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Abstract
Verified compilers guarantee the preservation of semantic properties
and thus enable formal verification of programs at the source level.
However, important quantitative properties such as memory and time
usage still have to be verified at the machine level where interactive
proofs tend to be more tedious and automation is more challenging.

This article describes a framework that enables the formal
verification of stack-space bounds of compiled machine code at
the C level. It consists of a verified CompCert-based compiler that
preserves quantitative properties, a verified quantitative program
logic for interactive stack-bound development, and a verified stack
analyzer that automatically derives stack bounds during compilation.

The framework is based on event traces that record function calls
and returns. The source language is CompCert Clight and the target
language is x86 assembly. The compiler is implemented in the Coq
Proof Assistant and it is proved that crucial properties of event traces
are preserved during compilation. A novel quantitative Hoare logic is
developed to verify stack-space bounds at the CompCert Clight level.
The quantitative logic is implemented in Coq and proved sound with
respect to event traces generated by the small-step semantics of
CompCert Clight. Stack-space bounds can be proved at the source
level without taking into account low-level details that depend on
the implementation of the compiler. The compiler fills in these
low-level details during compilation and generates a concrete stack-
space bound that applies to the produced machine code. The verified
stack analyzer is guaranteed to automatically derive bounds for
code with non-recursive functions. It generates a derivation in the
quantitative logic to ensure soundness as well as interoperability
with interactively developed stack bounds.

In an experimental evaluation, the developed framework is
used to obtain verified stack-space bounds for micro benchmarks
as well as real system code. The examples include the verified
operating-system kernel CertiKOS, parts of the MiBench embedded
benchmark suite, and programs from the CompCert benchmarks.
The derived bounds are close to the measured stack-space usage of
executions of the compiled programs on a Linux x86 system.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.3.3 [Programming Languages]: Processors—Compilers

General Terms Verification, Reliability

Keywords Formal Verification, Compiler Construction, Program
Logics, Stack-Space Bounds, Quantitative Verification

1. Introduction
It has been shown that formal verification can greatly improve
software quality [25, 38, 35]. Consequently, formal verification
is the subject of ongoing research and there exist sophisticated
tools that can verify important program properties automatically.

However, the most interesting program properties are undecidable
and user interaction is therefore inevitable in formal verification.

If a software system is (partly or entirely) developed in a high-
level language then the question arises on which language level the
verification should be carried out. Verification at the source level has
the advantage that a developer can interact with the verification tools
using the code she has developed. This is beneficial because the
compiled code can substantially differ from the source code and low-
level code is harder to understand. Moreover, even fully automatic
tools profit from the control-flow information and the structure
that is available at higher abstraction layers. The disadvantage of
verification at the source level is that tools such as compilers have to
be part of the trusted computing base and that the verified properties
are not directly guaranteed for the code that is executed on the
system.

Formally verified compilers [24, 11] such as the CompCert C
Compiler [27] guarantee that certain program properties of the
source programs are preserved during compilation. As a result,
CompCert enables source-level verification of the preserved proper-
ties of the compiled code without increasing the size of the trusted
computing base.1 In fact, this has been one of the main motiva-
tions for the development of CompCert [27]. However, important
quantitative properties such as memory and time consumption are
not modeled nor preserved by CompCert and other verified compil-
ers [24, 11]. Such quantitative properties are nevertheless crucial in
the verification of safety-critical embedded systems. For example,
the DO-178C standard, which is used by in the avionics industry
and by regulatory authorities, requires verification activities to show
that a program in executable form complies with its requirements
on stack usage and worst-case execution time (WCET) [30].

Quantitative program requirements such as stack usage and
WCET are usually directly checked at the machine or assembly-
code level “since only at this level is all necessary information avail-
able” [37]. For stack-space bounds there exist commercial abstract
interpretation–based tools—such as Absint’s StackAnalyzer [14]—
that operate directly on machine code. While such tools can derive
many simple bounds automatically, they rely on user annotations in
the machine code to obtain bounds for more involved programs. The
produced bounds are usually not parametric in the input, and the
analysis is not modular and only applies to specific hardware plat-
forms. Additionally, the used analysis tools rely on the correctness
of the user annotations and are not formally verified.

In this article, we present the first framework for deriving
formally verified end-to-end stack-space bounds for C programs.
Stack bounds are particularly interesting because stack overflow
is “one of the toughest (and unfortunately common) problems
in embedded systems” [13]. Moreover, stack-memory is the only
dynamically allocated memory in many embedded systems and the
stack usage depends on the implementation of the compiler. While
we focus exclusively on stack bounds in this article, our framework

1 If we assume that all verification is carried out with the same trusted base.
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is developed with other quantitative resources in mind. Many of the
developed techniques can be applied to derive bounds for resources
such as heap memory or clock cycles. However, for clock-cycle
bounds there is a lot of additional work to be done that is beyond the
scope of this article (e.g., developing a formal model for hardware
caches and instruction pipelines).

The main innovation of our framework is that it enables the
formal verification of stack bounds for compiled x86 assembly
code at the C level. To gain the benefits of source-level verification
without the entailed disadvantages, we have to deal with three main
challenges.

1. We have to model the stack consumption of programs at the C
level and we have to formally prove that our model is consistent
with the stack consumption of the compiled code.

2. We have to design and implement a C-level verification mecha-
nism that allows users to derive parametric stack-usage bounds
in an interactive and flexible way.

3. We have to minimize user interaction during the verification to
enable the verification of large systems.

To meet Challenge 1, we use event traces and verified compilation.
Our starting point is the CompCert C Compiler. It relies on event
traces to prove that a compiled program is a refinement of the source
program. We extend event traces with events for function calls and
returns and define a weight for event traces. The weight describes
the stack-space consumption of one program execution as a function
of a cost metric which assigns a cost to individual call and return
events. The idea is that a user or an (semi) automatic analysis tool
derives bounds on the weights of event traces that depend on the
stack-frame sizes of the program functions. During compilation the
compiler produces a specific cost metric that guarantees that the
weight of an event trace computed with this metric is an upper bound
on the stack-space usage of the compiled assembly program which
produces this trace. As a result, we derive a verified upper bound
if we instantiate the derived memory bound with the cost metric
produced by the compiler.

We implemented the extended event traces for full CompCert C
and all intermediate languages down to x86 assembly in Coq. We
extended CompCert’s soundness theorem to take into account the
weights of traces. In addition to CompCert’s refinement theorem for
the original event traces, we prove that compiled programs produce
extended event traces whose weights are less or equal to the weights
of the traces at the source level. This means that we allow reordering
or deletion of call and return events as long the weight of the trace is
reduced or unchanged. To relate the weight of traces to the execution
on a system with finite stack space, we modified the CompCert x86
assembly semantics into a more realistic x86 assembly that features
a finite stack, and reimplemented the assembly generation pass of
CompCert to our new x86 assembly semantics.

To meet Challenge 2, we have developed and implemented a novel
quantitative Hoare logic for CompCert Clight in Coq. To account for
memory consumption, the assertions of the logic generalize the usual
boolean-valued assertions of Hoare logic. Instead of the classic true,
our quantitative assertions return a natural number that indicates
the amount of memory that is needed to execute the program. The
boolean false is represented by 8 and indicates that there are no
guarantees provided for the future execution.

We proved the soundness of our quantitative Hoare logic with
respect to Clight and CompCert’s continuation-based small-step
semantics. The soundness theorem states that Hoare triples that
are derived with our inference rules describe sound bounds on the
weights of traces. The logic can be used for interactive stack-bound
development or as a backend for verified static analysis tools.

For clarity, we do not prove the safety of programs and simply
assume that this is done using a different tool such as Appel’s
separation logic for Clight [3]. It would be possible to integrate our
logic into a separation logic for safety proofs. This would however
diminish the deployability of the quantitative logic as a backend for
static stack-bound analysis tools since they would be required to
also prove memory safety.

To meet Challenge 3, we implemented an automatic stack ana-
lyzer for C programs. To verify the soundness of the stack analyzer
each successful run generates a derivation in the quantitative Hoare
logic. This does not only simplify the verification but also allows
interoperability with stack bounds that have been interactively devel-
oped in the logic or derived by some other static analysis. Concep-
tually, our stack analyzer is rather simple but we have proved that
it derives sound bounds for programs without recursion and func-
tion pointers. This is already sufficient for many programs used in
embedded systems. Using our automatic analysis we have created a
verified C compiler that translates a program without function point-
ers and recursive calls to x86 assembly and automatically derives a
stack bound for each function in the program including mainpq.

We have successfully used our quantitative Hoare logic, the
extended C compiler, and the automatic stack analyzer to verify end-
to-end memory bounds for micro benchmarks and system software.
Our main example is the CertiKOS [15] operating system kernel that
is currently under development at Yale. Our automatic analyzer finds
stack bounds for all functions in the simplified development version
of CertiKOS that is currently verified. Other examples are taken
from Leroy’s CompCert benchmarks and the MiBench embedded
benchmark suite [17]. To evaluate the quality of the verified stack-
space bounds, we experimentally compared the automatically and
manually verified bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
indicate that both the manually and automatically derived bounds
over-approximate the stack usage by exactly four bytes. More details
can be found in Section 6.

In summary, we make the following contributions.

• We introduce a methodology that uses cost metrics to link event
traces to resource consumption. This approach enables us to
link source-level code to the resource consumption of compiled
target-level code.

• We develop a novel quantitative Hoare logic to reason about
the resource consumption of programs at the source level. We
have formally verified the soundness of the logic with respect to
CompCert Clight in Coq.

• We introduce Quantitative CompCert, a modified version of
the verified CompCert C Compiler, in which parametric stack
bounds are preserved during compilation. Furthermore, Quanti-
tative CompCert creates a cost metric so that the instantiation of
the bounds with the metric forms an upper bound on the memory
consumption of the compiled code.

• We have implemented and verified an automatic stack analyzer
that is guaranteed to compute stack bounds for non-recursive
programs.

• We have evaluated the practicability of our framework with
experiments using micro benchmarks and system code.
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The complete Coq development and the imple-
mented tools are well documented and publically
available on the authors’ websites. The PLDI Ar-
tifact Evaluation Committee reproduced samples
of our experiments and tested the implemented
tools on additional programs. The reviewers unani-
mously stated that our implementation exceeded their expectations.
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typedef unsigned int u32;
u32 a[ALEN];
u32 seed = SEED;

u32 search(u32 elem, u32 beg, u32 end) {
u32 mid = beg + (end-beg) / 2;

if (end-beg <= 1) return beg;

if (a[mid] > elem) end = mid;
else beg = mid;

return search(elem, beg, end);
}
u32 random() {

seed = (seed * 1664525) + 1013904223;
return seed;

}
void init() {

u32 i, rnd, prev = 0;

for (i=0; i<ALEN; i++) {
rnd = random();
a[i] = prev + rnd % 17;
prev = a[i];

}
}
int main() {

u32 idx, elem;
init();
elem = random() % (17 * ALEN);
idx = search(elem, 0, ALEN);
return a[idx] == elem;

}

Figure 1. An illustrative example for static stack-bound computa-
tion. Constant stack bounds for the non-recursive functions are de-
rived automatically. The logarithmic bound for the function search
is derived with a hand-crafted proof in our quantitative Hoare logic.

