Half baked talk: Invariant logic

Quentin Carbonneaux

November 6, 2015



Motivation

Global invariants often show up:

1. resource safety (mem > 0)
2. low-level code analysis (machine not crashed)
3. domain specific (in a car: —(break A accel))

Previous work define Quantitative Logics.
I make them instances of Invariant Logic.



Programs and Logic



Programs: Syntax

p:=0b | skip | break | p;p [ p+p | loop p



Programs: Semantics

Program states o, 0’ are elements of S.
The semantics of a base action b is [b] C S x S.

The invariants and assertions A, Ay, [ C S.



Programs: Semantics
k:=kO0|kspk|klpk

L. ob]o’ = (0,b,k) — (o', skip, k)
2. (o,p1;p2, k) = (0,p1, ks p2 k)

3. (o,skip, ks p k) — (o,p, k)

4. (o,break, ks p k) +— (o, break, k)

5. (0,p1+p2. k) = (0,p1, k)

6. (o,p1 +p2, k) = (0,2, k)

7. (o,loop p, k) — (o,p,kl p k)

8. (o,skip,kl p k) +— (o, loop p, k)

9. (o,break,kl p k) — (o, skip, k)



Sample actions and invariants

» [x:=N]:={(H,H[x — NJ]) | VH}

» [when e] :={(H,H) | VH, [e]n # 0}

» [tick N] :={({H,c},{H,c— N}) | VHc}
» [4] :={(H, L) | VH}

We can now encode:
» if(e) p1 else po = (when e;p1)+(when —e; po)
» assert e = (when —e; #) + when e

Relevant invariants:
I, :={(H,c) | VHe, ¢ >0} and I, :={H | VH}



[nvariant logic (in blue)

Fr {A}skip{A, L} Fr {A}break{ L, A}

b {Vo', ob]o’ = o' € ANT}{A, L}

Fr {Al}pl{A%B} Fr {Al}pl{AzaB}
Fr {A2}p2{A3=B} Fr {Al}P2{A2aB}
Fr {A1}p1;p2{As, B} Fr {A1}p1 + pa{A2, B}
Fr {A}p{A2, B}
Fr {A}p{A, B} Al CA Ay CA, BCH

F; {A}loop p{B, 1} Fr {A]}p{A4;, B'}



Parenthesis

Why is the full specification power of Hoare logic
required when simply proving I7



Parenthesis

Why is the full specification power of Hoare logic
required when simply proving I7

[compute 6! in x...]; assert (x = 730)

We need the functional specification of the code
in the ellipsis!



Meaning of Invariant logic triples

We say A C I is safe for p when
V(o e A)d', (o,p,k0) —* (¢/,,)) = o' €1

If the program p is started in a state in A then,
all reachable states are in 1.

We shoot for:
VAC I, Fr{A}p{., -} < A safe for p.
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Soundness



Step 1: Safety indexing

A configuration (o, p, k) is safe for n steps if:
Vm <mn, (o,p,k) =" (0, ) = o' €1

We write safe, (o, p, k).



Step 1: Safety indexing

A configuration (o, p, k) is safe for n steps if:
Vm <mn, (o,p,k) =" (0, ) = o' €1

We write safe, (o, p, k).

Safety verifies two essential properties:
1. Weaken:
safe, 1 ¢ = safe, ¢

2. Step:
V', c— ¢ = safe, ) = safe, 1 ¢



Step 2: Compositionality

“A safe for p”
» mentions k0
» does not mention the post-condition

It is non-compositional, i.e. unsuitable for proofs.



Step 2: Compositionality

“A safe for p”
» mentions k0
» does not mention the post-condition

It is non-compositional, i.e. unsuitable for proofs.

Solution: Introduce a continuation k& and make
the post-condition a condition on k.
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Step 2: Compositionality

|:I {Al}p{AQ, B} = Vk n,
Vo' € B, safe,(c’, break, k) A
Vo' € As, safe, (o', skip, k) =

Vo € Ay, safe,(o,p, k).

Note:
» We always use the same index, this allows
proof by induction for loop.

» kO is safe: Vn o, safe, (o, break/skip, k0)
Thus =7 {A}p{.} = A safe for p.



Completeness



Recipe for completeness

Idea: prove F; {X}p{_, _} for a well chosen X,
then weaken to F; {A}p{_, -}
using Vo, c € A = o€ X (¥).
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Recipe for completeness

Idea: prove F; {X}p{_, _} for a well chosen X,
then weaken to F; {A}p{_, -}
using Vo, c € A = o€ X (¥).

1. Look at your assumption: A safe for p, i.e.
Vo, 0 € A = Vn, safe, (o, p, k0)

2. Match it with (*):
X is {o | Vn, safe,(o,p, k0)}.

3. Make it compositional!
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Most general triple

X is {o | Vn, safe,(o,p,k0)}

Once again k0O is mentioned in X and should not.
To solve that:

1. Abstract kO (and p) from X:
X(p, k) :={0 | Vn, safe(o,p, k)}.

2. Define the most general triple mgt(p):
VEk, Fr {X(p, k)}p{X (skip, k), X (break, k)}.
(It is a family of triples.)

Remark: To my knowledge, this is original work.
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Completeness

X(p, k) :={0 | Vn, safe(o,p, k)}
mgt(p) := Vk, b {X(p, k)}p{-, -}

» Show Vp, mgt(p) by induction.
» Remark “A safe for p” is A C X (p, k0).
» Then, the completeness simply falls by

weakening:
A C X (p, kO) Fr {X(p,k0)}p{_, -}
Fr{Amp{T, T}




Concluding Remarks



Relation with Hoare logic

—=rn i h

F A} = P (a0 Dp{An 1) )

Invariant logic says more about the process than
the outcome.



Coq proof

Available on demand as one Coq file of 403 lines.

Follows very closely the explanations above,
probably good for education.

Also exists with function calls. (Non-trivial
extension, it requires auxiliary state, handled

with a meta-level quantification.)

Questions?



