c). Function classify interprets input data, alerts users, or reports an error (Lines 2–17). It
should finish in less than 40 milliseconds (Line 3). It has two checkpoints (Lines 6 and 15); the
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ALGORITHM 1: DFS for Probabilistic Path Exploration

1 Blocks(path)← Blocks(path) ⊕ Name(curr )

2 Timing(path)← Timing(path) ∗ Get(Costs , curr )

3 Eval(Instructions(curr ), env)

4 foreach succ in Successors(curr ) do

5 prob ← prob × BranchProbability(curr , succ , env)

6 if prob > 0 ∧ ¬IsMaxLoopReached then

7 Paths ← DFS(Paths , Costs , (b, succ , prob), CloneEnv(env), path)

8 return Paths ⊕ (Blocks(path), prob, Timing(path))

second checkpoint should be reached from the first checkpoint in less than 30 milliseconds
(“#pragma etap reachability(30ms))” in Line 14). The “reachability” pragma is to get the probability
distribution of reaching at the specified checkpoint. The “expires” pragma is to get the probabil-
ity distribution of timing at the specified point. The input distribution is discretized and modeled
(“#pragma distr’’ in Line 4). It is the mixture of two signals following the binomial distribution
(Binom(40, 0.4) and Binom(30, 0.6)).

6 GENERATION OF COST MODELS

ETAP generates a cost model with the intermittent program that has split program blocks in LLVM
IR (Step 1 in Figure 3). It employs Clang [16] to compile the input program into the LLVM IR
code. Each checkpoint call needs to be the first instruction in its basic block, because the symbolic
execution returns to the beginning of the basic block for a power failure. Therefore, ETAP splits
checkpoint calls, which are not the first instruction, from their basic blocks.

The LLVM IR code is compiled into the assembly code for the target hardware architecture.
ETAP performs a binary analysis to map the hardware instructions in the assembly code to the
basic blocks. It calculates the time and energy cost distributions of each basic block. To do so, it
convolves the cost distributions of all instructions in that block based on their types and addressing
modes (see Table 3). Some basic blocks may need much more energy than other basic blocks,
which may lead to coarse approximations of energy costs of the program paths. ETAP performs
a semantic- and cost-preserving program transformation to obtain more precise energy costs of
the program paths. Considering all the block energy costs for each function in the program, it
detects blocks having relatively high energy costs (i.e., takes them as outliers) and automatically
splits them. We used the IQR method [47] to find and split these blocks. We defined the energy
cost threshold value as Q3 + 1.5(IQR) (Q3 is the third quartile, and IQR is the interquartile range).

Figure 5 presents the control flow graph (CFG) of classify in Figure 4 (with four checkpoints).
Time and energy costs are modeled as normal distributions and encoded in an R specification
(cost.R in Figure 3). Each node represents a basic block. Blocks a and b, c and d, and g and h were
initially single blocks ETAP splits into two, as the checkpoint calls were not the first instruction.
No blocks are split for the threshold.

7 PROBABILISTIC PATH EXPLORATION

ETAP symbolically executes the basic blocks with the cost models in the R environment with
depth-first search (Step 2 in Figure 3). It generates program paths and their execution probabilities
for program execution without power failures. The program paths are later re-executed symboli-
cally with stochastic ambient energy to estimate its execution time probability distribution for
intermittent execution (see Section 8).
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Fig. 5. Control Flow Graph of Function classify with Program Variant #2. The figure shows the timing
(τ ) and energy (E) cost models of basic block if.then, which are automatically derived from the mapping
between the basic block in LLVM IR and the compiled target MSP430 assembly. Basic block if.then calls
featurize(); basic block if.then2 calls function alert(); and basic block if.else3 calls function error().
ETAP generates a basic block for each call to checkpoint() function.

ETAP calculates the path execution probability and the execution time probability distribution
for each program path in the function to be analyzed. Algorithm 1 gives the depth-first search for
probabilistic path exploration.

ETAP adds the visited (current) basic block of the CFG to the path (Line 1). It convolves the
execution time probability distribution of the path and the execution time cost distribution of
the visited block (Line 2). The block instructions in the path environment are evaluated to decide
which successor block to take in which branching conditions (Line 3). ETAP models path execu-
tion environments with instances of a symbolic memory model in which LLVM instructions are
probabilistically interpreted. For instance, in the LLVM instruction ‘‘%inc = add nsw i16 %i.0, 1,”
if “%i” is a random variable (r.v.) that follows a discrete probability distribution, the 16-bit integer
register %inc becomes an r.v., %inc ∼ %i.0 +1, through linear location-scale transformation [10].
If the instruction was among two registers, “%inc = add nsw i16 %i.0, %i.1” and in that “%i.0” and
“%i.1” are independent r.v.s, then the expression would be interpreted as the sum (integral) of two
r.v.s (convolution) [10]. The path execution probability is a conditional probability and recalculated
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for each new successor block. The new path probability is the multiplication of the current path
probability and the branch probability for the successor basic block (Line 5). Figure 5 shows the
probabilities in the example CFG. The paths are recursively explored until the path probability is
equal to zero or the maximum number of iterations for a loop is reached (Lines 6–7).

LLVM operators on distributions are overloaded to produce transformed distributions. When
symbolic execution has reached a branch point, ETAP integrates the probability function of the
transformed distribution that the execution branches on over the region of interest. This tells us
the probability of taking that branch. After stepping over a branch point, we perform state forking,
similar to mainstream symbolic execution engines [6, 13], and update the random variables in the
symbolic environment of the path with the information gained.

Linear transformations of named distributions have mostly analytical solutions; however, we
need to employ computational approaches if the transformation is non-linear (e.g., a logarithmic
transformation). This is also the case for convolution operations. For instance, the sum of two in-
dependent normally distributed (Gaussian) random variables also follows a normal distribution,
with its mean being the sum of the two means and its variance being the sum of the two variances;
however, the sum of two random variables, which follow Uniform and Normal distributions, re-
spectively, cannot be expressed with a closed-form expression, and therefore, in these cases, ETAP
approximates these probabilities using numerical methods.

