
1

The Data Management Problem in Post-PC Devices
and a Solution

Ramakrishna Gummadi Randy H. Katz
framki, randyg@cs.berkeley.edu

Computer Science Division
University of California, Berkeley

387 Soda Hall #1776
Berkeley, CA 94720-1776

Abstract

The demand for network-enabled limited-footprint mobile de-
vices is increasing rapidly. A central challenge that must be
addressed in order to use these next-generation devices effec-
tively is efficient data management – persistent data manipu-
lated or required by applications executing on these computa-
tionally and communicationally impoverished devices must be
consistently managed and made highly available. This data
management has traditionally been the responsibility of the OS
on which applications execute. In this paper, we extend this con-
ventional OS functionality to include post-pc devices. We pro-
pose a novel programmatic solution to the problem of main-
taining high data availability while attaining eventual consis-
tency [16] in the presence of mobility and disconnected opera-
tions, device and network failures, and limited device capabil-
ities. We achieve this by using a combination of a novel proxy
architecture, a split request-reply queue based on soft-state prin-
ciples, and a two-tier update/commit protocol. We also exploit
strong object typing to provide application-specific conflict han-
dling in order to attain faster eventual consistency, as well as
greater probability of automatic reconciliation.

I. INTRODUCTION AND MOTIVATION

We are currently witnessing a widespread use of network-
enabled mobile devices such as PDAs, smart phones, hand-held
PCs, and other portable communication devices. While these
devices are extremely useful because they allow untethered ac-
cess to data, they are constrained by much smaller computation,
storage, and communication capabilities compared to their desk-
top counterparts. These constraints arise because of the fun-
damental limitations on form-factors and power consumption,
apart from economic factors. Another major problem with these
small devices is their inherent unreliability - the wireless net-
work connection (either infrared or RF) that they establish to
reach the rest of the world is highly susceptible to outage, they
may exhaust their battery power anytime, and the storage com-
ponents that go into them, such as non-volatile memory chips
and flash cards, do not really provide durable storage. In this
context, efficient data management on these devices throws up
a significant challenge, which the operating systems running on
these devices must address effectively.

The unit of data manipulation and storage that is popular on
traditional desktops and workstations is a file [22]. Files are or-

ganized into directories to provide the notion of a file system,
and file system management for applications running on these
machines, stand-alone or networked, is one of the primary tasks
of an operating system. This concept of a file as an unstructured
sequence of bytes of unspecified length that can be accessed
randomly (the random access assumption may not be true for a
small number of device files) is highly useful for traditional ap-
plications, because it is the single lowest common denominator
which is directly used by many diverse applications, while in-
dividual applications requiring more powerful abstractions can
easily structure the data in these files to suit their needs without
sacrificing performance or correctness. While data available on
local disks is manipulated directly by the native file system and
device driver components of an operating system, data residing
elsewhere in the network is managed typically by a combina-
tion of local clients running inside, or at least tightly coupled
with, the operating system kernel, and remote servers that them-
selves directly invoke the services of the kernel. Moreover, data
manipulation operations, such as reads and writes, are typically
handled synchronously, and in a blocking fashion. Also, there is
little distinction made between the nature of storage available on
local nodes and that available on remote nodes – both use disks
to provide durable storage, and while these disks may differ in
some respects, such as throughput and storage capacities, the ba-
sic functionality provided is the same. This mode of persistent
data management works well in practice for conventional ma-
chines and applications because disks and wired network con-
nections are fairly reliable, and normal applications require little
more support for persistent storage than a file system (they may,
however, require other services, such as network connections
and device access for manipulating temporary data).

While this synchronous manipulation of files backed up disks
is an acceptable approach in the common case, the advent of
small devices that must operate with limited and unreliable per-
sistent storage (such as battery-backed memory cards) in an in-
termittently connected fashion presents serious impediments to
extending the conventional data model to include these emerg-
ing devices. This is because of the following factors:
1. Nature of applications running on post-pc devices: Most
applications running on these devices (such as on-site forms
data entry and collection, messaging, calendaring, personal in-
formation managing (PIM) applications) deal with structured
and strongly-typed objects and records, such as forms, e-mail
and news articles, schedules, multimedia and http objects, and