2. An Illustrative Example
In this section, we sketch the verification of stack-space bounds for
an example program in our framework. Figure 1 shows a C program
with two integer parameters: ALEN and SEED.

This program will fill an array of size ALEN with an increasing
sequence of pseudo random integers and search through it. The
random numbers are created by a linear congruential generator
initialized by the SEED parameter. The search procedure used is a
binary search implemented in the recursive function search.

Our goal is to derive stack bounds for the compiled x86 assembly
code of the program that are verified with respect to our accurate
x86 model in Coq. The first step is to create an abstract syntax tree
of the code in Coq. This can be done automatically, for instance by
using CompCert’s parsing mechanism. The second step is to use our
quantitative Hoare logic to prove bounds on the function calls that
are performed when executing main.

To relate function calls and returns at different abstraction levels
during compilation we use call and return events. For instance, an
execution of main could produce the following trace.

callpmainq, callpinitq, callprandomq, retprandomq, retpinitq,

callpsearchq, callpsearchq, retpsearchq, retpsearchq, retpmainq

From such a trace and a metric M that maps each function name in
the program to its stack-frame size, we can obtain the stack usage
of the execution that produced the trace. For the previous example

trace, we can for instance derive the following stack usage.

Mpmainq `maxtMpinitq `Mprandomq, 2 ¨Mpsearchqu

In classical Hoare logic, assertions map program states to Booleans.
In our quantitative Hoare logic assertions map program states to
non-negative numbers. Intuitively, the meaning of a quantitative
Hoare triple tP uS tQu is the following. For every program state σ,
P pσq is a upper bound on the stack consumption of the statement
S started in state σ. Furthermore, Q describes the stack space that
has become available after the execution, as a function of the final
program state. This is similar as in type systems and program logics
for amortized resource analysis [21, 5].

We implemented a function in Coq that automatically computes
a derivation in the quantitative logic for a program without recur-
sive functions. Using this automatic stack analyzer, we derive for
instance the following triple for the function call initpq.

tMpinitq `Mprandomqu initpq tMpinitq `Mprandomqu

For functions making use of recursion such as search, we derive a
quantitative triple interactively using Coq. For search we derive

tLpend´ begqu searchpelem, beg, endq tLpend´ begqu

where Lp∆q “ Mpsearchq ¨ p2` log2p∆qq .

Since the mathematical log2 function is undefined on non-positive
values, we take as convention that log2p∆q “ `8when ∆ ă 0 and
log2p0q “ 0. This trick allows us to simulate a logical precondition
stating that beg must be lower or equal to end before calling search.

For main we combine the previous results and derive the bound

tMpmainq `Numainpq tMpmainq `Nu

where N “ maxpMpinitq `Mprandomq,LpALENqq .

To be able to derive this bound on the main function we have to
require that 0 ă ALEN ď 232

´ 1, in the Coq development this is
stated as a section hypothesis which will later be instantiated when
ALEN is chosen by the user before compiling.

The third and final step in the derivation of the stack bounds
is to compile the program with Quantitative CompCert, our mod-
ified CompCert C Compiler. The compiler produces x86 assem-
bly code and a concrete metric M0. It follows from CompCert’s
correctness theorem that the compiled code is a semantic refine-
ment of our source program. In addition, we have formally verified
that the metric M0 correctly relates the abstractly defined stack
consumption—using the event traces—to the actual stack consump-
tion in our abstract x86 machine. Moreover, we have verified that
applying M0 to the preconditions in the triples of the quantitative
Hoare logic results in sound stack bounds on the x86 machine. The
final bounds that we obtain by compilation for our examples are for
instance 32 bytes for initpq and 112 ` 40 ¨ log2pALENq bytes for
mainpq.

3. Quantitative CompCert: Verified Stack-Aware
Compilation

In this section, we introduce our new technique for verifying quanti-
tative compiler correctness and its implementation in Quantitative
CompCert. We focus on stack-space usage but believe that similar
techniques can be used to bound the time and heap-space require-
ments of programs.

Our development is highly influenced by the design of Com-
pCert [27], a verified compiler for the C language. CompCert C
accepts most of the ISO-C-90 language and produces machine code
for the IA32 architecture (among others). CompCert uses 11 inter-
mediate languages and 20 passes to compile a C AST to an x86
assembly AST.

Technical Report 3 2014/3/27



The soundness proof of CompCert is based on trace-based oper-
ational semantics for the source, target, and intermediate languages.
These semantics generate traces of events during the execution of
programs. Events include input/output and external function calls.
The soundness theorem of CompCert states that every event trace
that can be generated by the compiled program can also be generated
by the source program provided that the source program does not
go wrong. In other words, the compiled program is a refinement of
the source program with respect to the observable events.

3.1 Quantitative Compiler Correctness
In the following, we show how to extend trace-based compiler-
correctness proofs to also cover stack-space consumption. In short,
our technique works as follows.

1. We generate events for semantic actions that are relevant for
stack-space usage, that is, function calls and returns.

2. We define a weight function for event traces that describes the
stack-space consumption of program executions that produce
that trace. The weight of an event trace is parameterized by a
resource metric that describes the cost of each event.

3. We formally verify that for all resource metrics and for all
event traces produced by a target program, the source program
either goes wrong or produces an equivalent (see the following
definition) event trace with a greater or equal weight.

4. During compilation, we produce a cost metric that accurately
describes the memory consumption of target programs: If an
execution of a target program produces an event trace of weight n
under the produced metric then this execution can be performed
on a system with stack size n.

We now formalize and elaborate on these points.

Event Traces In CompCert, the observable events are external
function calls (e.g., I/O events) that are represented by function
identifiers together with a list of input values and an output value.
In the following definition of these events, n is an integer literal
and q is a floating point number. The intention is that the function
identifier f specifies an external function such as printf, malloc,
and free.

Event values v ::“ intpnq | floatpqq

I/O events ν ::“ fp~v ÞÑ vq

To track stack usage, we add memory events for internal function
calls and returns. Memory events do not have to be preserved during
compilation.

Memory events µ ::“ callpx q | retpx q

Event traces are defined similar as in CompCert. We distinguish
finite (inductive) traces t and possibly infinite (coinductive) traces T .
A program behavior is either a converging computation convpt, nq
producing a finite event trace t and a return code n, a diverging
computation divpT q producing a finite or infinite trace T , or a
computation failptq that goes wrong and produces the finite trace t.

Events e ::“ ν | µ

Finite event traces t ::“ ε | e ¨ t

Coinductive event traces T ::“ ε | e ¨ T

Behaviors B ::“ convpt, nq | divpT q | failptq

We write E for the set of memory and I/O events, B for the set of
behaviors, and T for the set of traces.

Weights of Behaviors For a behaviorB, we define the set of finite
prefix traces prefspBq of B as follows.

prefspconvpt, nqq “ tt1 | t “ t1 ¨ t2u

prefspdivpT qq “ tt | T “ t ¨ T 1u

prefspfailptqq “ tt1 | t “ t1 ¨ t2u

The weight WM pBq P N Y t8u of a behavior B describes the
number of bytes that are needed in an execution that produces B. It
is parameterized by a resource metric

M : E Ñ Z

that maps events to integers (bytes). The purpose of the metric in our
work is to relate memory events to the sizes of the stack frames of
functions in the target code. To this end, we only use stack metrics,
that is, metrics M such that for all functions f and for all external
functions g

0 ďMpcallpfqq “ ´Mpretpfqq and Mpgp~v ÞÑ vqq “ 0 .

In the Coq implementation of our compiler, we can also deal with
nonzero stack consumption for external functions as long as the
stack consumption of each call is bounded by a constant.

Before, we define the weight, we first inductively define the
valuation VM ptq of a finite trace t.

VM pεq “ 0

VM pα ¨ tq “ VM ptq `Mpαq

We now define the weight WM pBq of the behavior B under the
metric M as follows.

WM pBq “ suptVM ptq | t P prefspBqu

It is handy to use overloading to define the weight WM pT q of a
(possibly infinite) trace T in the same way

WM pT q “ suptVM ptq | T “ t ¨ T 1u

The following lemma follows directly from the definition of a
valuation.

Lemma 1. Let M be a metric and let t1, t2 be finite traces. Then
VM pt1 ¨ t2q “ VM pt1q ` VM pt2q.

Lemma 2 shows how to decompose the weight of a trace into the
weights and valuations of a prefix and a suffix of the trace. As usual,
we define n`8 “ 8.

Lemma 2. Let M be a metric, t a finite trace, and T a possibly
infinite trace. ThenWM pt ¨T q “ maxtWM ptq, VM ptq`WM pT qu.

Proof. Since t is finite, we have WM ptq “ maxtVM pt1q | t “
t1 ¨t2u P tVM pt

1
q | t¨T “ t1 ¨T 1u. ThusWM pt¨T q ěWM ptq.

Examples Consider the following trace t that is generated by a
call to a recursive function f that does not call any other functions.

t “ callpfq, callpfq, callpfq, callpfq, retpfq, retpfq, retpfq, retpfq

Under a stack metric M the weight of t is WM ptq “ 4¨Mpcallpfqq.
In the next example, we assume a function g that first calls

a function h1, then recursively calls g, and finally calls h2. The
following event trace t1 is generated by a call to g.

t1 “ callpgq, callph1q, retph1q, callpgq, callph1q, retph1q,

callph2q, retph2q, callph2q, retph2q

Under a stack metric M the weight of the trace t1 is WM pt
1
q “

maxt2¨Mpcallpgqq `Mpcallph1q,Mpcallph2qqu.

Technical Report 4 2014/3/27



Verified Compiler

Verified Quantitative 
Hoare LogicSafety Proof

Safety Proof

Source Program

s

Target Program

C (s)

Weight Bound

� : (E ! Z) ! N

C (s) v s

Event Metric

Ms : E ! Z

C (s) vQ s

Stack-Usage Bound

stack(C (s))  �(Ms)

stack(C (s))  WMs (C (s))

8M . WM(s)  �(M)

Figure 2. Overview of our quantitative verification framework. We write WM psq “ suptWM pBq | B P JsKu for the weight of the program
s under the metric M . Furthermore, we write stackpsq for the smallest number n so that s runs without stack overflow if executed with a stack
of size n. All metrics in the figure are stack metrics.

Quantitative Refinement For our description of quantitative re-
finements we leave the definition of programs abstract. A program
s P P is simply an object that is associated, through a function
J¨K : P Ñ B, with a set of behaviors JsK P B. An execution of a
program can produce different traces, either due to non-determinism
in the semantics or due to user inputs that are recorded in the event
traces.

For a behavior B we define the pruned behavior as the behavior
B that results from deleting all memory events (callpx q or retpx q)
from B. We first inductively define pruned finite traces as follows.
As always, ν denotes an I/O event and µ denotes a memory event.