For function classify in Figure 5, ETAP explores three paths i.e., π1: “a → b(cp) → c → d(cp) →
e(cp),” π2: “a → b(cp) → f → д → h(cp) → i → e(cp),” and π3: “a → b(cp) → f → j → i →
e(cp),” where cp indicates the blocks with the checkpoint operation. It calculates path execution
probabilities (or weights) associated with each path (ω1 = 0.648, ω2 = 0.058, and ω3 = 0.294).
The nodes labeled with small letters represent the basic blocks (e.g., a, b, c). Each basic block is
heat-map-colored based on its execution probability. Each path has an execution time probability
distribution (τ1, τ2, and τ3) that represents the path’s timing behavior while it is continuously
powered. It is the convolution of the execution time cost distribution of the basic blocks along the
path. Since the timing behavior is compositional when there is no power failure, ETAP considers
checkpoint (τcp ) and other function calls in the program path (τaler t , τf eatur ize , and τer ror ) while
convolving the cost distributions as follows:

τ1 ∼ a(τ ) ∗ b(τ ) ∗ τcp ∗ c(τ ) ∗ τf eatur ize ∗ d(τ ) ∗ τcp ∗ e(τ ) ∗ τcp

τ2 ∼ a(τ ) ∗ b(τ ) ∗ τcp ∗ f (τ ) ∗ д(τ ) ∗ τaler t ∗ h(τ ) ∗ τcp ∗ i(τ ) ∗ e(τ ) ∗ τcp

τ3 ∼ a(τ ) ∗ b(τ ) ∗ τcp ∗ f (τ ) ∗ j(τ ) ∗ τer ror ∗ i(τ ) ∗ e(τ ) ∗ τcp .

The execution time probability distribution of function classify for program execution with-
out power failures is a convex combination of all the timing distributions of its execution paths:
τclassif y ∼ ω1τ1 + ω2τ2 + ω3τ3. It is a univariate mixture distribution and represents the timing
behavior of the function while the energy is plentiful in the environment.

8 ENERGY-AWARE ANALYSIS OF PROGRAM PATHS

ETAP symbolically executes each program path with stochastic ambient energy to estimate its
execution time probability distribution for intermittent execution (Step 3 in Figure 3). Figure 6
presents an example path without power failures (π2: “a(cp) → b → c → d(cp) → e → f (cp)”
where cp indicates the blocks with the checkpoint operation) and illustrates its energy-aware sym-
bolic analysis. We relabel the blocks in path π2 to increase the readability in Figure 6. We also
initiate the symbolic analysis from block a to simplify the presentation.

The analysis starts with a non-deterministic initial capacitor energy budget, i.e., a uniform
random variable on the interval of the capacitor’s maximum and minimum thresholds, Einit ∼

Unif(Emin ,Emax ). ETAP divides the path into regions between two sequential checkpoints and
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Fig. 6. An Example Path derived for continuously-powered execution and its analysis for intermittent

execution.

between the beginning/end of the path and the first/last checkpoint in the path (“a → b → c ,”
“d → e ,” and “f ”). The path is analyzed region-by-region. The power failure probabilities are cal-
culated for each block in the first region based on the initial capacitor energy distribution (Einit ).
If a power failure is probable, then ETAP creates a path that returns to the checkpoint block. In
addition to the initial program path in the first region in Figure 6 (φ1: “a → b → c”), three new

paths are derived for power failures (e.g., φ3: “a → �b → a → b → c ,” where the power failure oc-
curs in block b). Each new path has only one power failure, because ETAP reports non-terminating

ones [19] that need more energy than the capacitor size.
For each path, ETAP subtracts the energy cost distributions of program blocks from the capacitor

energy through convolution; it sums (convolves) the time cost distributions of the blocks. The
result is the time and energy cost distributions of the paths in the first region (τ1, τ2, τ3, τ4, E1,
E2, E3, and E4). To reduce the number of convolution operations in the next region, ETAP derives
univariate mixture distributions (e.g., τmix1 ) from the cost distributions of the paths with power
failure (e.g., in region 1, τmix1 ∼ (ω2τφ2 ∗ω3τφ3 ∗ω4τφ4 ) ∗ τharvest , where ω2, ω3, and ω4 are failure
probabilities). These distributions are input time costs for the paths in the next region derived from
the power failure paths in the current region (e.g., φ2 ∼ τmix1 ∗ dτ ∗ (dτ ∗ eτ ) for φ2 in the second
region in Figure 6).

The current capacitor energy distribution is calculated for each path in the first region. For the
capacitor energy of the path without power failure, ETAP subtracts the energy cost distributions of
the blocks from the initial capacitor energy distribution through convolution, i.e., Ecurr ent ∼ Einit ∗

−(aϵ ∗ bϵ ∗ cϵ ). In the power failure paths, the capacitor is charged up to the maximum threshold
energy level during power failure (sleep mode). Therefore, while calculating their capacitor energy,
ETAP considers the maximum energy the capacitor can store, e.g., Ecurr ent ∼ Emax ∗ −(aτ ∗ bτ ∗

aτ ∗ bτ ∗ cτ ) for path φ3: “a → b → a → b → c .” It uses the final program paths, capacitor energy
levels, and cost distributions of the current region as the initial parameters of the next region. The
same mixture and convolution operations are repeated in each new region. In the last region,
the final energy and time probability distributions are obtained for the path under analysis (see
Region 3 in Figure 6).

As we described above, ETAP obtains the execution time probability distributions of each path
of the function under analysis. These distributions are also used to generate reports on how likely
timing requirements are met (see the 2nd column in Table 1). ETAP symbolically executes each path
of the function in Figure 5 for intermittent execution. The mixture distribution of the execution
time distributions of these paths is the execution time probability distribution of the function.

Figure 7 shows the reports of the execution time probability distributions of function classify

for intermittent execution under three different capacitor types (1 mF, 2 mF, and 5 mF) and three
different checkpoint placements (variant 1, variant 2, and variant 3 in Figure 4). The first functions
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Fig. 7. Reports of the Execution Time Probability Distributions (Cumulative Distribution Function) of func-
tion classify after symbolically executing with 1 MHz clock-rate under three different capacitor types and
three different checkpoint placements with the given τharvest profiles. The values on x-axis are in microsec-
onds. The blue vertical lines represent the first quartile, the median, and the third quartile, respectively; the
red vertical line is the mean of the probability distributions.

in Figure 7 are the probability density function (PDF), and the second ones are the cumula-

tive distribution function (CDF). As shown in Table 1, ETAP also generates a report for each
configuration.

When the capacitor size increases, the probability of failure paths decreases for all variants,
which is expected. Configurations (d), (f), (g), (h), and (i) in Figure 7 satisfy the timing requirement
(see Line 3 in Figure 4) with 0.8 probability (Pr (τclassif y ≤ 40ms) > 0.8). If we increase the capacitor
size from 2 mF to 5 mF, then the probability of meeting the requirement becomes 0.9 for all variants.
This increase our confidence in meeting the requirement, especially for configurations (g), (h),
and (i).

