Maya: Using Formal Control to Obfuscate Power Side Channels

Raghavendra Pradyumna Pothukuchi, Sweta Yamini Pothukuchi, Petros G. Voulgaris, Alexander Schwing, and Josep Torrellas

Power is a Powerful Side Channel

- Counters, Trojan chips...
- Machine Learning, Statistical Analysis, Signal Processing
- Power
- Passwords, application information, browser, camera, location, cryptographic keys...

Existing Defenses have Limitations

- Obvious approaches are ineffective
 - E.g., Add random noise
 - Removed by averaging!
 - E.g., Measure and correct for constant power

- Intrusive changes to systems
 - Systems in the field are left vulnerable

- Typically focus on encryption
 - Sensitive data (e.g., browser data) can leak through system-level power

Key Idea

- Use formal control to intelligently re-shape a computer’s power, transparent to applications.
 - “Power can be shaped in any desired form, appearing to carry activity information which, in fact, is unrelated to the application.”

Maya Architecture

- Mask Generator
 - Creates targets to obfuscate time and frequency patterns
 - Gaussian Sinusoid: varying sinusoid + Gaussian distribution

- Formal Robust Controller
 - Actuates multiple knobs to reliably keep power close to targets

- Knobs
 - DVFS level, idle cycles, custom balloon application
 - Can be fine-grained: pipeline bubbles, power hungry ops etc.

- Excellent obfuscation!

Experimental Highlights

- Web page detection
 - Random knobs (51% accuracy)
 - Maya (14% accuracy)

- Deep dive: application detection
 - Original
 - Random Knobs
 - Maya

Experimental Setup

- Maya as admin software on three real systems

- Machine Learning (ML) based attacks
 - Detect applications, videos, and web-pages
 - Also use signal analysis (e.g., changepoint analysis)

Other Attacks

- Instruction profiling
 - (e.g., PLATYPUS)
 - Run instructions in a loop, and average multiple runs

- Covert channel: Power delivery network
 - Original
 - Maya

Acknowledgments

This work was supported by NSF grant CNS 1763658.

Acknowledgements: Kevin Colzary (UIUC), Dipanjan Das (Renesas), Tarek Abdelzaher (UIUC)