ε “ ε

ν ¨ t “ ν ¨ t

µ ¨ t “ t

Similarly, we coinductively define pruning for possibly infinite
traces.

µ1 ¨ ¨ ¨ ¨ ¨ µn ¨ ε “ ε

µ1 ¨ ¨ ¨ ¨ ¨ µn ¨ ν ¨ T “ ν ¨ T

µ1 ¨ ¨ ¨ ¨ ¨ µn ¨ ¨ ¨ ¨ “ ε

Finally, we define pruned behaviors as follows.

convpt, nq “ convpt, nq

divpT q “ divpT q

failptq “ failptq

In CompCert, compiler correctness is formalized through the notion
of refinement. A (target) program s1 is a refinement of a (source)
program s, written s1 ă s, if for every behavior B1 P Js1K there
is B P JsK such that B “ B1 or failptq P JP K for a trace
t P prefspBq.2 Note that memory events are not taken into account
in CompCert’s classic definition of refinement.

To also relate the memory events in the behaviors of two
programs, we define a novel quantitative refinement. A (target)
program s1 is a quantitative refinement of a (source) program s,
written s1ăQ s if the following holds. For every behavior B1 P Js1K
there exists B P JsK such that B “ B1 and WM pBq ď WM pB

1
q

for all stack metrics M , or failptq P JP 1K for a trace t with
t P prefspBq.

In Quantitative CompCert, our modified CompCert compiler, we
prove for each compiler pass C that CpsqăQ s for every program
s.

2 In fact, it is enough to prove that B1 „ B (bisimilarity of infinite traces),
because JsK is closed by bisimilarity.

Verifying Stack-Space Usage Figure 2 shows how we verify the
stack-space usage of a program in our framework. First, we prove
a bound β : pE Ñ Zq Ñ N on the weights of the event traces
that a program can produce. This bound is parameterized by an
event metric M : E Ñ Z. Second, our verified compiler—thanks
to quantitative refinement—ensures that the computed bound also
holds for the weights of the traces of the compiled program.

Third, we have to relate the computed bound to the actual stack
usage of the compiled code. Therefore, our compiler computes not
only a target program Cpsq but also a metric Ms such that Cpsq
can be safely executed with a stack-memory size of suptWMspBq |
B P JCpsqKu bytes. As a result, the initially derived bound for the
source code can be instantiated with the metric Ms to obtain the
wanted stack-space bound Mspβq for the target program.

In this overview picture, we assume that the semantics of the
target and source languages are both formulated with an unbounded
stack. The final step of the soundness proof (not illustrated in
Figure 2) is to relate the trace-based semantics of the target language
to a realistic assembly semantics in which the program is executed
with a fixed stack size. To this end, we prove that an execution
of Cpsq with bounded stack space suptWMspBq | B P JCpsqKu
is a refinement of the execution of Cpsq in the semantics with
unbounded stack (see explanation in Section 3.2).

3.2 Verification and Implementation
We implemented the verification framework that we outlined in
Section 3.1 for the CompCert C compiler using the proof assistant
Coq. The verification consists of about 5000 lines of Coq code that
we integrated into CompCert 1.13 (which originally consists of
about 90000 lines of Coq code) to obtain a modified version that we
call Quantitative CompCert. The source-level language is CompCert
C 1.13 and the target language is CompCert x86 assembly.

Overview of CompCert CompCert 1.13 is decomposed into 20
passes between 11 intermediate languages. Here, we describe a
subset of these passes.

1. First, 3 passes compile Compcert C to Clight, a subset of C
where expressions have no side effects.

4. Then, 2 passes translate Clight to Cminor, a C-like language
where addressable local variables, formerly independent of
each other, are grouped together into a single per-function call
memory region called the stack frame. In contrast, temporary
results are stored in an unbounded number of non-addressable
local variables, or pseudo-registers.

6. Then, 2 passes compile Cminor code to RTL (Register Transfer
Language), similar in principle to Cminor, but more amenable to
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optimizations due to its 3-address instructions and control-flow–
graph shape.

8. Then, 5 distinct3 optimizations are performed on RTL.

13. Then, 1 pass of register allocation, producing LTL (Location
Transfer Language) code actually tags each such location to
distinguish between true machine registers (of which there
are only a fixed number), and “virtual” stack slots, which are
still pseudo-register-like locations separated from the memory.
However, values of machine registers are still proper to each
function call.

14. Then, 3 passes linearize the code down to the LTLin language.

17. Then, 2 passes introduce reloading instructions to turn LTLin
into Linear, a language in which the values of machine registers
become common to the whole execution of the program.

19. Then, 1 pass compiles code from Linear into Mach, where
the “virtual” stack slots are actually turned into true memory
accesses, thus making spilling and reloading concrete.

20. Finally, 1 pass turns CFG-based Mach code into x86 assembly
code.

Each of these passes is proved correct with respect to the CompCert
trace refinement relation (see Section 3.1). Basically, if the source
program does not go wrong, then all traces of the target program are
traces of the source program. Each compiler pass and its proof are
independent of other passes.

The problem: stack consumption in CompCert For each lan-
guage starting from Cminor, including the CompCert x86 assembly
language, each function call allocates a memory region—called the
stack frame—to store its addressable local variables, and (starting
from Mach) the spilling locations and the function arguments to han-
dle the calling conventions. This stack frame is freed upon function
return. However, even though each stack frame is finite, there may
well be an unbounded number of such allocations, even for embed-
ded function calls. Indeed, in CompCert, allocating a stack frame
always succeeds, thus CompCert does not model stack overflow, and
the following CompCert C function:

void f (int* pi) { int i = 0; f(&i); return; }

has a valid diverging semantics without failing or overflowing.
However it allocates an unbounded number of stack frames.

Our solution: Quantitative CompCert In Quantitative CompCert,
we overcome this issue by modifying the semantics of the target
assembly language. We preallocate a finite memory region for the
whole stack, into which all stack frames shall be merged together
during the execution instead of being individually allocated.

By contrast, we still want the source and intermediate languages
to allocate an individual stack frame per function call. First, we
want to change CompCert only if necessary so as to still support all
features of CompCert C. Second, it would not be very meaningful
to introduce a finite stack at a high language level since it is unclear
how to model stack sizes. The only major change we bring to those
languages is to introduce our call and return events into the trace.

As shown in Figure 3, this leads us to split CompCert into two
parts. In the first part, we compile CompCert C down to Mach by
adapting the proofs of existing passes to quantitative refinement. In
the second part, we perform two passes to merge all stack frames
together. The key point of our work is that this second part will
require the Mach traces to not stack overflow, which justifies the use
of quantitative refinement for the first part.

3 In fact, some of those optimizations such as constant propagation or
common subexpression elimination are performed more than once.

The source code of our complete Coq development is publically
available [9]. In the following, we will highlight some of the
challenges that we faced in the implementation.

Quantitative Refinement In the first part of the compiler, from
CompCert C down to Mach, we add call and return events to the
semantics of each language, at the level of each function call and
return (as described in Section 3.1). This change is uniform in all
languages between CompCert C to Mach: indeed, in each small-step
operational semantics, there is only one rule responsible for internal
function call. Until Cminor, due to functions returning void and
implicit returns when reaching the end of a function, there are three
rules responsible for internal function return; starting from RTL,
there is only one such rule.

Then, thanks to these changes, we support all of CompCert 1.13
passes except two optional optimizations (see Section 3.3), and,
with no significant changes to the proofs, we prove that they exactly
preserve traces with function call events.

Generation of Target Cost Metric The semantics of CompCert
C allocates a separate memory region for each addressable local
variable. In Mach, all those variables as well as the spilling locations,
the function arguments, and the return address are stored in a
stack frame. Actually, the stack frame of a Mach function call is
completely laid out, so that no additional memory is necessary when
generating the CompCert x86 assembly code. This means that, at
the level of Mach, we already know the stack size necessary for a
function call (thanks to the fact that the original CompCert does not
support some C features, see 3.3): for a given function, this size is
constant and does not depend on the arguments nor the input. So, we
can use the sizes of Mach stack frames as cost metric for functions
to accurately estimate stack bounds at the source level: the weight
of a trace with such instantiation actually models the exact stack
consumption of the corresponding execution at the level of Mach.
Consequently, we modify CompCert in such a way that, in addition
to the assembly code, it returns the mapping of Mach stack frame
sizes for each function.

In fact, to cope with the generation of assembly code (see
below), we slightly modified the Linear-to-Mach stack-layout pass,
to introduce the return address only at the next pass. So, if the Mach
stack frame size of a function f excluding the space for return
address is SFpfq, then the actual cost metric is Mpfq “ SFpfq ` 4
(as we focus on x86 32-bit machines), taking advantage of the fact
that CompCert already computes SFpfq in such a way that Mpfq is
a multiple of 8 (or 16, if strong alignment is required by the user),
to keep the actual contents of stack frames correctly aligned.

To sum up so far, our modified CompCert ensures that CompCert
C code compilation down to Mach code is correct with respect to
quantitative refinement. Then, by instantiating the cost metric to
the sizes of Mach stack frames, it follows that the actual stack
consumption of the produced Mach code is indeed lower than the
bound computed at the level of CompCert C.

Generation of Assembly Code Recall that CompCert x86 assem-
bly language is not realistic enough as it does not prevent from
allocating an infinite number of stack frames. Our goal, as one of
our main applications of our quantitative refinement, is to make the
CompCert x86 assembly language more realistic by having it model
a contiguous finite stack that is preallocated at the beginning of the
program. The semantics (but not the syntax) of our new CompCert
x86 assembly is parameterized by the size sz ` 4 4 of the whole
stack (provided, in most cases, by the host operating system). We
call this new x86 semantics ASMsz . We design it in such a way that
an execution goes wrong if the program tries to access more than sz

4 sz is the stack size actually consumed by the program starting from main,
but we have to account for the return address of the “caller” of main.
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Figure 3. Quantitative CompCert, our modified stack-aware CompCert C compiler. We replace CompCert’s x86 assembly with the more
realistic x86 assembly semantics ASMsz with finite stack. Pseudo assembly instructions are not needed anymore.

bytes of stack. In other words, stack overflow becomes possible in
ASMsz .

Because the notion of function call is no longer relevant (there is
no “control stack”), we lose the ability to extend this semantics with
call and return events. So, rather than quantitative refinement, we
are actually interested in whether a CompCert C source program can
run on ASMsz without going wrong because of stack overflow. The
correctness of our Quantitative CompCert compiler is formalized by
the following theorem.

Theorem 1. Let sz ` 4 P
“

4, 232
˘

be the size of the whole target
stack. Consider a CompCert C source program S and assume the
following:

1. S does not go wrong in the ordinary setting of unbounded stack
space, that is, Et, failptq P JSK.

2. Quantitative CompCert produces a Mach intermediate target
code I , with the sizes of stack frames5 SF and the subsequent
cost metric Mpfq “ SFpfq ` 4.