Program variant #1 and #3 have more stable timing behavior compared to variant #2 (less di-
vergent timing behavior in the probability distributions), and variant #3 performs slightly better
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Table 1. Timing Report of “#pragma Etap Expires(40ms)” for the Given Configuration Space in Figure 7

Configuration Timing Probability Meets Timing Confidence Intervals (ms)
Pr (τclassif y ≤ 40ms) Req.? 95% CI 90% CI 80% CI

Figure 7(a) 0.691 ✗ [19.2, 68.9] [21.8, 68.7] [22.1, 68.3]
Figure 7(b) 0.546 ✗ [19.2, 86.1] [39.4, 85.9] [30.7, 85.7]
Figure 7(c) 0.732 ✗ [10.6, 68.9] [11.0, 68.7] [22.0, 68.2]

Figure 7(d) 0.838 ✓ [19.2, 78.7] [21.6, 78.4] [22.0, 70.9]
Figure 7(e) 0.751 ✗ [19.2, 95.9] [30.2, 95.7] [30.6, 90.4]
Figure 7(f) 0.857 ✓ [10.6, 78.7] [10.9, 78.3] [22.0, 70.0]

Figure 7(g) 0.934 ✓ [19.1, 93.3] [19.5, 90.4] [22.0, 25.5]
Figure 7(h) 0.895 ✓ [19.1, 116 ] [19.5, 110 ] [30.5, 104 ]
Figure 7(i) 0.943 ✓ [10.6, 92.9] [10.9, 84.3] [21.9, 25.4]

Table 2. Charging Times (ms) of Capacitors in 95% Confidence Interval

40 cm distance 1 mF 2 mF 5 mF

τharvest [9.48 ms, 11.95 ms] [18.99 ms, 25.64 ms] [41.47 ms, 57.53 ms]

than variant #1 for all confidence intervals. Therefore, we can conclude that it would be better to
use a 5 mF capacitor powering the program variant #3 for function classify (see Figure 7(f)). 5 mF
capacitor has a higher energy level, and the probability of meeting the timing requirement would
be higher due to less power-failure probability. However, bigger capacitors would require more
time to store enough energy to power up the application, which would decrease the sampling rate
of the sensing application. In this analysis, the setup harvests energy from the emitted radio fre-

quency (RF) signals at a distance of 40 cm. The charging time distributions of the capacitors we
used are given in 95% confidence intervals in Table 2.

We can conclude that it would be better to minimize the capacitor size while meeting the timing

requirement. Also, a 2 mF capacitor would be the optimal selection for this setup under the given
timing requirement and energy profile.

9 EVALUATION

We now evaluate our prototype on four benchmarks and one real-world application to demonstrate
that: (i) ETAP correctly predicts the execution time of intermittent programs and (ii) it significantly
reduces the analysis time and efforts.

Section 9.1 presents our testbed setup (checkpoint implementation, energy-harvesting tools, and
host platform) for our evaluation. In Section 9.2, we describe the target platform and energy en-
vironment profiling used in the evaluation. Section 9.3 gives the results of our evaluation on the
benchmark programs. In Section 9.4, we give the evaluation results for a DNN-based person detec-
tion application.

9.1 Testbed Setup

Target Platform. We used TI’s MSP430FR5994 LaunchPad [74] development board as a target
platform. The operating frequency of the microcontroller (MCU) was set to 1 MHz for our
testbed experiments, however, we also investigated 4 MHz, 8 MHz, and 16 MHz clock-rates.
The MCU supports 20-bit registers and 20-bit addresses to access an address space of 1 MB. To
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infer instruction-level energy consumption and obtain timing models, we used TI’s EnergyTrace
software [72] sampling the energy consumption of programs at runtime by using the specialized
debugger circuitry on the development board. The precision of EnergyTrace was limited due to its
low sampling rate.

Checkpoint Implementation. This MCU has 256 KB of FRAM (non-volatile memory) to store data
that persists when there is no power. It also includes 4 KB of SRAM (volatile memory) to store
program variables with automatic scope. We implemented (i) a checkpoint routine (checkpoint())
that copies the volatile computation state (20-bit general-purpose registers, program counter, and
4 KB SRAM) into FRAM and (ii) a recovery routine (recovery()) that restores the computation state
after a power failure by using the latest successful checkpoint data. The energy and timing costs
of these routines are constant. We configured ETAP with these costs by using pragmas, as shown
in Figure 4.

Energy-harvesting Tools. We used the Powercast TX91501- 3W power transmitter [60] emitting
radio frequency (RF) signals at 915 MHz center frequency. The transmitter was connected to
a P2110-EVB receiver [61] co-supplied with a 6.1 dBi patch antenna. The receiver accumulated
harvested energy from the emitted RF signals into 50 mF, 10 mF, and 5 mF supercapacitors to
power the MSP430FR5994 launchpad board. We used Arduino Uno [3] with 10-bit ADC (analog

to digital converter) to measure the instantaneous harvested power by the P2110-EVB receiver.

Host Platform. The evaluation was performed on 11th Gen Intel Core™i7-1185G7 @
3.00 GHz × 8 cores with 32 GB RAM on Ubuntu 20.04.4 LTS operating system. ETAP’s imple-
mentation is sequential, but, in the future, we aim to discharge symbolic computation queries con-
currently. ETAP used one core and a maximum of 16 GB of memory. The memory consumption
was relatively high, mainly due to the high rate of symbolic computations over random variables
introduced by our benchmarks.

9.2 Profiling Target Platform and Energy Environment

The target platform and energy environment profiling is a one-time effort and eliminates the need
for continuous target deployment and on-the-fly analysis efforts.

9.2.1 Profiling Target Platform. ETAP runs on the platform-independent LLVM instruction
set [46]. There is no one-to-one correspondence between the LLVM instruction set and the target
architecture instruction set. Therefore, we employed a block-based mapping strategy as mentioned
in Section 6. In the cost model generation step of ETAP (Step 1 in Figure 3), the target hardware
instructions were automatically mapped into the LLVM basic blocks. The time and energy cost dis-
tributions of each basic block were calculated through the hardware instruction cost distributions.