183



2

not byte arrays and files. In fact, most devices, including PDAs
such as Palm, do not even support the notion of files or file sys-
tems per se. Typically, it is possible to describe the structure
of the objects that these applications manipulate in a statically
and strongly typed language. This object view of description,
query and retrieval, and manipulation of data has important im-
plications with respect to conflict handling for consistency (see
Section III).
This object view has another advantage: we can define an object
as the basic unit (primitive) of data that must be persistently and
consistently managed. This definition is also consistent with the
application data unit (ADU) concepts [23] and the integrated
layer processing principles. Thus, we need a persistent data
storage and manipulation view that is different from conven-
tional files and file systems. Any operating system supporting
persistent data management on the client devices must, there-
fore, also include support for fine-grained object storage and
retrieval. Therefore, in our model, we explicitly deal with ob-
jects and types that are defined by applications according to their
needs, and invoke application-specific consistency-preserving
schemes.
2. Nature of data access: Synchronous operation has seri-
ous fallouts in the presence of intermittent connectivity [17].
The “transparent” mechanisms for network access, such as
RPC [24], do not work well in the presence of partial failure
of the server or the network, and must be handled explicitly
and carefully by the operating system or support servers running
on the client. We can overcome this problem by taking a com-
pletely asynchronous approach to data management. Also, some
arrangement, such as hoarding and emulation, must be made to
handle disconnected operations [18] so as to enable the client
to work with a cached copy of available data and make updates
anywhere anytime.
3. Constraints on nature of locally available storage: Un-
like their desktop cousins, post-pc devices only have access to
limited and unreliable durable storage facilities (such as battery-
backed memories, and, almost certainly, no disks) at their dis-
posal. This places an upper bound on both the amount of data
that can safely be committed to stable storage locally, as well
as the duration for which such storage can be guaranteed. It is,
therefore, important for operating systems managing these de-
vices to evolve capabilities that can effectively deal with these
restrictions.
4. Device proliferation with limitations to reliability: While
the number of devices that a user is likely to use to access data
is increasing rapidly, each device taken individually is signifi-
cantly less reliable than a normal computer. Therefore, an op-
erating system must address the following non-trivial question:
how to consistently manage data being simultaneously operated
upon by multiple unreliable heterogeneous devices.

We conclude, therefore, that operating systems tailored for
these small devices need to meet a different set of challenges
for managing data effectively. These goals are not met in
the present-day operating systems, because of which automatic
management of data on these devices is a big problem. The inel-
egant solution to this problem today is to use a manual approach
for managing data – the user must take his or her hand-held
PC near a personal computer and synchronize data expressly.

This approach clearly has several drawbacks, such as featuring
a cumbersome, error-prone, and time-consuming manual mode
of operation, imposing limits on the number of devices across
which data can be accessed, and constraining mobility because
of the assumption that a desktop machine is available to store
persistent data as required. In this paper, we present a novel
programmatic approach to the problem of maintaining persis-
tent data consistently across devices. Our contributions in this
paper are as follows:
1. Propose a novel architecture to the problem of data man-
agement: We propose a novel proxy-based two-tier single-
master architecture, with split request-reply queues, that allows
devices to manage data efficiently and persistently.
2. Explore the tradeoffs involved in maintaining strong con-
sistency versus availability in the presence of network out-
ages: There is a fundamental limitation to building systems that
simultaneously offer strong or ACID consistency [25] and high
availability. We explore this basic tension between data consis-
tency and availability for the special case of post-pc devices, and
examine under what conditions one can build systems that can
provide both consistency and availability.
3. Evolve a programmatic and incremental approach to au-
tomate this problem: We demonstrate how current operating
systems can be augmented with a data management service layer
that can asynchronously handle disconnected, and intermittently
connected modes of operations. This service has the desirable
property that it insulates an application developer and a user
from having to explicitly manage data, just as the file system in-
terface removes the burden of low-level data management from
the programmers, and users of their programs.
4. Present an object view of data management: We abandon
the conventional file system view for data management because
of the reasons presented earlier, and, instead, adopt an object
view. We show the advantages of this approach by presenting
examples that invoke the fundamental application-level framing
(ALF) [23], and soft-state [1] principles. We also study relaxed
object consistency models and their implications on application
semantics.

The rest of this paper is organized as follows. We discuss
our basic assumptions and architecture and rationalize them in
Section II. In that section, we also present the advantages of
this architecture. In Section III, we present the tension between
object consistency and availability, and discuss, with examples,
the degrees of consistency up to which objects can be managed
by our architecture. We dwell upon our programmatic approach
and its advantages in Section IV. Here, we also discuss some
optimizations that can be applied to the base case, and implica-
tions of ALF and eventual consistency. We discuss the related
work in Section V, and conclude in Section VI.

II. SYSTEM ARCHITECTURE

Our intention is to design a system that can support the funda-
mental data requirements of durability, consistency, availability
efficiently. We defer the problem details of consistency versus
availability until Section III. In this Section, we examine how
durability and consistency can be achieved.