3. The stack bounds of S inferred at the source level and are lower
than sz under the Match cost metric M : @B P JSK,WM pBq ď
sz .

4. From I , our compiler produces a target assembly code T .

Then, when run in ASMsz , T refines S in the sense of CompCert:
@B1 P JT Ksz , DB P JSK, B1 “ B. In particular, T cannot go wrong
and thus does not stack overflow.

It is important to first prove that S cannot go wrong in unbounded
stack space. Indeed, the correctness of our assembly generation
depends on the fact that the weights of Mach traces are lower than
sz . If S were to have a wrong behavior failptq then I might actually
have a behavior t ¨ B whose weight could well exceed sz even
though WM pfailptqq does not. As each pass is proved independently
of the others, it is not possible to track the behaviors of I that could
potentially come from wrong behaviors of S, so they have to be
excluded.

To explain our transformation in more detail, we first informally
describe the CompCert memory model [29]. In CompCert, memory
is not one contiguous array of bytes, but a (finite but unbounded)
sequence of finite arrays of bytes, called memory blocks. The address
of a memory location is of the form pb, oq where b is the sequence
number of the memory block, and o is a machine integer representing
the offset of the byte within this block. The most important thing
to know about this memory model is that memory blocks are
independent of each other: pointer arithmetics can be done only
within a given block, so that, for instance, shifting an address pb, oq
by some offset δ yields pb, o` δq, so that CompCert guarantees that
such arithmetics will never cross block boundaries. Moreover, once
a memory block is freed, it is never reused. To ensure that, NBpmq
gives the sequence number of the next block available for allocation,
so that all blocks with sequence number at least NBpmq are not yet

5 In CompCert Mach, the syntax of a program p includes a finite map SF
such that, for any function f defined in p, the operational semantics of Mach
allocates a stack frame of SFpfq bytes whenever f is entered.

allocated in m, and pointers to them are dangling; allocating a block
increases NBpmq by one.

Thanks to this memory model, CompCert makes it possible to
allocate one block for each addressable local variable in CompCert
C. By contrast, Cminor allocates only one block per function call,
into which all those local variables are merged by the compilation
passes from CompCert C to Cminor. This single memory block per
function call actually corresponds to the stack frame, whose size
stays the same from Cminor down to Linear, and gets increased only
in Mach, where it also receives the spilling locations and function
arguments, without allocating any new blocks for these additional
data.

In the original CompCert x86 assembly language, the notion
of stack frame is still kept, so that this language has two pseudo-
instructions Pallocframe and Pfreeframe responsible of allocating
and freeing the corresponding memory block, even though those
pseudo-instructions are then turned into real x86 assembly instruc-
tions performing pointer arithmetics with the ESP stack pointer
register. This latter transformation cannot be proved correct in Com-
pCert, because pointer arithmetics cannot cross block boundaries
in the CompCert memory model. Therefore this transformation is
done in an unverified “pretty-printing” stage, after CompCert has
generated the x86 assembly code of the source program.

Our new assembly semantics overcomes this limitation. Now,
instead of allocating different memory blocks, we preallocate one
single block of size sz ` 4 at the beginning of the program to
hold the whole stack, and our assembly generation pass ensures
that the value of ESP always points within this block. Therefore
the pseudo-instructions are no longer necessary, and the pointer
arithmetics needed at function entry and exit can be performed
within our formalized ASMsz assembly language.

As an interesting side effect, accessing the function arguments is
now simpler in our assembly language. Indeed, in the x86 calling
convention, a function has to look for its arguments in the stack
frame of its caller. Because in the original CompCert, stack frames
are independent memory blocks, it was necessary for the callee to
have a pointer to the caller stack frame, called the back link, in its
own stack frame. The callee could then access its arguments by
one indirection through this back link. In our new ASMsz assembly
language, stack frames are no longer independent, so that the callee
can access its arguments directly by pointer arithmetics within
the whole stack block. Consequently, the back link is no longer
necessary, and we removed it from the stack layout. Again, this is
possible because the sizes of stack frames are constant and there are
no dynamic stack allocation (push/pop, etc.). In other words, the
code produced by CompCert does not make use of the EBP frame
pointer, which basically stays constant across the execution of the
whole program).

To formalize and prove this pass, we actually have to prove that
we can merge the memory blocks corresponding to stack frames
into one single memory block, through a memory transformation
called a memory injection [29, 5.4]. It models the merging of several
source blocks into one target block. This transformation ensures that
it is possible to reuse the target memory locations of freed source
stack frames for further new stack frames.
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Then, rather than proving a correctness pass from CompCert
assembly to ASMsz , we chose to modify the Mach to assembly
pass by splitting it into two passes through an intermediate Mach2sz

language which is a reinterpretation of the semantics of a Mach
control-flow graph but with the stack frames merged into a single
stack frame. Indeed, our proof still needs to know about a “control
stack”, which still exists in Mach but no longer in assembly. The
Mach-to-Mach2sz pass is not a translation pass, but a proof that the
reinterpretation of the semantics of Mach into Mach2sz is sound if
the weights of the traces of the Mach semantics of the control-flow
graph are lower than sz .

The main parts of the proof of this pass are about function
calls and returns, which take full advantage of the properties of
memory injections. Thanks to the fact that we know that the weight
of the whole traces of the source program are lower than sz , the
compilation invariant of our proof ensures that the stack pointer is
of the form pb, oq, where b is the sequence number identifying the
memory block corresponding to the whole stack. The offset o is
such that 0 ď o ď sz and for any behavior B starting from the
current execution state, o´WM pBq ě 0 (in x86 the stack grows
from sz down to 0). In fact, if the program starts from the initial
state and produces a finite trace t. Then the stack pointer is actually
equal to pb, sz ´ VM ptqq.

Finally, the proof of assembly generation between Mach2sz and
ASMsz brings no significant changes from the original Mach to
CompCert x86 assembly except for the correctness of function call
and return, where the pointer arithmetics are actually performed.

3.3 Limitations
Stack frame size Neither the original CompCert nor Quantitative
CompCert do support variable stack-frame size: C features such as
variable-length arrays or dynamic stack allocation (alloca special
library functions) are not supported. Thus, the size of the stack frame
of a Mach function can be computed statically, and can be used to
define the cost metric of the program. Moreover, the subsequently
produced assembly code does not need to use push or pop, so any
change to the stack pointer is done only through pointer arithmetics.

Optional optimizations Quantitative CompCert currently does
not support the following optional two optimization passes (that
are present in the original CompCert): tail-call recognition and
function inlining. Here we show how to deal with those passes (their
implementation is underway):

• For tail-call recognition, we know that a sequence of tail calls
from a caller function f into a callee function g which in turn tail
calls a function h, actually produces callpfq ¨ retpfq ¨ callpgq ¨
retpgq ¨ callphq ¨ retphq ¨ ε instead of callpfq ¨ callpgq ¨ callphq ¨
retphq ¨ retpgq ¨ retpfq ¨ ε. Thus, by accumulating the anticipated
return on an auxiliary stack, we can match the reorderings of
return events by coinductively designing a custom refinement
relation on potentially infinite traces. In the relation, θ is a finite
trace that collects return events.

ε Ďθ ε

e ¨ T 1 Ďθ e ¨ T if T 1 Ďθ T
retpfq ¨ ε Ďθ ε

retpfq ¨ e ¨ T 1 Ďθ e ¨ T if T 1 Ďretpfq¨θ T

T 1 Ďretpfq¨θ retpfq ¨ T if T 1 Ďθ T

It is easy to see that, if T Ďθ T
1, then T „ T 1, and for any finite

trace θ that only has return events (so that VM pθq ď 0) and for
any finite prefix t1 of T 1, there is a finite prefix t of T such that
VM pt

1
q ` VM pθq ď VM ptq, so WM pT

1
q ` VM pθq ďWM pT q.

Thus, to prove quantitative refinement, it suffices to prove that,

for any trace T 1 of the target language, there is a source trace T
of the source program such that T 1 Ďε T .

• Similarly, for function inlining, we know that, when a function
call is inlined, its corresponding callp) and retp) events are re-
moved in matching pairs, so we can design a similar refinement
relation. However, we have to be careful because the target code
may actually produce fewer events. So, to make the relation coin-
ductively productive, we first design a transition relation ù to
be applied only finitely many times in a row (even though it may
be applied infinitely many times overall) to consume finitely
many call and return events from the source trace without pro-
ducing them on the target trace (due to function inlining):

pcallpfq ¨ T, θqù pT, callpfq ¨ θq

pretpfq ¨ T, callpfq ¨ θqù pT, θq

Then we can design the following coinductive relation (where θ
is finite), which is indeed productive:

ε Ďθ ε

e ¨ T 1 Ďθ t ¨ e ¨ T if T 1 Ďθ1 T

and pt ¨ e ¨ T, θqù˚
pe ¨ T, θ1q

ε Ďθ T if ε Ďθ1 T 1

and pT, θqù`
pT 1, θ1q

It is easy to see that, if T Ďθ T
1, then T „ T 1, and for any finite

trace θ that only has call events (so that VM pθq ě 0) and for
any finite prefix t1 of T 1, there is a finite prefix t of T such that
VM pt

1
q ´ VM pθq ď VM ptq, so WM pT

1
q ´ VM pθq ďWM pT q.

Thus, to prove quantitative refinement, it suffices to prove that,
for any trace T 1 of the target language, there is a source trace T
of the source program such that T 1 Ďε T .

The main challenge is due to the simulation diagrams [28, 2.1] used
to prove the passes. Indeed, CompCert uses forward (or downward)
simulation diagrams for each pass6: each execution step in the source
program corresponds to one or more steps in the target program.
But refinement actually requires the converse, namely backward (or
upward) simulation: each execution step of the target program has
to be associated to one or more steps in the target program. Because
RTL is deterministic up to input values generated by I/O external
function call events, forward simulation diagrams can be turned to
backward simulation diagrams [34, 4.6], but, whereas it is accurate
for pruned traces, it is not clear whether it is still true if the traces
between the two languages differ, which is the case for both tail-call
recognition and function inlining, as we saw above.

4. Quantitative Hoare Logic for CompCert Clight
In this section, we describe the novel quantitative program logic
for CompCert Clight. The logic has been formalized and proved
sound using Coq. At some points, we simplify the presented logic
in comparison to the implemented version to discuss general ideas
instead of technical details. Some of our design decisions have
been influenced by the development of the verified operating-system
kernel CertiKOS [15], which has been our first main application of
the quantitative program logic. For instance, we focus on the subset
of Clight that is actually used in the implementation of CertiKOS.

Some particularities of the logic can be better understood with
respect to Clight and the continuation-based small-step semantics
for Clight programs that is used in CompCert.