We used the Saleae logic analyzer [66] and EnergyTrace tool to collect the energy and timing
costs of the MSP430 instructions from the MSP430FR5994 Launchpad at 1 MHz clock frequency.
Table 3 presents a simplified version of the cost model we used to predict basic block costs. MSP430
is a 16-bit RISC instruction-set architecture with no data-cache [1]. It has 27 native and 24 emu-
lated instructions. Our analysis shows that the energy and timing costs of the instructions depend
on the formats and addressing modes. The MSP430 architecture has seven modes to address its
operands: register (00), indexed (01), absolute (10), immediate (11), symbolic, register indirect, and
register indirect auto increment. The timing and energy behavior of each instruction highly de-
pends on these addressing modes, which we can group as double operand instructions (Format
I), single operand instructions (Format II), and special instructions (Format III) [73]. We sampled
the addressing modes and their combinations grouped by their formats and then statistically in-
ferred the distribution of sample means employing bootstrapping method [47]. Apart from those
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Table 3. Stochastic Cost Models of the MSP430 Instruction Set Architecture Based on Formats
and Addressing Modes

Addressing Example Timing Energy

Modes Instruction Models (μs) Model (nj)

Format I Double Operand

00 0 mov r5, r9 N (1.02, 0.01) N (4.52, 0.62)

00 1 add r5, 3(r9) N (3.02, 0.01) N (7.08, 0.62)

01 0 mov 2(r5),r7 N (3.02, 0.01) N (6.97, 0.62)

01 1 add 3(r4), 6(r9) N (5.02, 0.01) N (10.1, 0.62)

10 0 and @r4, r5 N (2.02, 0.01) N (5.80, 0.62)

10 1 xor @r5, 8(r6) N (4.02, 0.01) N (8.33, 0.62)

11 0 mov #20, r9 N (2.02, 0.01) N (5.55, 0.62)

11 1 mov @r9+, 2(r4) N (4.02, 0.01) N (8.34, 0.62)

Format II Single Operand

00 push r5 N (3.01, 0.01) N (8.34, 0.62)

01 call 2(r7) N (4.02, 0.01) N (10.1, 0.62)

10 push @r9 N (3.52, 0.01) N (8.33, 0.62)

11 call #81h N (4.02, 0.01) N (10.1, 0.62)

Format III Special Instruction or Intrinsic

Jumps jmp r5, r9 Constant(2) N (5.8, 0.62)

multiplication call #_mspabi_mpyi N (15.94, 0.27) N (16.38, 0.23)

division call #_mspabi_divu N (16.39, 0.23) N (16.68, 0.17)

memcopy call #memcpy N (13.06, .01) ∗ cN (9.06, .01) N (35.04, 1.38) ∗ cN (24.21, 1.24)

We sampled the addressing modes and their combinations grouped by their formats and then statistically inferred the

distribution of sample means employing bootstrapping method [47]. Since we observed significant differences among

measurements while sampling call #memcopy and call #memset intrinsic functions due to the data-dependent

power consumption of these functions, we derived regression models for those that depend on the number of data

words copied or set.

instructions, we modeled the subroutines, call #mspabi_mpyi and call #mspabi_divu, gen-
erated by the compiler, since MSP430 does not have a hardware multiplier and divider. Besides,
we derived regression models for call #memset and call #memcopy intrinsic functions. For
call #memcopy, the stochastic models for timing and energy are #memcpyτ ∼ N (13.06, .01) ∗ c ·
N (9.06, .01) and #memcpyϵ ∼ N (35.04, 1.38)∗c ·N (24.21, 1.24), where c is the explanatory variable
for the number of data words copied.

9.2.2 Energy Profiles of the Environment. ETAP requires the ambient energy profile and the
capacitor size to infer power failure rates and the off- and on-times of the device. Therefore, we
collected the ADC samples of the instantaneously received power from different setups for 20 sec-
onds. We created different settings by placing the RF power transmitter and receiver in line of sight
at different distances. The measurements were repeated 10 times for each setup. Using the energy
profile and energy equation of capacitors (E = 1/2 ·C ·V 2), one can infer a bootstrapping distribu-
tion [47] to model the average waiting time required to charge a capacitor with the given voltage
threshold. ETAP uses the maximum and minimum energy thresholds to calculate charging and exe-
cution time. These energy thresholds are calculated by putting the minimum and maximum voltage
thresholds in the energy equation formula, which assumes a constant capacitance value. However,
the supercapacitor capacitance is not constant and depends on the current voltage value. In our
experimental setting, the voltage range provided by the P2110-B energy-harvester board [60] is
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Fig. 8. RF energy profiles: charging-time samples for a 50 mF supercapacitor at different distances.

Table 4. Benchmarks

Benchmark # of Instructions # of Blocks # of Power Source

Static Dynamic Static Dynamic Failure Paths

BitCount 566 103,702 66 7,439 922 [33]

CRC 92 1,568 17 408 363 [33]

Dijkstra 282 24,585 36 2,884 592 [33]

FIR Filter 390 144,400 13 1,880 175 [2]

Instructions and block counts are derived while MSP430 is continuously powered.

from 1.02 V to 1.25 V, which are pretty close values. For simplicity, we used the capacitor energy
equation formula, since it still provides a good approximation for the energy levels of the super-
capacitor. Alternatively, programmers can also measure the real energy thresholds more precisely
by using tools like EKHO [37].

We run our benchmarks using energy-harvesting hardware. Since the instantaneous power ob-
tained from energy-harvesting devices varies, depending on the distance between the receiver
and the transmitter, we chose three different distances in our testbed (100 cm, 120 cm, and
140 cm). Figure 8 presents the energy profiles sampled at these distances. The MCU starts to oper-
ate intermittently at 100 cm to the transmitter. The harvested power significantly decreases after
120 cm, and the MCU dies quite frequently.

9.3 Evaluation Results for the Benchmarks

We used four benchmarks having different computation demands and memory access frequency
affecting the execution time (see Table 4). In particular, our benchmarks implement network algo-
rithms and data filtering in real IoT and Edge computing applications.

9.3.1 ETAP Prediction Accuracy. We compared ETAP’s predictions to the actual measurements
obtained from the testbed (see Section 9.1 for the evaluation setup). The difference between the
ETAP estimation and the actual measurements varies between 0.007% and 1.3% (see Table 5). De-
spite the limitations of our measurement devices, and in turn, coarse-grained ambient energy pro-
files, ETAP predicted the power failure probabilities with high accuracy. Since the device starts to
operate continuously at a distance of less than 100 cm, the prediction error significantly decreases
to at most 0.34% and at least 0.022%. Moreover, it accurately modeled the charging and discharg-
ing times by using the probabilistic distribution of the ambient energy. Note that the prediction
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Table 5. Prediction for Intermittent Execution Times Compared with Actual Measurements

Benchmark Distance Actual Measurement (ms) ETAP Prediction (ms) Error

(cm) Mean Std. Dev. Mean Std. Dev. Rate (%)

BitCount <100 6,150.038 0.013 6,145.405 0.003 0.075

100 33,550.353 19.919 33,693.902 99.793 0.4279

120 99,815.832 1,008.207 99,618.170 303.237 0.0197

140 206,575.550 219.747 206,546.729 267.430 0.0143

CRC <100 3,689.654 0.001 3,690.537 0.001 0.022

100 23,337.998 23.339 23,655.506 29.708 1.3605

120 54,626.126 771.290 54,048.093 154.173 1.0582

140 95,888.740 1,369.499 96,297.124 421.776 0.4259

Dijkstra <100 3,212.243 0.013 3,201.285 0.006 0.341

100 27,136.569 459.938 27,469.100 56.679 1.2254

120 40,455.846 636.112 40,506.445 74.279 0.1251

140 73,032.293 88.785 73,026.767 156.892 0.0076

FIR Filter <100 7,282.946 0.019 7,277.968 0.004 0.068

100 51,716.969 33.936 51,664.758 173.920 0.1010

120 97,558.188 98.225 97,702.685 136.667 0.1481

140 163,037.556 138.595 163,634.595 481.34 0.3662

accuracy of ETAP depends on the accuracy of the hardware cost models and the ambient energy
profile.

