
Half baked talk: Invariant logic

Quentin Carbonneaux

November 6, 2015

1 / 21

Motivation

Global invariants often show up:

1. resource safety (mem ≥ 0)

2. low-level code analysis (machine not crashed)

3. domain specific (in a car: ¬(break ∧ accel))

Previous work define Quantitative Logics.
I make them instances of Invariant Logic.

2 / 21

Programs and Logic

3 / 21

Programs: Syntax

p := b | skip | break | p; p | p+ p | loop p

4 / 21

Programs: Semantics

Program states σ, σ′ are elements of S.

The semantics of a base action b is JbK ⊆ S× S.

The invariants and assertions A1, A2, I ⊆ S.

5 / 21

Programs: Semantics
k := k0 | ks p k | kl p k

1. σJbKσ′ =⇒ (σ, b, k) 7→ (σ′, skip, k)

2. (σ, p1; p2, k) 7→ (σ, p1, ks p2 k)

3. (σ, skip, ks p k) 7→ (σ, p, k)

4. (σ, break, ks p k) 7→ (σ, break, k)

5. (σ, p1 + p2, k) 7→ (σ, p1, k)

6. (σ, p1 + p2, k) 7→ (σ, p2, k)

7. (σ, loop p, k) 7→ (σ, p, kl p k)

8. (σ, skip, kl p k) 7→ (σ, loop p, k)

9. (σ, break, kl p k) 7→ (σ, skip, k)

6 / 21

Sample actions and invariants

I Jx := NK := {(H,H[x 7→ N]) | ∀H}
I Jwhen eK := {(H,H) | ∀H, JeKH 6= 0}
I Jtick NK := {({H, c}, {H, c−N}) | ∀Hc}
I JEK := {(H,⊥) | ∀H}

We can now encode:

I if(e) p1 else p2 ≡ (when e; p1)+(when ¬e; p2)
I assert e ≡ (when ¬e; E) + when e

Relevant invariants:
It := {(H, c) | ∀Hc, c ≥ 0} and Is := {H | ∀H}

7 / 21

Invariant logic (in blue)

`I {A}skip{A,⊥} `I {A}break{⊥, A}

`I {∀σ′, σJbKσ′ =⇒ σ′ ∈ A ∩ I}b{A,⊥}

`I {A1}p1{A2, B}
`I {A2}p2{A3, B}
`I {A1}p1; p2{A3, B}

`I {A1}p1{A2, B}
`I {A1}p2{A2, B}

`I {A1}p1 + p2{A2, B}

`I {A}p{A,B}
`I {A}loop p{B,⊥}

`I {A1}p{A2, B}
A′

1 ⊆ A1 A2 ⊆ A′
2 B ⊆ B′

`I {A′
1}p{A′

2, B
′}

8 / 21

Parenthesis

Why is the full specification power of Hoare logic
required when simply proving I?

[compute 6! in x...]; assert (x ≡ 730)

We need the functional specification of the code
in the ellipsis!

9 / 21

Parenthesis

Why is the full specification power of Hoare logic
required when simply proving I?

[compute 6! in x...]; assert (x ≡ 730)

We need the functional specification of the code
in the ellipsis!

9 / 21

Meaning of Invariant logic triples

We say A ⊆ I is safe for p when

∀(σ ∈ A)σ′, (σ, p, k0) 7→∗ (σ′, ,) =⇒ σ′ ∈ I

If the program p is started in a state in A then,
all reachable states are in I.

We shoot for:
∀A ⊆ I, `I {A}p{ , } ⇐⇒ A safe for p.

10 / 21

Soundness

11 / 21

Step 1: Safety indexing

A configuration (σ, p, k) is safe for n steps if:
∀m ≤ n, (σ, p, k) 7→m (σ′, ,) =⇒ σ′ ∈ I.

We write safen(σ, p, k).

Safety verifies two essential properties:

1. Weaken:
safen+1 c =⇒ safen c

2. Step:
(∀c′, c 7→ c′ =⇒ safen c

′) =⇒ safen+1 c

12 / 21

Step 1: Safety indexing

A configuration (σ, p, k) is safe for n steps if:
∀m ≤ n, (σ, p, k) 7→m (σ′, ,) =⇒ σ′ ∈ I.

We write safen(σ, p, k).