6 Except the first one, which determinizes the semantics of CompCert C.
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∆pxq “ ` JEK∆
σ “ v H p`q ‰ ‚ σ “ pθ,H q

pΣ,∆q $ px “ E,K, σq Ñε pskip,K, pθ,H r` ÞÑ vsqq
(E:ASSIGNG)

x P dompθq JEK∆
σ “ v σ “ pθ,H q

pΣ,∆q $ px “ E,K, σq Ñε pskip,K, pθrx ÞÑ vs,H qq
(E:ASSIGNL)

σ “ p ,H q JEK∆
σ “ v σ1 “ pθrx ÞÑ vs,H q

pΣ,∆q $ preturnE,Kcallx f θK , σq Ñretpfq pskip,K, σ1q
(E:RETCALL)

pΣ,∆q $ preturnE,KseqS K , σq Ñε preturnE,K, σq (E:RETSEQ)

pΣ,∆q $ preturnE,KloopS K , σq Ñε preturnE,K, σq (E:RETLOOP)

pΣ,∆q $ pbreak,KseqS K , σq Ñε pbreak,K, σq (E:BREAKSEQ) pΣ,∆q $ pbreak,KloopS K , σq Ñε pskip,K, σq (E:BREAKLOOP)

Σpfq “ px1, . . . , xn, Sf q @i : JEiK∆
σ “ vi θf “ x1 ÞÑ v1, . . . , xn ÞÑ vn σ “ pθ,H q

pΣ,∆q $ px “ fpE1, . . . , Enq,K, σq Ñcallpfq pSf ,Kcallx f θK , pθf ,H qq
(E:CALL)

pΣ,∆q $ pskip,KseqS K , σq Ñε pS,K, σq (E:SKIPSEQ) pΣ,∆q $ pS1;S2,K, σq Ñε pS1,KseqS2 K ,σq (E:SEQ)

JEK∆
σ “ int 1

pΣ,∆q $ pif pEq thenS1 elseS2,K, σq Ñε pS1,K, σq
(E:COND1)

JEK∆
σ “ int 0

pΣ,∆q $ pif pEq thenS1 elseS2,K, σq Ñε pS2,K, σq
(E:COND0)

pΣ,∆q $ pskip,KloopS K , σq Ñε ploopS,K, σq (E:SKIPLOOP)

pΣ,∆q $ ploopS,K, σq Ñε pS,KloopS K , σq (E:LOOP)

Figure 4. Rules of the small-step semantics.

4.1 CompCert Clight
CompCert Clight is the most abstract intermediate language used
by CompCert. Mainly, it is a subset of C in which loops can only
be exited with a break statement and expressions are free of side
effects. Using Clight instead of C simplifies the definition of our
quantitative program logic and is also in line with the design of
CompCert and the verification of CertiKOS.

Expressions As in Clight, we consider a subset of C expressions
without side-effects.

Expressions E,E1, E2 ::“ n integer constant
| &x address of variable
| ˚E pointer dereference
| uop E unary operation
| E1 bop E2 binary operation

We skip the definitions of unary and binary operations unop and
binop. They are not important for the results in our paper and can
be found in the CompCert source code.

Statements We use a subset of Clight to focus on the main ideas
of our program logic.

For simplicity, all loops are infinite unless they are terminated
using a break command. As mentioned, only variables x can appear
on the left-hand side of assignments in our language. We do not
consider function pointers, goto statements, continue statements,

and switch statements (see 4.4).

Statements
S, S1, S2 ::“ skip do nothing

| x “ E assignment

| x “ fpE˚q assignment & function call
| S1;S2 sequential composition
| if pEq thenS1 elseS2 conditional
| loopS infinite loop
| break break loop
| returnE return from function

Programs Like in C, a program consists of a list of global variable
declarations, a list of (internal) function declarations, and the
identifier of the main statement, which is the entry point of the
program.

Variable declaration vdec ::“ T x

Function declarations fdec ::“ T x pvdec˚qtvdec˚;Su

Programs prog ::“ tfdec | vdecu˚; main “ x

4.2 Operational Semantics
CompCert Clight’s semantics is based on small-step transitions
and continuations. Expressions—which do not have side effects—
are evaluated in a big-step fashion. We use a simplified version of
Clight’s semantics that is sufficient for our subset. It is easy to relate
evaluations in our simplified version to evaluations in the original
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semantics and we have implemented a verified compiler from our
simple Clight to Clight with CompCert’s original semantics.

Values A value is either an integer or a memory address.

Val ::“ int n | adr `

Here, we have ` P Loc and n P Z.

Memory Model In the Coq development we use CompCert’s
memory model. However, the main ideas of the logic can be
described with a simple abstract memory model in which locations
are mapped to values and labels ‚, ˝.

H : Mem “ Loc Ñ Val Y t‚, ˝u

The label ‚ is used to indicate that a location has been freed and
can no longer be used. This is not only beneficial to prove compiler
correctness but also in line with the C standard.

The label ˝ is used to initialize new memory cells. A cell that
contains ˝ cannot be read until a proper value v P Val has been
stored in it.

Evaluating Expressions In contrast to C and CompCert Clight,
we do not distinguish between l-value and r-value positions because
expressions are always in r-value positions in this article.

Expressions are evaluated with respect to a memory H : Mem
and two environments

θ : VID Ñ Val and ∆ : VID Ñ Loc .

The local environment θ maps local variables to values and the
global environment ∆ maps global variables to locations. We
assume that always domp∆q X dompθq “ H.

The semantics JEK∆
pθ,H q “ v of an expression E under a global

environment ∆, a local environment θ, and a memory H is defined
by induction on the structure of E.

JnK∆
pθ,H q “ intn ifn P Z

J&xK∆
pθ,H q “ θpxq ifx P dompθq

J˚EK∆
pθ,H q “H p`q if JEK∆

pθ,H q “ adr `

. . .

Continuations The small-step transition relation for statements
is based on continuations. Continuation handle the local control
flow within a function body such as sequences, loops as well as the
logical call stack.

K ::“ Kstop | KseqS K | KloopS K | Kcall x f θK

A continuationK is either the empty continuation Kstop, a sequence
KseqS K , a loop KloopS K , or a stack frame Kcallx f θK .

Evaluating Statements Statements are evaluated under a program
state pθ,H q P State “ pVID Ñ Valq ˆ Mem and a global
environment

pΣ,∆q : FID Ñ prVIDs ˆ Sq ˆ pVID Ñ Locq

that maps (internal) functions to their definitions—a list of argument
names and the function body—and global variables to values.

The small-step evaluation rules are given in Figure 4. They define
a transition

pΣ,∆q $ pS,K, σq Ñtµ|ν|εu pS
1,K 1, σ1q

where µ is a memory event, ν is an I/O event, ε denotes no event,
S, S1 are statements, K,K 1 are continuations, and σ, σ1 P State
are program states.

From the small-step transition relation we derive the following
many-step relation in which t is a finite trace. We write

pΣ,∆q $ pS1,K1, σ1q Ñ
n
t pSn`1,Kn`1, σn`1q

if t “ a1, . . . , an and there exists pSi,Ki, σiq such that for all i

pΣ,∆q $ pSi,Ki, σiq Ñai pSi`1,Ki`1, σi`1q .

For a statement S and a continuation K, we define the weight
pΣ,∆,Mq $WσpS,Kq under the global environment pΣ,∆q, the
program state σ, and the metric M as

pΣ,∆,Mq$WσpS,Kq “ suptVM ptq | DS
1,K 1, σ1, t, n . pΣ,∆q

$ pS,K, σq Ñn
t pS

1,K 1, σ1qu .

4.3 Quantitative Hoare Logic
In the following we describe a simplified version of the quantitative
Hoare logic that we use in Coq to prove bounds on the weights
of the traces of Clight programs. For a given statement S and a
continuation K, our goal is to derive a bound pΣ,∆q $ P pσ,Mq P
N such that pΣ,∆q $ P pσ,Mq ěWpσ,MqpS,Kq for all program
states σ and resource metrics M . In the remainder of this section
we assume a fixed global environment pΣ,∆q.

We generalize classic Hoare logic to express not only classical
boolean-valued assertions but also assertions that talk about the fu-
ture stack-space usage. Instead of the usual assertions P : State Ñ
bool of Hoare logic we use assertions

P : State Ñ NY t8u .
This can be understood as a refinement of boolean assertions where
false is interpreted by 8 and true is refined by N. We write
Assn for State Ñ N Y t8u, and K “ p ÞÑ 8q. In the actual
implementation, assertions have the type State Ñ NÑ Prop. For
a given σ P State , such an assertion can be seen as a set B Ď N of
valid bounds. We do this only to use Coq’s support for propositional
reasoning. The presentation here is easier to read.

The continuation-based semantics of a Clight requires that we
distinguish pre- and postconditions in the logic to account for
different possible ways to exit a block of code. This is approach
is standard in Hoare logics and followed for instance in Appel’s
separation logic for Clight [3]. Our postconditions

Q “ pQs, Qb, Qrq : Assn ˆAssn ˆ pVal Ñ Assnq

provide one assertion Qs for the case in which the block is exited by
fall through, one assertion Qb if the block is exited by a break, and
a function Qr from values to assertions in case the block is exited
by a return. The function argument in the last case represents the
return value and the intended meaning is that the resulting assertion
is guaranteed to hold for every return value.

Since we have to deal with recursive functions, we also need a
function context

Γ:FIDÑppValˆMemqÑNYt8uqˆppValˆMemqÑNYt8uq
that maps function names to their specifications, that is, pre- and
postconditions. The precondition depends on the value that is passed
to the function by the caller and the memory. The postcondition
depends on the return value and the memory. For simplicity, we
assume that a function has only one argument in this article. In the
Coq implementation, an arbitrary number of function arguments is
allowed.

In summary, a quantitative Hoare triple has the form

Γ $ tP uS tQu

where Γ is a function context, P : Assn is a precondition, Q :
Assn ˆ Assn ˆ pVal Ñ Assnq is a postcondition, and S is a
statement.

Intuitively, an assertion can be seen as a potential function that
maps a program state to a non-negative potential. The potential
of the precondition P must be sufficient to cover the cost of the
execution of the statement S and the potential Q after the execution
of S (as in amortized resource analysis [19]).
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Γ $ tQsu skip tQu (Q:SKIP) Γ $ tQbu break tQu (Q:BREAK) Γ $ tλσ .Qr JEK∆
σ qu returnE tQu (Q:RETURN)

P “ λpθ,H q . Qspθrx ÞÑ JEK∆
pθ,H qs,H q

Γ $ tP ux “ E tQu
(Q:ASSIGNL)

P “ λpθ,H q . Qspθ,H r∆pxq ÞÑ JEK∆
pθ,H qsq

Γ $ tP ux “ E tQu
(Q:ASSIGNG)

Γ $ tP uS1 tpR,Q
b, Qrqu Γ $ tRuS2 tQu

Γ $ tP uS1;S2 tQu
(Q:SEQ)

Γ $ tλσ.pJEK∆
σ ‰ 0q ` P pσquS1 tQu Γ $ tλσ.pJEK∆

σ “ 0q ` P pσquS2 tQu

Γ $ tP u if pEq thenS1 elseS2 tQu
(Q:COND)

Γ $ tIsuS tIu

Γ $ tIsu loopS tpIb,K, Irqu
(Q:LOOP)

Γpfq “ pPf , Qf q P “ λpθ,H q . Pf pJEK∆
pθ,H q,H q Q “ λpθ,H q . Qf pJxK∆

pθ,H q,H q

Γ $ tP `Mpfqux “ fpEq tpQ`Mpfq,K,Kqu
(Q:CALL)

Γ1 “ Γ, f : pPf , Qf q Σpfq “ px, Sf q
Γ1 $ tP uS tQu Γ1 $ tP 1uSf tK,K, Q

1
u P 1 “ λpθ,H q . Pf pθpxq,H q Q1 “ λpθ,H q . λr .Qf pr,H q

Γ $ tP uS tQu
(Q:ABSTRACT)

c ě 0 tP uS tQu

tP ` cuS tQ` cu
(Q:FRAME)

P ě P 1 tP 1uS tQ1u Q1 ě Q

tP uS tQu
(Q:CONSEQ)

Figure 5. Rules of the quantitative program logic.