The prediction errors in Table 5 (e.g., ETAP’s predictions for CRC and Dijkstra are less accurate
at closer distances to the energy harvester) are due to our imperfect probabilistic models. Moreover,
ETAP does not consider the fact that the battery-free device is simultaneously charging while
discharging. Therefore, as the distance gets longer, the amount of charge loaded on the capacitor
during the discharge period decreases, and the predictions become more accurate.

Summary of the ETAP Accuracy Results for the Benchmarks. ETAP predicted the exe-
cution time of RF-powered intermittent programs almost perfectly for the benchmarks. We
observed a reasonable maximum prediction error during our evaluation, which was less than
1.5%.

9.3.2 ETAP Analysis Time. To assess how significantly ETAP reduces the analysis time and
efforts, we measured the time required to deploy an RF-powered application onto our testbed (see
Section 9.1), run the application 50 times, and collect a sufficient amount of data to reason about
the timing behavior through statistical sampling. The 4th column in Table 6 presents the time it
takes for the experimental measurements at each distance and excludes the manual analysis efforts
such as data extraction and preparation for data analysis.

As shown in Table 6, the manual experiment time increases as the number of power failures dur-
ing intermittent operation increases (as the distance from the transmitter increases) while ETAP’s
analysis time does not change with regard to distances of the harvesting kit, and it mainly de-
pends on the number of dynamic program blocks and instruction counts (see Table 4). Moreover,
ETAP checks the likelihood of a power failure after each block, which increases its analysis time.
ETAP apparently requires less manual effort and is significantly faster than manual testing. ETAP
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Table 6. Time Study for Intermittent Execution

Benchmark

ETAP Analysis Time (s) Harvesting Experiment Time (s)
Capacitor

Size
Path Intermittent Profiling

100 cm 120 cm 140 cm
Exploration Execution Time (s)

Bitcount 24.165 181.192 200 1,698 5,042 10,412 50 mF

CRC 1.283 10.636 200 1,249 2,797 3,895 50 mF

Dijkstra 10.590 73.035 200 1,391 2,029 3,842 50 mF

Fir Filter 18.709 127.897 200 2,591 4,897 8,203 50 mF

Bitcount 24.347 256.727 200 2,865 3,852 4,113 10 mF

CRC 1.296 10.259 200 1,593 2,108 2,460 10 mF

Dijkstra 10.075 69.147 200 1,278 1,954 2,030 10 mF

Fir Filter 18.592 45.084 200 346 488 520 10 mF

Bitcount 24.436 71.504 200 3,109 4,602 5,216 5 mF

CRC 1.314 10.156 200 1,857 2,878 3,086 5 mF

Dijkstra 10.318 108.201 200 1,600 2,252 2,307 5 mF

Fir Filter 18.923 26.479 200 406 608 689 5 mF

ETAP’s automated analysis compared to manual experiment times. ETAP’s analysis has two stages: First, it performs

probabilistic path exploration (cf. Section 7) and then runs energy-aware intermittent analysis (cf. Section 8). We report

here the analysis times of these two stages. Path exploration symbolically simulates continuously powered execution and

enumerates paths accordingly. Therefore, the same benchmark takes a similar path exploration analysis time with

different capacitors; however, ETAP’s intermittent analysis time varies, depending on the capacitor size due to its impact

on the number of divergent power-failure paths. Environment models on different distances do not impact the ETAP

analysis times, since ETAP models the waiting time of the capacitor to charge up.

performed more precise path-based symbolic analysis at least 100 times faster than experimental
measurements under low-energy harvesting conditions.

Summary of the ETAP Analysis Time Results for the Benchmarks. ETAP speeds up the
timing analysis of intermittent programs for the benchmarks by at least two orders of mag-

nitude and eliminates the burden of the manual data analysis effort.

9.4 ETAP Evaluation Using an Image Sensing Application

We evaluated ETAP using an image-sensing application to demonstrate the performance of ETAP’s
path-based probabilistic analysis. We used MSP430FR5994 MCU at 1 MHz, Powercast TX91501-
3W power transmitter, and P2110-EVB receiver co-supplied with a 6.1 dBi patch antenna in
the experimental setup. Furthermore, we set the distance between receiver and transmitter as
100 cm. We utilized 5 mF, 10 mF, and 50 mF supercapacitors as energy storage. Since ETAP requires
peripheral functions’ energy and time costs as inputs, we measured them using TI’s EnergyTrace
software [72]. We simulated peripheral functions rather than using peripherals. Since ETAP gets
these functions’ costs as input, the simulation of peripherals does not have an impact on ETAP
analysis performance.

Application Implementation. Similar to the image sensing pipeline presented in Desai et al. [22],
our application consists of four main steps (see Algorithm 2): (i) capturing the image, (ii) image
differencing, (iii) DNN inference, and (iv) sending the image. The application control graph has
three paths based on the image differencing and DNN inference step results.
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ALGORITHM 2: Image Sensing Application

1 idx ← 0 � Buffer index selects current or previous image

2 snapBuffer[2] � Store current and previous images

3 while 1 do

4 snapBuffer[idx]← CaptureImage()

5 difference← GetDifferencePercentage(snapBuffer)

6 if difference > %30 then

7 inference← DNN(snapBuffer[idx])

8 if inference > %90 then

9 SendImage(snapBuffer[idx])

10 idx ← idx ⊕ 0x01 � change buffer idx to swap current and previous buffer

Table 7. Harvesting Times (ms) of Capacitors in 95% Confidence Interval at the Environment
Where the Sense-and-Send Application Runs

100 cm distance 50 mF 10 mF 5 mF

τharvest [1,490,980 µs, 152,323 µs] [290,331 µs, 293,208 µs] [147,747 µs, 149,212 µs]

• Path 1 is the path in which the first if condition (line 6) is false. The program takes the image
(line 4), compares it with the previous image (line 5), and changes buffer idx to save the next
image (line 10).
• Path 2 is the path in which the first if condition (line 6) is true and the second if condition

(line 8) is false. The program takes an image (line 4), compares it with the previous image
(line 5), runs DNN to detect a person (line 7 ), and changes buffer idx to save the next image
(line 10).
• Path 3 is the path in which both if conditions are true. The program takes an image (line 4),

compares it with the previous image (line 5), runs DNN to detect a person (line 7 ), sends
the image, which contains a person (line 9), and changes buffer idx to save the next image
(line 10).