Safety verifies two essential properties:

1. Weaken:
safen+1 c =⇒ safen c

2. Step:
(∀c′, c 7→ c′ =⇒ safen c

′) =⇒ safen+1 c

12 / 21

Step 2: Compositionality

“A safe for p”

I mentions k0

I does not mention the post-condition

It is non-compositional, i.e. unsuitable for proofs.

Solution: Introduce a continuation k and make
the post-condition a condition on k.

13 / 21

Step 2: Compositionality

“A safe for p”

I mentions k0

I does not mention the post-condition

It is non-compositional, i.e. unsuitable for proofs.

Solution: Introduce a continuation k and make
the post-condition a condition on k.

13 / 21

Step 2: Compositionality

|=I {A1}p{A2, B} := ∀k n,
∀σ′ ∈ B, safen(σ′, break, k) ∧
∀σ′ ∈ A2, safen(σ′, skip, k) =⇒

∀σ ∈ A1, safen(σ, p, k).

Note:

I We always use the same index, this allows
proof by induction for loop.

I k0 is safe: ∀nσ, safen(σ, break/skip, k0)
Thus |=I {A}p{ } =⇒ A safe for p.

14 / 21

Step 2: Compositionality

|=I {A1}p{A2, B} := ∀k n,
∀σ′ ∈ B, safen(σ′, break, k) ∧
∀σ′ ∈ A2, safen(σ′, skip, k) =⇒

∀σ ∈ A1, safen(σ, p, k).

Note:

I We always use the same index, this allows
proof by induction for loop.

I k0 is safe: ∀nσ, safen(σ, break/skip, k0)
Thus |=I {A}p{ } =⇒ A safe for p.

14 / 21

Step 2: Compositionality

|=I {A1}p{A2, B} := ∀k n,
∀σ′ ∈ B, safen(σ′, break, k) ∧
∀σ′ ∈ A2, safen(σ′, skip, k) =⇒

∀σ ∈ A1, safen(σ, p, k).

Note:

I We always use the same index, this allows
proof by induction for loop.

I k0 is safe: ∀nσ, safen(σ, break/skip, k0)

Thus |=I {A}p{ } =⇒ A safe for p.

14 / 21

Step 2: Compositionality

|=I {A1}p{A2, B} := ∀k n,
∀σ′ ∈ B, safen(σ′, break, k) ∧
∀σ′ ∈ A2, safen(σ′, skip, k) =⇒

∀σ ∈ A1, safen(σ, p, k).

Note:

I We always use the same index, this allows
proof by induction for loop.

I k0 is safe: ∀nσ, safen(σ, break/skip, k0)
Thus |=I {A}p{ } =⇒ A safe for p.

14 / 21

Completeness

15 / 21

Recipe for completeness

Idea: prove `I {X}p{ , } for a well chosen X,
then weaken to `I {A}p{ , }
using ∀σ, σ ∈ A =⇒ σ ∈ X (*).

1. Look at your assumption: A safe for p, i.e.
∀σ, σ ∈ A =⇒ ∀n, safen(σ, p, k0)

2. Match it with (*):
X is {σ | ∀n, safen(σ, p, k0)}.

3. Make it compositional!

16 / 21

Recipe for completeness

Idea: prove `I {X}p{ , } for a well chosen X,
then weaken to `I {A}p{ , }
using ∀σ, σ ∈ A =⇒ σ ∈ X (*).

1. Look at your assumption: A safe for p, i.e.
∀σ, σ ∈ A =⇒ ∀n, safen(σ, p, k0)

2. Match it with (*):
X is {σ | ∀n, safen(σ, p, k0)}.

3. Make it compositional!

16 / 21

Recipe for completeness

Idea: prove `I {X}p{ , } for a well chosen X,
then weaken to `I {A}p{ , }
using ∀σ, σ ∈ A =⇒ σ ∈ X (*).

1. Look at your assumption: A safe for p, i.e.
∀σ, σ ∈ A =⇒ ∀n, safen(σ, p, k0)

2. Match it with (*):
X is {σ | ∀n, safen(σ, p, k0)}.

3. Make it compositional!

16 / 21

Recipe for completeness

Idea: prove `I {X}p{ , } for a well chosen X,
then weaken to `I {A}p{ , }
using ∀σ, σ ∈ A =⇒ σ ∈ X (*).