Rules In the rules of the program logic, we use the usual exten-
sions of the operations ` and ě on N Y t8u. We have 8` n “
n ` 8 “ 8 and 8 ě n for all n P N Y t8u. In an assertion,
we interpret Boolean b as an element of b P N Y t8u. We define
false “ 8 and true “ 0. We also lift the operations ` and ě
pointwise to assertions P,Q : Assn . A constant c P N Y t8u is
sometimes used as the constant assertion P pσq “ c. We define
K : Assn and J : Assn to be the assertions with Kpσq “ 8 and
Kpσq “ 0 for all σ, respectively. As mentioned we fix an event
metric M and a global environment pΣ,∆q.

In the rule Q:SKIP, we do not have to account for any stack
consumption. As a result, the precondition can be any (potential)
function. After the execution, the skip part of the postcondition must
be valid on the same (unchanged) program state. So we have to
make sure that we do not end up with more potential and simply use
the precondition as the skip part of the postcondition. The break and
return parts of the postcondition are not reachable and can therefore
be arbitrary.

The rules Q:BREAK and Q:RETURN are similar to the rule
Q:SKIP. The only difference is that we replace requirement of the
skip part of the postcondition with analogue requirements on the
break and return part, respectively. The aforementioned rules not
trigger any stack-space consumption nor release of stack-space. This
might seem strange in the return case but will become clear in the
description of the Q:CALL rule later on.

The rules Q:ASSIGNL and Q:ASSIGNC for local and global
assignment follow the traditional backward style of Hoare logic. It
is ensured that the precondition takes the same value on the initial
state as the skip part of the postcondition on the state modified by
assignment.

Despite its seemingly simplicity, the Q:SEQ rule must not be
overlooked to understand how the quantitative Hoare logic works.
We have to define it in such a way that it accounts for early exits
in statements. For instance, if S1 contains a break statement then

S2 will never be executed so we must ensure in the break part of
S1’s postcondition that the break part of S1;S2 holds. For the same
reason, the return part of S1’s postcondition is special.

The Q:LOOP rule uses the same principles as the SEQ rule to
tweak the final postcondition. In the case of Q:LOOP, we simply
ensure that the break part of the inner statement becomes the skip
part of the overall statement. We use K as the break part of the
loopS statement since its operational semantics prevent it from
terminating differently than by a skip or a return.

The Q:CALL rule accounts for the actual stack-space usage
of programs. It enforces that enough stack space is available to
call the function f by adding Mpfq to the precondition and the
postcondition. The pre- and postconditions are taken from the
context Γ. This context is extended using the Q:ABSTRACT rule
described below. The assertions in the context are parametric with
respect to both the function argument value and the return value.
This allows to specify a bound for a function whose recursion
depth depends on an input parameter. The argument parameter is
instantiated by the call rule using the result of the evaluation of the
argument expression in the current state. Note the symmetry of the
rule Q:CALL: Mpfq is added on both sides to account for the stack
space that becomes available after the call. This justifies that the
Q:RETURN rule does not account for stack-space release.

Finally, we describe the rules which are not syntax directed. The
rule Q:ABSTRACT allows to make a proof on any statement with
an extra hypothesis in the derivation context provided that we have
a proof that this hypothesis is true. We can see as the quantitative
interpretation of the usual logical Modus Ponens.

There are two weakening rules available in the quantitative Hoare
logic. The framing rule Q:FRAME is designed to weaken a statement
by stating that if S needs P bytes to run and leaves Q bytes free
at its end, then it can very well run with P ` c bytes and return
Q ` c bytes. It comes very handy when we want to prove tight
bounds using the max function as demonstrated in Figure 6. The
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Γpfq “ pλpv,H q . 0, λpv,H q . 0q

Γ $ tpmf u fpq tpmf ,K,Kqu
(Q:CALL)

Γ $ tpmf `Xf u fpq tpmf `Xf ,K,Kqu
(Q:FRAME)

Γ $ tmaxpmf ,mgqu fpq tQu
(EQ)

Γpgq “ pλpv,H q . 0, λpv,H q . 0q

Γ $ tpmgu gpq tpmg ,K,Kqu
(Q:CALL)

Γ $ tpmg `Xgu gpq tpmg `Xg ,K,Kqu
(Q:FRAME)

Γ $ tmaxpmf ,mgqu gpq tQu
(EQ)

Γ $ tmaxpmf ,mgqu fpq; gpq tQu
(Q:SEQ)

where Mpcallpfqq “ mf Mpcallpgqq “ mg Q “ pmaxpmf ,mgq,K,Kq Xθ “ maxpmf ,mgq ´mθq for θ P tf, gu

Figure 6. An example derivation of a stack-space bound in the quantitative logic.

consequence Q:CONSEQ rule is directly imported from classical
Hoare logics except that instead of using the logical implicationñ
we use the quantitative ě. This rule indeed weakens the statement
since it requires more resource to run the statement and yields less
than what has been proved to be available after its termination.

Auxiliary State As mentioned, our account of the logic in this
article is slightly simplified compared to the Coq development to
improve readability.

The main difference between the implemented logic and the
logic described here is that the latter does not have an auxiliary
state. Auxiliary state is a classic extension of Hoare logic (see for
example [32]). It is used to share information between the pre- and
postcondition of a triple. In a logic without auxiliary state (or similar
techniques) it is not possible to relate program states before and
after a statement. For example, you cannot specify that the function
int twice () ti = i+i;u doubles the value of the variable i.
With an auxiliary variable Z it is possible specify this fact in Hoare
logic using the triple ti “ Zu twicepq ti “ 2 ¨ Zu.

In the Coq implementation, assertions have the type State ˆ
Aux Ñ NYt8u. The auxiliary state is an arbitrary type in Coq and
can be instantiated by the user. Most of the rules of the logic remain
unchanged in the presence of auxiliary state. The only exception is
the consequence rule Q:CONSEQ that reads as follows.

tP 1uS tRu
@σ a.P pσ, aqPN ùñ Da1.P pσ, aqěP 1pσ, a1q

^p@σ1 i.Ripσ1, a1qěQipσ1, aqq

tP uS tQu

This is the quantitative version of a consequence rule that has
been introduced in the context of Hoare logic and is attributed to
Martin Hofmann [32]. Its typical use case is when we apply the rule
Q:CALL to a recursive call. In this case, the Hoare triple for the
function call is proved by an assumption from the derivation context
with a slightly different auxiliary state. In the example derivation
in Figure 7 this different state is Z ´ 1. Adapting the derivation
hypothesis to prove the recursive call is enabled in our logic by the
extended consequence rule introduced above.

Stack Framing A minor difference in the function application
rule is that we only present the rule for function calls with a single
argument and without framing of stack assertions. The latter is
necessary in the code of a caller to carry over information on the
local environment from the precondition of the function call to the
postcondition of the function call. This is a general problem in Hoare
logic and stack framing is a well known solution. For instance, we
would like to prove something like tyu fpxq tyu where y is a local
variable. This is not possible with the rule Q:CALL but it is with the
more general rule in the Coq implementation [9].

Soundness The soundness of our quantitative logic can be simply
expressed by the following theorem.

Theorem 2. For a fixed global environment pΣ,∆q, a derivation
in our quantitative logic for a statement S implies a bound on the
weight of S, that is,

¨ $ tP uS tQu ùñ @σ,M .P pσ,Mq ěWpσ,MqpS,Kstopq.

Naturally, we have to prove a stronger statement that takes post-
conditions and continuations into account to justify the soundness
of the rules of the logic. This is not unlike as in program logics for
low-level code [22] and Hoare-style logics for CompCert Clight [3].
Furthermore, we have to assume that we have a non-empty func-
tion context Γ; and finally, we have to step-index the correctness
statement in order to prove its soundness by induction.

For a precondition P , a statement S, and a continuation K, we
define safepP, S,K, nq through

@σ,M .P pσ,Mq ě maxtVM ptq | Dm ď n . pS,K, σq Ñm
t u

For a postcondition Q, and a continuation K, safeK pQ,K, nq is
defined as

safepQs, skip,K, nq ^ safepQb, break,K, nq ^ @σ,M,E .

QrpJEKσqpσ,MqěmaxtVM ptq | Dmďn .preturnE,K, σqÑm
t u

Now we can define the validity of our quantitative Hoare triples. Like
in Vafeiadis’ soundness proof of concurrent separation logic [36]
we bake the quantitative frame rule into the definition of validity.
We say that a triple tP uS tQu is valid for n steps and write
validpP, S,Q, nq if the following holds.

@m ď n,K, c . safeK pQ`c,K,mq ùñ safepP`c, S,K,mq

Here, Q`c is short for pQs`c,Qb`c, λv .Qrpvq`cq.
An interesting detail in the definition is the natural number

m. We simply use it to ensure that validpP, S,Q, n ` 1q ùñ

validpP, S,Q, nq. This would not be the case if we replaced all
occurrences of m by n in the definition of validity.

We say a context Γ is valid for the global environment, and write
pΣ,∆q ( Γ if the following holds.

Γpfq “ pPf , Qf q^Σpfq “ px, Sf q ùñ @n . validpP, Sf , Q, nq

Here we define P pθ,H q “ Pf pθpxq,H q and

Q “ pJ,J, λv . λpθ,H q . Qf pv,H qq .

Finally, we say that a triple tP uS tQu is valid under the function
signature Γ and write Γ ( tP uS tQu if for every global environ-
ment pΣ,∆q we have pΣ,∆q ( Γ ùñ @n . validpP, S,Q, nq.

Of course we prove in Coq that the intuitive validity, as formu-
lated in (2), is a consequence of our stronger formulation of validity.

Examples Figure 6 contains an example derivation for the state-
ment fpq; gpq in our logic. We assume that we have already verified
that the function bodies of f and g do not allocate stack space, that
is, Γpgq “ Γpfq “ pλpv,H q . 0, λpv,H q . 0q.