If there is enough difference between current and previous images, then the DNN algorithm
runs to detect a person. If the person is detected, then the image is sent. Since peripherals functions
were simulated, we defined uniformly distributed random values for image differencing, and DNN
inference steps resulted in the code. We mainly inserted checkpoints at the beginning and end of
each function and the inner loops at DNN.

ETAP Configuration. We compared ETAP’s predictions to the actual measurements on the im-
age sensing application. We analyzed the three data-dependent paths individually and their over-
all execution separately in four experiments. Furthermore, we also similarly analyzed them with
ETAP using the same binaries. The timing and energy consumption of functions CaptureImage()
and SendImage() in Algorithm 2 were modeled as CaptureImaдeτ ∼ N (13.9346 µs, 0.0005) and
CaptureImaдeϵ ∼ 24, 447.524 nJ; and SendImaдeτ ∼ N (53.6934 µs, 0.0019) and SendImaдeϵ ∼

817, 614.653 nJ. Harvesting times, τharvest for all capacitors, are given in Table 7.
We symbolically executed function GetDifferencePercentage() and DNN() in Algorithm 2.

To align the sensor input behavior of the physical experiments with the ETAP’s offline proba-
bilistic analysis, the return values of functions GetDifferencePercentage() and DNN() were
overridden by random values following Unif(1, 100) and Unif(60, 100) distributions using ETAP’s
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Table 8. Evaluation of the Sense and Send Application

Execution
Paths

Cap.

Size

ETAP Analysis Time (s) Actual ETAP Error
Rate
(%)

Path Intermittent Measurement (s) Prediction (s)

Exploration Execution Mean Std. Dev. Mean Std. Dev.

Path 1

50 mF 7.826 53.568 0.352 0.532 0.314 0.482 10.80

10 mF 8.225 51.033 0.325 0.141 0.349 0.167 7.38

5 mF 8.373 52.151 0.348 0.114 0.371 0.122 6.61

Path 2

50 mF 86.001 544.292 1.509 0.767 1.531 0.228 1.46

10 mF 91.108 535.289 1.273 0.519 1.312 0.408 3.06

5 mF 89.447 569.962 1.710 0.891 1.882 0.615 10.06

Path 3

50 mF 91.843 562.086 1.320 0.700 1.353 0.763 2.50

10 mF 94.764 573.437 1.730 0.489 1.862 0.314 7.63

5 mF 92.398 571.485 1.965 0.101 2.094 0.201 6.56

Mixture

50 mF 84.657 1,149.556 1.167 0.897 1.135 0.397 2.81

10 mF 80.744 1,129.452 1.214 0.687 1.12 0.319 8.39

5 mF 82.670 1,142.744 1.327 0.707 1.448 0.394 9.12

configuration capability (see Section 5). Thus, we obtained similar path execution probabilities in
the ETAP analysis and the physical experiments for the overall application execution (see mixture

in Table 8).

Evaluation Results for the Image Sensing Application. The error rate of the ETAP’s estimations
ranges between 1.46% and 10.8% (see Table 8). The main reason for the differences in ETAP’s pre-
diction error rates between benchmarks and path analysis of image sensing application is that
function DNN() of the application has more than one million loop iterations. After such numbers
of iterations, ETAP starts encountering precision errors while generating a mixture probability dis-
tribution over all explored power failure paths and their execution probabilities. Therefore, ETAP
analyzed one complete run of the application having an initial capacitor energy level following
a uniform energy distribution—representing a maximum uncertainty. However, the actual experi-
ments were conducted 50 times (runs), with the first run starting from a random initial capacitor
level. The runs, except the first run, in the actual experiments were not independent of each other
for the remaining energy at the capacitor, which led to an increase in the error rates of the ETAP’s
predictions for the image sensing application.

The high standard deviation compared to the benchmark experiments is due to the fact that the
charging time of the capacitor dominates the total execution time after a power failure happens.
For example, the normal execution time for path 1 is 0.143 second, while the average discharging
time for 50 mF, 10 mF, and 5 mF capacitors are approximately 1.49 second, 296 ms, and 100 ms,
respectively. Therefore, power failure does not occur at path 1 for 50 mF and 10 mF capacitors.
However, it is still possible to have a power failure depending on the initial energy level of the
capacitor. This scenario reveals the highest error rate that may occur in ETAP analysis. If there
is no more than one power interruption (i.e., in path 1), then the error rate will increase as the
capacitor size increases, since the charging time increases.

Due to the high number of loop iterations in function DNN(), paths 2 and 3 take more analysis
time than path 1 takes and much more than the benchmarks take (see Table 6). When more than
one power failure occurs at each execution (i.e., in path 2 and path 3), the error rate increases
as capacitor size decreases. Since the capacitor size decreases, the number of power failure paths
non-linearly increases. And, the uncertainty in the resulting distribution increases.
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While evaluating mixture path analysis at the ETAP’s end, we used uniformly distributed results
for DNN() and GetDifferencePercentage() due to peripheral functions simulated. Therefore,
the execution can branch into any of these paths. We run the application code 50 times in the
real experiments and took a sampling distribution of the execution time to compare the ETAP
result. As shown in the mixture path row of Table 8, the ETAP result reflects the weighted average
of those three paths based on path probabilities. The mixture results are also close the weighted
average of the three paths in experimental measurements. When the number of samples increases,
the experimental results also become closer to the weighted mean of the three paths.

Summary of the ETAP Evaluation Results for the Application. Considering the evalua-
tion results in Table 8, ETAP has successfully predicted the execution times of different appli-
cation paths (with different sizes) executed on different hardware settings (different capacitor
sizes), with prediction error rates ranging between 1.46% and 10.8%. The relatively high error
rates for the image sensing application are due to precision errors that ETAP encountered
while generating a mixture probability distribution over power failure paths and their execu-
tion probabilities in very large number of loop iterations.

10 RELATED WORK

We present prior work that relates to our approach in the context of intermittent computing, timing
and energy analysis of intermittent programs, and probabilistic program analysis.

Timing Analysis of Intermittent Programs. Some runtimes provide programming constructs to
assign timestamps to sensed data and check if the data expire. InK [80] is a reactive task-based
runtime that employs preemptive and power failure-immune scheduling for timing constraints of
task threads. Mayfly [39] makes the passing of time explicit, binding data to the time it was col-
lected and keeping track of data and time through power failures. TICS [44] provides programming
abstractions for handling the passing of time through intermittent failures and making decisions
about when data can be used or thrown away. Different from these runtimes, ETAP predicts the
timing behavior of intermittent programs before deployment and introduces zero overhead.