1. Look at your assumption: A safe for p, i.e.
∀σ, σ ∈ A =⇒ ∀n, safen(σ, p, k0)

2. Match it with (*):
X is {σ | ∀n, safen(σ, p, k0)}.

3. Make it compositional!

16 / 21

Most general triple

X is {σ | ∀n, safen(σ, p, k0)}
Once again k0 is mentioned in X and should not.

To solve that:

1. Abstract k0 (and p) from X:
X(p, k) := {σ | ∀n, safe(σ, p, k)}.

2. Define the most general triple mgt(p):
∀k, `I {X(p, k)}p{X(skip, k), X(break, k)}.
(It is a family of triples.)

Remark: To my knowledge, this is original work.

17 / 21

Most general triple

X is {σ | ∀n, safen(σ, p, k0)}
Once again k0 is mentioned in X and should not.
To solve that:

1. Abstract k0 (and p) from X:
X(p, k) := {σ | ∀n, safe(σ, p, k)}.

2. Define the most general triple mgt(p):
∀k, `I {X(p, k)}p{X(skip, k), X(break, k)}.
(It is a family of triples.)

Remark: To my knowledge, this is original work.

17 / 21

Most general triple

X is {σ | ∀n, safen(σ, p, k0)}
Once again k0 is mentioned in X and should not.
To solve that:

1. Abstract k0 (and p) from X:
X(p, k) := {σ | ∀n, safe(σ, p, k)}.

2. Define the most general triple mgt(p):
∀k, `I {X(p, k)}p{X(skip, k), X(break, k)}.
(It is a family of triples.)

Remark: To my knowledge, this is original work.

17 / 21

Most general triple

X is {σ | ∀n, safen(σ, p, k0)}
Once again k0 is mentioned in X and should not.
To solve that:

1. Abstract k0 (and p) from X:
X(p, k) := {σ | ∀n, safe(σ, p, k)}.

2. Define the most general triple mgt(p):
∀k, `I {X(p, k)}p{X(skip, k), X(break, k)}.
(It is a family of triples.)

Remark: To my knowledge, this is original work.

17 / 21

Completeness

X(p, k) := {σ | ∀n, safe(σ, p, k)}
mgt(p) := ∀k, `I {X(p, k)}p{ , }

I Show ∀p,mgt(p) by induction.

I Remark “A safe for p” is A ⊆ X(p, k0).

I Then, the completeness simply falls by
weakening:

A ⊆ X(p, k0) `I {X(p, k0)}p{ , }
`I {A}p{>,>}

18 / 21

Completeness

X(p, k) := {σ | ∀n, safe(σ, p, k)}
mgt(p) := ∀k, `I {X(p, k)}p{ , }

I Show ∀p,mgt(p) by induction.

I Remark “A safe for p” is A ⊆ X(p, k0).

I Then, the completeness simply falls by
weakening:

A ⊆ X(p, k0) `I {X(p, k0)}p{ , }
`I {A}p{>,>}

18 / 21

Completeness

X(p, k) := {σ | ∀n, safe(σ, p, k)}
mgt(p) := ∀k, `I {X(p, k)}p{ , }

I Show ∀p,mgt(p) by induction.

I Remark “A safe for p” is A ⊆ X(p, k0).

I Then, the completeness simply falls by
weakening:

A ⊆ X(p, k0) `I {X(p, k0)}p{ , }
`I {A}p{>,>}

18 / 21

Completeness

X(p, k) := {σ | ∀n, safe(σ, p, k)}
mgt(p) := ∀k, `I {X(p, k)}p{ , }

I Show ∀p,mgt(p) by induction.

I Remark “A safe for p” is A ⊆ X(p, k0).

I Then, the completeness simply falls by
weakening:

A ⊆ X(p, k0) `I {X(p, k0)}p{ , }
`I {A}p{>,>}

18 / 21

Concluding Remarks

19 / 21

Relation with Hoare logic

`I =⇒ `H `H 6=⇒ `I

`I {A1}p{A2} =⇒ `H {A1 ∩ I}p{A2 ∩ I}
(1)

`H {A1 ∩ I}p{A2 ∩ I} 6=⇒ `I {A1}p{A2}
(2)

Invariant logic says more about the process than
the outcome.

20 / 21

Coq proof

Available on demand as one Coq file of 403 lines.

Follows very closely the explanations above,
probably good for education.

Also exists with function calls. (Non-trivial
extension, it requires auxiliary state, handled
with a meta-level quantification.)

Questions?

21 / 21