Our goal is to derive the quantitative Hoare triple Γ $

tmaxpmf ,mgqu fpq; gpq tpmaxpmf ,mgq,K,Kquwhich expresses
that maxpmf ,mgq, the maximum of the stack frame sizes of f and
g, is a bound on the stack usage; and that after the execution
maxpmf ,mgq stack space is available. Since the effect of break
and return statements cannot leak outside of a function body, we
know that no break or return will occur in the execution of the
statement fpq; gpq. Therefore the corresponding postconditions can
be arbitrary and we simply use K.
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tZ “ log2phσ´lσq ñMb ¨ Zqu
bsearch(x,l,h) {
if (h-l <= 1) return l;
tpZą0^ Z “ log2phσ´lσqq ñMb ¨ Zu
m = (h+l)/2;

tpZą0^ Z “ log2phσ´lσq ^mσ “
hσ`lσ

2
q ñMb ¨ Zu

if (a[m]>x) h=m else l=m;
trZ´1 “ log2phσ´lσq ñMb ¨ pZ´1qs `Mbu

return bsearch(x,l,h);
trMb ¨ pZ´1qs `Mbu

}
tMb ¨ Zu

Figure 7. Derivation for the bsearch function.

To derive our goal, we first have to apply the rule Q:SEQ for
sequential composition. In the derivation of the function call fpq,
we first reorder the precondition to get it in a form in which we can
apply the rule Q:FRAME to eliminate the max operator. We than
have a triple that is amenable to an application of the rule Q:CALL
that uses the specification of the body of f in Γ. The derivation the
function call fpq is very similar.

More examples can be found in our Coq development [9].

4.4 Limitations
In our program logic described in this section, we do not consider
function pointers, goto statements, continue statements, and switch
statements, even though our Quantitative CompCert compiler still
supports all of these. It would be possible to add these features to
our logic by building on the ideas of advanced program logics like
XCAP [31].

5. Automatic Stack Analyzer
In larger C programs a manual, interactive verification with a
program logic is too tedious and time-consuming to be practical.
Therefore we have developed an automatic stack analysis tool that
operates at the Clight level to enable the analysis of real system
code. We view this automatic tool mainly as a proof of concept that
demonstrates the value of the logic for formal verification of static
analysis tools. In the future, we will extend our automatic analyzer
with advanced techniques like amortized resource analysis [21, 5].
This is however beyond the scope of this article.

The basic idea of our automatic stack analyzer is to compute
a call graph from the Clight code and to derive a stack bound
for each function in topological order. In Coq, the derivation of a
function bound is implemented by a recursive function auto bound
on the abstract syntax tree (AST) of a Clight program. The function
auto bound does not only compute a stack bound but also a
derivation in our quantitative program logic. This verifies the
correctness of the generated bound and enables the composition
of stack bounds that have been derived interactively or with other
static analysis tools. In addition to the AST, auto bound takes a
context of known function bounds together with their derivations in
the logic as an argument.

Given our verified quantitative logic, the implementation of
auto bound is straightforward. For trivial commands like as-
signments ore skip, auto bound simply generates the bound 0
and a derivation like t0u skip tp0, 0, 0qu. For a sequential com-
position S1;S2 we inductively apply auto bound to S1 and S2,
and derive the bounds tBiuSi tpBsi , B

b
i , B

r
i qu for i“1, 2. We

then return the precondition maxtB1, B2u and the postcondition
pmaxtBs1 , B

s
2u,maxtBb1, B

b
2u,maxtBs1 , B

s
2uq for S1;S2. The

derivation of this bound is similar to the example derivation that is
sketched in Figure 6. The computation of the bound for the condi-

tional works similar. For loops we can use the bound derived for the
loop body to obtain a bound for the loop. In the derivation we just
apply the rule Q:LOOP. Function calls are handled with the context
of known function bounds (recursion is not allowed here) and the
rule Q:CALL.

For a given C program, we apply auto bound to every function
definition in the well-founded topological order that is given by the
call graph. We then use the resulting bounds to successively generate
the context of known function bounds for the following calls of
auto bound. We envision, that the quantitative logic can be a useful
backend to verify more sophisticated static analyses. For our simple,
automatic stack analyzer the logic was already very convenient and
enabled us to verify the analyzer almost without additional effort. If
one considers more involved programs with recursion and function
pointers then more verification effort is inevitable but based on our
experiences, we believe that the quantitative logic will be quite
helpful.

We have combined our automatic stack analyzer with our Quan-
titative CompCert compiler. The result is a verified C compiler that
translates a program without function pointers and recursive calls
to x86 assembly and automatically derives a stack bound for each
function in the program including mainpq. The soundness theorem
we have proved states the following. If a given program is memory-
safe and the verified compiler successfully produces an assembly
program A then A refines the source program and runs safely on
an x86 machine with the stack size that has been computed by the
automatic stack analysis for mainpq (compare Point 3 of Theorem
1). During compilation, the Stack-Aware CompCert Compiler prints
the computed stack bound for every function and the overall stack
requirement for the program.

The Stack-Aware CompCert Compiler is part of our Coq devel-
opment [9].

6. Experimental Evaluation
To validate the practicality of our framework for stack-bound
verification, we have performed an experimental evaluation with
more than 3000 lines of C code from different sources. The C
programs used to evaluate the quantitative Hoare logic and the
automatic stack analyzer include hand written code, programs
from the CompCert test suite7, programs from the MiBench [17]
embedded software benchmarks, and modules from the simplified
development version of the CertiKOS operating system kernel which
is currently being verified.

Tables 1 and 2 show a representative compilation of the experi-
ments. Table 2 consists of bounds that where automatically derived
with the stack analyzer. Table 1 contains 8 bounds that where inter-
actively derived using the quantitative logic with occasional support
of the automation. The size of the analyzed example files varies
from 8 lines of code (fib.c) to 819 lines of code (proc.c). In general,
the automatic stack-bound analysis runs very efficiently and needs
less than a second for every example file on a Linux workstation
with 32G of RAM and processor with 16 cores at 3.10Ghz.

In Table 2, the first column shows the file name of the examples
together with the number of lines, the second column contains the
name of selected functions from that file, and the third column con-
tains the verified bound. The interactively-derived bounds in Table 1
are presented as symbolic expressions parametric in the functions’
arguments. These symbolic expressions are slight simplifications of
the real pre- and postconditions of the functions that we proved in
Coq. The actual Hoare triples proved in Coq carry a logical meaning
which does, for instance, require that the qsort function be called

7 The files mandelbrot.c and nbody.c are originally from The Great Com-
puter Language Shootout.
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Function Name Verified Stack Bound

recidpq 8a bytes
bsearchpx, lo, hiq 40p1` log2phi´ loqq bytes
fibpnq 24n bytes
qsortpa, lo, hiq 48phi´ loq bytes
filter pospa, sz, lo, hiq 48phi´ loq bytes
sumpa, lo, hiq 32phi´ loq bytes
fact sqpnq 40` 24n2 bytes
filter findpa, sz, lo, hiq 128` 48phi´ loq ` 40 log2pBLq bytes

Table 1. Manually verified stack bounds for C functions.

on a valid sub array. The file sizes of the manual verified examples
range from 8 to 52 lines of code.

Our main application of the automatic stack-analyzer is the
CertiKOS operating system kernel [15]. Currently, the stack in
CertiKOS is preallocated and proving the absence of stack-overflow
is essential in the verification of the reliability of the system.
Since CertiKOS does not make use of recursion, we can use
the automatic analysis to derive precise stack bounds. Using our
Quantitative CompCert compiler, we were, for instance, able to
compile and compute bounds for the virtual memory management
module (certikos{vmm.c) and the process management module
(certikos{proc.c). In total more than 1500 lines of system C code
were processed without any human interaction. Because of the large
number of functions in CertiKOS, only a sample of the analyzed
functions is displayed in Table 2.

Testing the quantitative Hoare logic and the compiler on Com-
pCert test suite was a natural choice since our compiler builds on
CompCert’s architecture. This also allowed us to make sure that we
did not introduce any regression with respect to the original Com-
pCert compiler. To stress the expressivity of the logic we focused
on test programs with recursive functions. The functions fib and
qsort in Table 1 are for instance from the CompCert test suite. Files
with automatically derived bounds for non-recursive functions from
the CompCert test suite include mandelbrot.c which computes an
approximation of the Mandelbrot set and nbody.c which computes
an n-body simulation of a part of our solar system.

We also made sure that the experiments stressed our ability to
handle safety critical software. Embedded software typically runs in
a highly memory constrained environment and, in the most critical
cases, running out of stack space could turn into threat for human
lives. The MiBench [17] benchmark we used for this purpose is
free, publicly available, and representative for embedded software.
The use of recursion in MiBench programs is relatively rare, which
makes them a great target for our automatic stack analyzer. The
analyzed examples we present in Table 2 include for instance
Dijkstra’s single-source shortest-path algorithm (dijkstra.c), and the
cryptographic algorithms Blowfish (blowfish.c) and MD5 (md5).

Finally, Table 1 contains some recursive functions that demon-
strate the expressivity of our quantitative logic. The function bsearch
is, for example, a recursive binary search with logarithmic recursion
depth. The function fib computes the Fibonacci sequence using an
exponential algorithm and the function qsort implements a recursive
version of the quicksort algorithm. In both cases the asymptotically
tight linear bounds could be proved. The verification of the func-
tion fact sq shows the modularity of the logic: We first verify a
linear bound for the factorial function and then use this bound to
verify fact sqpnq, which contains the call factpn2

q. The function
filter pos takes an array and computes a new array that contains
all positive elements of the input array. Similarly, filter find uses
the binary search bsearch to filter out all elements of an input array
that are contained in another array of size BL. The modularity of
the logic enables us to reuse the logarithmic bound that we already

File Name / Function Name Verified
Line Count Stack Bound

mibench{net{dijkstra.c enqueue 40 bytes
(174 LOC) dequeue 40 bytes

dijkstra 88 bytes
mibench{auto{bitcount.c bitcount 16 bytes
(110 LOC) bitstring 32 bytes
mibench{sec{blowfish.c BF encrypt 40 bytes
(233 LOC) BF options 8 bytes

BF ecb encrypt 80 bytes
mibench{sec{pgp{md5.c MD5Init 16 bytes
(335 LOC) MD5Update 168 bytes

MD5Final 168 bytes
MD5Transform 128 bytes

mibench{tele{fft.c IsPowerOfTwo 16 bytes
(195 LOC) NumberOfBitsNeeded 24 bytes

ReverseBits 24 bytes
fft float 160 bytes

certikos{vmm.c palloc 48 bytes
(608 LOC) pfree 40 bytes

mem init 72 bytes
pmap init 176 bytes
pt free 80 bytes
pt init 152 bytes
pt init kern 136 bytes
pt insert 80 bytes
pt read 56 bytes
pt resv 120 bytes

certikos{proc.c enqueue 48 bytes
(819 LOC) dequeue 48 bytes

kctxt new 72 bytes
sched init 232 bytes
tdqueue init 208 bytes
thread init 192 bytes
thread spawn 96 bytes

compcert{mandelbrot.c main 56 bytes
(92 LOC)
compcert{nbody.c advance 80 bytes
(174 LOC) energy 56 bytes

offset momentum 24 bytes
setup bodies 16 bytes
main 112 bytes

Table 2. Automatically verified stack bounds for C functions.

derived for bsearch in the proof. The verification of some functions
is still underway. The bounds for the functions recid, bsearch, fib,
and qsort are already completely verified.