Energy Analysis of Intermittent Programs. CleanCut [19] detects non-terminating tasks in a task-
based intermittent program. To do so, it samples the energy consumption of program blocks with
a special debugging hardware and over-approximates path-based energy consumption. Similar
to CleanCut, EPIC [1] traverses control-flow graph to compute best- and worst-case estimates
of dynamic energy consumption for a given intermittent program. ETAP similarly analyzes the
energy costs of paths but considers precise program semantics and knows execution probabilities
of each path by means of probabilistic symbolic execution. In fact, profiling is a one-time effort for
each target and has intrinsic support for detection of forward-progress violations. ETAP’s main
goal is to perform energy-aware timing analysis to reason about timing behavior of intermittent
programs.

Other Analysis Tools for Intermittent Programs. IBIS [70] performs a static taint analysis to detect
bugs caused by non-idempotent I/O operations in intermittent systems. ScEpTIC [53] has similar
objectives as IBIS, i.e., detecting intermittent bugs. Ocelot [71] enforces intermittent programs writ-
ten in Rust language to maintain temporal consistency. Those tools are complementary and can be
used with ETAP to detect such intermittence bugs. But none of these tools perform timing analysis
of intermittent programs. Moreover, ETAP is a novel probabilistic program analysis approach.
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Probabilistic Program Analysis. Various probabilistic symbolic execution techniques have been
proposed in the literature (e.g., References [11, 14, 24, 25, 27, 49, 59]). Geldenhuys et al. [27]
propose probabilistic symbolic execution as an extension of Symbolic PathFinder [59]. Luckow
et al. [49] extend probabilistic symbolic execution to compute a scheduler resolving program non-
determinism to maximize the property satisfaction probability. Chen et al. [14] employ probabilis-
tic symbolic execution to generate a performance distribution that captures the input probability
distribution over the execution times of the program. Filieri et al. [25] extract failure and success
program paths to be used for probabilistic reliability assessment against constraints representing
subsets of all input variables range over finite discrete domains. All these techniques consider
only typical program non-determinism, e.g., program input probability distribution. They analyze
the control flow of continuously powered program execution, and they do not consider the power-
failure-induced control flow. To analyze the power-failure-induced control flow, we need symbolic
execution at the IR- (e.g., LLVM) or at the binary level, which is not supported by the current prob-
abilistic symbolic execution engines. Therefore, it is not feasible to exploit, integrate, or reuse the
existing techniques for the analysis of intermittent programs. Our goal is to overcome this prob-
lem and develop a dedicated probabilistic symbolic execution technique that analyzes the control
flow graph of the intermittent programs. That is why we introduce power-failure-induced edges,
and we use the charging/discharging model, environment energy profile, and other intermittent
program characteristics (capacitor size and program structure).

11 DISCUSSION

Comparison to Simple Stochastic Simulation. Stochastic simulations may not cover all execution
paths, since they randomly generate simulation inputs and simulate the program based on these
input values. To execute all possible paths, we would need to perform numerous simulation runs.
Even then, there might still be some paths that have not been examined, and it is not always
possible to give a good estimate how many simulations we need to obtain a result accurate enough.
Contrarily, ETAP employs probabilistic symbolic execution to get the absolute path frequency by
using probability distributions, rather than randomly generating inputs and executing the program
paths. This is a more accurate approach compared to simulation, since we are guaranteed to cover
all execution paths needed to analyze the timing behavior of the intermittent program.

Scalability of Probabilistic Symbolic Execution. We do not expect serious scalability issues for
ETAP analyzing intermittent programs running on batteryless devices, since these programs are
relatively small by nature. This is also why we chose our benchmarks among the most common
benchmarks that are widely accepted by the intermittent computing community (e.g., References
[18, 19]). We already presented the analysis times for the four applications in Table 6’s ETAP Anal-
ysis Time column. The Bitcount benchmark took about a minute. We also believe that a thorough
scalability analysis will be beneficial to understand the limits of ETAP in terms of the maximum
program size that we can analyze as of now.

The Prediction Accuracy Achieved by ETAP in the Unpredictable Nature of Energy Harvesting. The
environment models that have more inherent variability will influence the accuracy and precision
of the prediction negatively, such as energy modeling with mobile transmitter or receiver or both.
But the focus of ETAP is not on generating the environment model, but on performing the analysis
given the user-provided model. The user can provide a more sophisticated probabilistic model
for incoming profiles, bimodal, mixture, and so on. However, the RF profile is not stable; it is
actually chaotic. But it can be modeled with a Gaussian distribution easily at certain distances (by
applying bootstrapping method on energy traces) as long as the testbed and the RF source are not
mobile. We model the environmental energy profile in terms of the average waiting time required
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to fully charge a capacitor with specific capacitance values on the harvester kit. For instance, the
average waiting time required to charge a 50 mF capacitor varies from 8 seconds to 9.5 seconds at
100 cm away from the RF source. And the more the testbed is positioned away from the source,
the waiting time exponentially increases.

Dealing with Loops. If the program has a bounded-loop, then simply unrolling the loop would
be sufficient; however, there might be conditions data-dependent upon the program’s input that
result in branch points in the computation tree. In these cases, the path exploration algorithm
(Algorithm 1) traverses the loop until the probability of branching approaches zero. Our computa-
tion tree might have infinite depth, as some loops may be unbounded. Therefore, ETAP terminates
analysis after exploring a user-provided limit (Line 6 in Algorithm 1). In addition, all the bench-
marks used in the article include loops.

Timing Requirements. Timing requirements are optional inputs of ETAP. Without timing re-
quirements, ETAP reports the timing distribution of each function in the LLVM module. Program-
mers only provide the function to be analyzed, and ETAP generates distributions for the timing
and energy consumption of that function. If a more fine-grained analysis is needed, then timing
requirements can be input to get a quantification report about the success rate of the requirements.

Ambient Energy Profile. While designing ETAP, we assumed that programmers follow a what-
if analysis and evaluate checkpoint placement and timing behavior of functions under different
ambient energy profiles. Even though ambient energy is unpredictable in intermittent systems,
programmers should have an opinion about the energy level of the ambient to decide on inter-
mittent constraints of their applications, such as capacitor size or checkpoint frequency. Similarly,
they should have some information on the ambient energy behavior. If the ambient energy source
is more erratic, then they should consider the worst ambient energy case (e.g., the farthest position
of the RF receiver if the receiver is mobile) to analyze the timing behavior of the application.

Energy Cost of Peripherals. The energy-consumption characteristics of peripherals are quite dif-
ferent from each other. Moreover, some peripherals’ energy consumption can change according
to their hardware state. For instance, a transmitter has different energy consumption in receive or
transmit mode. Thus, it is difficult to propose a general energy model that captures all the peripher-
als. ETAP needs to know which instructions change the peripheral state and energy-consumption
characteristics of each hardware state. Therefore, programmers should measure the energy con-
sumption of the peripherals by using tools (such as Ekho [37] or EDB [17]) to generate energy cost
models. They should provide these cost models and the instructions that change the peripheral
state as ETAP as inputs. These efforts are out of our current scope, and we left peripherals support
as future work.

Energy Cost Model. Our evaluation shows that our energy cost model is already sufficient to
perform an accurate timing analysis of intermittent programs. We observed less than 2% estimation
error with our approach considering the benchmarked applications. Therefore, we did not see any
reason to devise or incorporate a better model. It is possible to integrate better models (i.e., more
accurate probability distributions that can provide a fine-grained representation of the pipelining
and cache effects) into ETAP to increase the analysis accuracy. Considering the focus of our article
(i.e., probabilistic symbolic execution approach and intermittent computing), proposing a better
energy cost model is orthogonal to our contributions.

Requirement of Hardware Support and Cost of Energy Profiling. ETAP can use probabilistic or an-
alytical models derived from either the real measurements conducted on the hardware or directly
provided (for example, by a hardware vendor). There are many open-source energy-harvesting

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 2, Article 23. Publication date: January 2023.



ETAP: Energy-aware Timing Analysis of Intermittent Programs 23:27

and power-consumption traces available, e.g., Reference [64]. Therefore, ETAP users can analyze
their programs without the need for any hardware measurements, as long as they are provided via
some of the mentioned means.

Using Energy Approximation. One may argue that compile-time analysis using energy cost ap-
proximations (e.g., Reference [4]) can be employed to predict the execution time of intermittent
programs. Approximating the energy consumption of a code block can only give the time it takes
to execute it continuously. The code block can be interrupted at any point during its execution,
and there are extra recovery operations due to power failures. This situation leads to power-failure-
induced control flow, which is highly dynamic. Therefore, it is impossible to infer the execution
time by using simple energy-consumption approximations. And, we need a custom technique to
infer the execution time concerning the dynamic power-failure-induced control flow.

Dynamic Checkpoint Size. For simplicity, ETAP assumes that all volatile data are backed up upon
checkpoint calls [4, 48, 63, 78]. Thanks to this fixed checkpoint size, ETAP can use a fixed probability
distribution to model timing and energy costs of checkpoints. However, there are studies that focus
on reducing the contents to back up (e.g., References [44, 69, 82]), since storing all volatile data in
the cache (or on-chip memory) would be energy-consuming. ETAP can be extended to model the
behavior of dynamically changing size of data to back up, thanks to its symbolic memory model (cf.
Section 2.4.2). Since ETAP’s symbolic store tracks memory operations and simulates backups and
restarts, checkpoints can be converted to parametric operations, similar to those regression models
that we developed for timing and energy consumption of memset and memcopy operations (see
Section 9.2.1).

Other Checkpointing Strategies. ETAP can be extended to support dynamic checkpoints, which
are triggered by the voltage monitoring hardware when the energy level drops below a threshold [7,
8, 42]. ETAP’s probabilistic symbolic analysis tracks the probability distribution of the remaining
energy after executing each basic block for each program path and quantifies where power failures
happen (cf. Section 2.4.3). ETAP can be similarly adapted to simulate dynamic checkpoints instead
of power failures.

Drift between Distributions. There might be a drift between the distributions at measurement
versus deployment time. It may not always be possible to know the exact energy-harvesting and
sensor input distributions in the field. Therefore, we design ETAP to give programmers insight into
how their intermittent programs behave under different ambient energy and sensor input condi-
tions. Programmers are expected to use ETAP with different sensor input and energy-harvesting
distributions and estimate the timing behavior of their programs.

MSP430 and Other Microcontrollers. As MSP430 is a de facto standard for intermittent comput-
ing, we target the MSP430 instruction set and its implementation, the MSP430FR5994 board, to
assess ETAP. We empirically show that we can model the energy and timing behavior of the in-
struction set through sampling distributions. Even though instruction-level models to approximate
timing and energy consumption of basic blocks result in accurate analysis on an MSP430 setup, it
would be difficult to develop such models for a sophisticated processor having a memory hierarchy
and a complex pipeline. However, ETAP supports assigning complex probability distributions to
instructions and basic blocks. For instance, to model cache-hit and cache-miss behavior at instruc-
tion level, we need to know the timing behavior of a load instruction in the case of cache-miss and
a cache-hit separately. ETAP can use a mixed probability distribution that can be, for instance, a
weighted average of 95% of hit-distribution and 5% of miss-distribution. Another method in the
literature [19] is to sample energy consumption of each basic block by executing it on the target
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microcontroller many times to generate accurate sampling distributions for each basic block. How-
ever, this method would require a special testing setup for the target microcontroller. In the future,
we will explore more sophisticated chips.

12 CONCLUSION

We presented a novel static analysis approach, ETAP, which estimates the timing behavior of inter-
mittent programs, affected by several factors such as ambient energy, the power consumption of
the target hardware, capacitor size, program input space, and program structure. Considering the
effects of power failures, ETAP symbolically executes the given program to generate the execution
time probability distributions of each function in the program. To do so, it requires probabilistic
energy and timing cost models of the target platform, capacitor size, and program input space. Our
evaluation showed that ETAP exhibits prediction error rate ranging between 0.0076% and 10.8%
for a set of benchmark codes and real-world application.

When implementing intermittent programs, programmers must consider several new challenges
unfamiliar to most application developers that target continuously powered IoT systems. For in-
stance, without compile-time analysis methods, programmers will never know at compile-time if
their intermittent programs execute as they intend to do in a real-world deployment (e.g., meeting
throughput requirements). Worse still, analyzing the timing behavior of intermittent programs on
real deployments is costly and time-consuming, because programmers need to run the programs
multiple times on the target hardware. ETAP is the first step to achieve a broad vision [30] address-
ing those unique software-engineering challenges for programming the batteryless edge.

The execution time and throughput of intermittent programs depend on multiple hardware and
software design factors such as the capacitor size, the energy consumption of the target hardware,
the efficiency of the energy-harvester unit, and the program structure (e.g., checkpoint placement
and the size and number of tasks in task-based models). The changes in the hardware and software
configuration may not always lead to what is intended (e.g., the bigger the capacitor size is, the
longer the charging takes). Using the output of ETAP, programmers can follow a what-if analysis,
e.g., reconfiguring the hardware and restructuring their program to ensure the desired timing
behavior of their program. This what-if analysis is currently manual and not guided. As future
work, we plan to employ metaheuristic algorithms [31, 79] to guide this analysis [35, 36].
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