Our experiments have shown that the automatic stack analyzer
works effectively for our main application, the CertiKOS OS kernel.
The reason is that we designed the quantitative logic to include
exactly the subset of Clight that is needed for CertiKOS. It turned out
that this subset is also sufficient for many examples in the CompCert
test suite and the MiBench embedded software benchmarks. If a
program is not interactively analyzable in our logic then this due
to unsupported language constructs such as switch statements and
functions pointers. Many of these language features could easily be
supported by relatively small additions to the logic. An exception to
this are function pointers which would require more work, following
for example XCAP [31].

Accuracy of the Derived Bounds We have evaluated the precision
of the automatically and manually derived bounds by comparing
our verified upper bounds with the actual stack-space consumption
during the execution of the compiled C programs. Our experiments
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Figure 8. Experimental evaluation of the accuracy of hand-derived
bounds. The plots compare the derived bounds (blue lines) for the
functions bsearch (at the top), fact sq (in the middle), and fib
(at the bottom) with the measured stack usage of the execution
of the respective function for different inputs (red crosses). The
experiments indicate that the derived bounds over-approximate the
actual stack usage by a small constant factor.

show that the derived bounds are very precise: Both the manually
and automatically derived bounds over-approximate the stack usage
by exactly four bytes (see the following explanation).

Figure 8 shows the results of three experiments we made with
hand-derived stack bounds using the quantitative logic. We plotted
the derived bounds for the functions bsearch, fib and fact sq (blue
lines) and the measured stack usage for different inputs (red crosses).
The x-axis shows the size of the input; either the value of an
integer argument (fib and fact sq) or the length of an input array
(for bsearch). The y-axis shows the stack usage in bytes. The
experiments show that the logic is expressive enough to get very
tight bounds on the recursive programs. The bsearch example shows
that the logarithmic bound derived by the logic is very close the

program requirements; the fact sq example makes the point that our
logic is indeed compositional.

We also experimentally proved the efficiency of our automatic
tool on complete programs. This includes part of the CompCert
benchmarks and some programs from the MiBench benchmark suite.
The derived bounds are all off by exactly four bytes. Unfortunately,
the precision of bounds derived on the CertiKOS operating system
kernel could not be experimentally verified since it cannot be
compiled and monitored by our tool as a regular Linux program.
Further experiments may be possible by using, for instance, an
instrumented virtual machine.

As mentioned, all the derived bounds are off by four bytes. The
reason for this is that stack frames always reserve four bytes for a
potential function call: The return address needs to be pushed by
a call instruction in the callee. Obviously, the last function in the
function call chain does not call any other function. So these four
bytes remain unused. A different point of view is to see these four
bytes as the return address of main. Indeed, before main is called,
its return address is pushed on the stack. But, as described below, our
tool takes the stack pointer at the function prologue as a reference
point. So the return address is already on the stack and four bytes
are not counted in the experiment.

Various technical problems make the measurement of stack
consumption during the execution of compiled C code a complex
task on today’s systems. These problems involve security features
of the host operating system and implicit management of the stack
pointer by C compilers. Indeed, instructions allocating and freeing
stack space can be emitted by the compiler at any place in the
assembly code and can take several forms.

To our knowledge, no tool available today can monitor the stack
consumption of running programs with the precision required to
evaluate our bounds. For this purpose, we implemented a small
program able to monitor resources used by any function of a Linux
executable. It uses the ptrace system call8. This system call allows
one Linux process (we will call it the parent) to have a very precise
control on the execution of another process (called child). It is meant
to be used by common debugging tools like gdb or strace.

Our tool works as follows. We first retreive the location of
the entry point of the monitored function using standard ELF
files dissection tools. Once we have this address, we can set up
a breakpoint by replacing the function prologue with an x86 trap
instruction (ptrace allows to poke in the child’s address space).
This trap instruction plays the role of a breakpoint and when the
child executes it, control is given back to the monitoring process by
the kernel. At this point, we inspect the registers of the child process
to get the value of the stack pointer. This will become the stack
reference point. Now we can restore the function prologue that was
overwritten in the first step and proceed with the execution of the
child in step-by-step mode. At each executed assembly instruction
the control is given back to the parent process which inspects the
value of the stack pointer and tracks its watermark. When the stack
pointer becomes smaller than the reference point, we know that the
child process returned from the tracked function. At this point we
stop monitoring the stack pointer and display the stack watermark.

One obvious weakness of this method is that it stops the control
of the child process at every assembly instruction, and thus, is very
slow. However, for our purposes, this has not been an issue.

7. Related Work
In the following we discuss research that is related to our contribu-
tions in verified compilation, program logics, and automatic resource
analysis.

8 This monitoring program is available at http://zoo.cs.yale.edu/
~qc35/data/mon.c
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Verified Compilation Soundness proofs of compilers have been
extensively studied and we focus on formally verified proofs here.
Klein and Nipkow [24] developed a verified compiler from an
object-oriented, Java-like language to JVM byte code. Chlipala [11]
describes a verified compiler from the simply-typed lambda calculus
to an idealized assembly language. In contrast to our work, the
aforementioned works do not model nor preserve quantitative
properties such as stack usage.

Our verified Quantitative CompCert compiler is an extension
of the CompCert C Compiler [26, 27]. Despite of being formally
verified, important quantitative properties such as memory and time
usage of programs compiled with CompCert have still to be verified
at the assembly level [6]. Admittedly, there exists a clever annotation
mechanism [6] in CompCert that allows to transport assertions
on program states from the source level to the target machine
code. However, these assertions can only contain statements about
memory states but not bounds on the number of loop iterations and
or recursion depth of functions. The novelty of our Quantitative
CompCert extension to CompCert is that it enables us to reason
about quantitative properties of event traces during compilation.
Another novelty is that we model the assembly level semantics
more realistically by using a finite stack. In particular, we do
not have to use pseudo instructions anymore. This is similar to
CompCertTSO [34]. However, we use event traces to get guarantees
on the size of the stack that is needed to ensure refinement. On the
other hand, it is always possible that the compiled code runs out of
stack space in CompCertTSO.

In the context of the Hume language [18], Jost et al. [23]
developed a quantitative semantics for a functional language and
related it to memory and time consumption of the compiled code
for the Renesas M32C/85U embedded micro-controller architecture.
In contrast to our work, the relation of the compiled code with
functional code is not formally proved.

Program Logics In the development of our quantitative Hoare
logic we have drawn inspiration from mechanically verified Hoare
logics. Nipkow’s [32] description of his implementations of Hoare
logics in Isabelle/HOL has been helpful to understand the interaction
of auxiliary variables with the consequence rule. The consequence
rule we use in our Coq implementation is a quantitative version
of a consequence rule that has been attributed to Martin Hofmann
by Nipkow [32]. Appel’s separation logic for CompCert Clight [3]
has been a blueprint for the general structure of the quantitative
logic. Since we do not deal with memory safety, our logic is much
simpler and it would be possible to integrate it with Appel’s logic.
The continuation passing style that we use in the quantitative logic
is not only used by Appel [3] but also in Hoare logics for low-level
code [31, 22].

There exist quantitative logics that are integrated into separation
logic [5, 20] and they are closely related to our quantitative logic.
However, the purpose of these logics is slightly different since they
focus on the verification of bounds that depend on the shape of
heap data structures. Moreover, they are only defined for idealized
languages and do not provide any guarantees for compiled code.
Also closely related to our logic is a VDM-style logic for reasoning
about resource usage of JVM byte code by Aspinall et al. [4].
Their logic is more general and applies to different quantitative
resources while we focus on stack usage. However, it is unclear how
realistic the presented resource metrics are. On the other hand, our
logic applies to system code written in C, is verified with respect
to CompCert Clight, and can be used to derive bounds for x86
assembly.

Resource Analysis There exists a large body of research on
statically deriving stack bounds on low-level code [8, 33, 10] as
well as commercial tools such as the Bound-T Time and Stack

Analyser9 and Absint’s StackAnalyzer [14]. We are however not
aware of any formally verified techniques. For high-level languages
there exists a large number of systems for statically inferring or
checking quantitative requirements such as stack usage [23, 12,
19, 1]. However, they are not formally verified and do not apply to
system code that is written in C. For C programs, there exist methods
to automatically derive loop bounds [39, 16] but the proposed
methods are not verified and it is unclear if they can be used for
computing stack bounds.

We are only aware of two verified quantitative analysis systems.
Albert et al. [2] rely on the KeY tool to automatically verify
previously inferred loop invariants, size relations, and ranking
functions for Java Card programs. However, they do not have a
formal cost semantics and do not verify actual stack bounds. Blazy
et al. [7] have verified a loop bound analysis for CompCert’s RTL
intermediate language. It is however unclear how the presented
technique can be used to verify stack bounds or to formally translate
bounds to a lower-level during compilation.

8. Conclusion
Embedded software has always been a target of verified compilers.
As a result, aiding verification of quantitative properties remains a
major goal for verified compilation. In one of the earliest articles
[26] on CompCert, Leroy stated:

“[...] it is hopeless to prove a stack memory bound on the
source program and expect this resource certification to carry
out to compiled code: stack consumption, like execution time,
is a program property that is not preserved by compilation.”

Ironically, Leroy’s groundbreaking work on CompCert has been the
main inspiration in our development of a framework that enables
exactly such a resource certification of stack-consumption bounds
for compiled x86 assembly code at the C level.

We have developed Quantitative CompCert, a realistic, verified
C compiler which shows how verified compilation enables the
verification of quantitative properties of compiled programs at the
source level. We have implemented and formally verified a novel
quantitative Hoare logic for CompCert Clight which is an ideal
backend for static analysis tools. This is demonstrated through the
implementation of a verified, automatic stack-analysis tool that
computes derivations in the quantitative logic. Finally, we have
shown through experiments that our framework can be applied to
derive precise stack bounds for typical system code.

Our work opens the door for the verification of powerful static
analysis tools for quantitative properties that operate on the C
level rather than on the machine code. There are multiple future
research directions that we plan to explore on the basis of the present
development. For one thing, we want to use our quantitative Hoare
logic to verify more powerful analysis tools that can automatically
derive stack-space bounds for recursive functions. For another
thing, we plan to generalize the developed concepts to apply our
technique to other resource such as heap-memory and clock-cycle
consumption.

Formal verification and machine-checked proves have been a
vital tool during the development of this work, which in some
ways challenges the prevalent opinion. Formal verification not only
convinced us that our implementation does not contain bugs; a
formally proved theorem in Coq is also an argument that proves
useful in discussions with skeptical practitioners.

9 http://www.bound-t.com
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