The growth and deployment of post-pc access devices brings
up an interesting question: how can users access their data ubiq-

184



3

uitously but safely. To answer this question, one must first
answer the more basic question: where exactly does data re-
side. We claim that emerging technologies [26] [27] indicate
that data reposes permanently deep inside the network in data
centers that are managed by a federation of commercial utility
providers who make this data highly available from anywhere in
the network, exploit automatic replication for disaster recovery,
employ strong security by default, and provide performance that
is similar to that of local storage under normal conditions. Note
that this view of storage systems for data is a direct extension of
the conventional LAN server storage model, except that it envis-
ages a global-scale ubiquitous data access. Thus, while numer-
ous conventional systems [2] [3] [4] [18] have tackled the prob-
lem of providing data access to users in a LAN setting where
the nature of access devices, such as laptops, is roughly similar
to high-end storage servers, we are now faced with the prob-
lem of dealing with data accessed through devices whose nature
is very different from the highly sophisticated, redundant, self-
repairing, and secure cluster servers in which data resides. This
concept of “data utility-providers” is gaining popularity because
of the demands of users for data access, the rapid deployment of
Internet technologies, and the economies of scale that can be ex-
ploited by commercial providers. Thus, our first assumption is
that data is managed in BASEs, that are scalable, highly avail-
able, cluster servers with persistent state, public-key infrastruc-
ture, and database support. BASE is also an acronym for Basi-
cally Available, Soft-state with Eventual consistency [6], which
is the antithesis of ACID [25] semantics for databases. It also
accurately highlights the fundamental feature of eventual con-
sistency that is attained at bases based on soft-state principles.
We elaborate upon this later in this section.

If we accept this model, the next question is how best to con-
nect these access devices to the network. One choice is for users
to establish direct connections to their data repositories. This
choice, however, has its limitations: radio wireless connections
are notoriously unreliable, slow, power-hungry, and expensive;
many devices have other, possibly faster and power-efficient
mechanisms for connections that can be used under special con-
ditions, such as wireless infrared connections to line-of-sight
networked devices; and, most importantly, the asynchronous
and non-blocking requirement of operation does not warrant a
continuous connection. Therefore, we propose an active proxy
approach to connect to bases: active proxies, so called because
they are middleware service components with facilities for re-
source discovery, secure automatic path creation to appropri-
ate bases, object caching, and transformation, are the gateways
through which data is accessed by post-pc devices. These prox-
ies include contraptions such as kiosks and online terminals in
university buildings, retail locations and public places, and are
being increasingly deployed [26] to provide network connectiv-
ity to post-pc devices. Proxies have the following advantages:

1. Client adaptation: Proxies allow clients that speak diverse
network protocols (such as Irda, serial point-to-point, propri-
etary RF) to adapt to the connected network that speaks TCP/IP.
It is unreasonable to expect every access device to speak na-
tive TCP/IP because of efficiency considerations; sometimes,
as in the infrared case, even if these devices can communicate
TCP/IP, they may not be able to establish direct wide-area con-

nections. Also, the high round-trip times and loss rates of wire-
less connections make TCP/IP implementations bloated, un-
wieldy, and inefficient [7]. Besides, proxies directly support mo-
bility and disconnected operations because objects downloaded
from one proxy may be updated at the data repository through
another proxy after any length of disconnected operation.
2. Efficient resource management: Proxies, where available,
can serve to multiplex network connections, offering high-
bandwidth wireless network connections. Scarce resources,
such as IP addresses, may be managed efficiently through a
proxy approach [7].
3. Automatic content transformation: Through mechanisms
such as object transformation, aggregation, caching, and cus-
tomization (TACC) [6], it is possible to optimize data manage-
ment performance according to application requirements and
user preferences.

The capabilities of proxies, such as resource discovery, se-
cure communication with bases, and TACC capabilities, can be
captured in terms of operators that can be composed under the
generic name of paths [17]. While proxies are well-connected to
the infrastructure, they are shared, untrusted resources that are
not particularly reliable, and, therefore, do not support persis-
tent data or high availability. We have seen how to achieve the
former using bases; the latter can be achieved by using a collec-
tion of proxies that depend only on soft-state [1]. Finally, bases
themselves can contain proxies as middleware components that
can be accessed by users when they have a direct connection to
bases, but not to proxies.

A principal feature of our system architecture is a two-tier ob-
ject update/commit protocol. The two-tiers correspond to a first-
level tentative update from access devices to proxies, and a final
second-level update from proxies to bases. Both the updates are
asynchronous with respect to each other. This is roughly anal-
ogous to the two-tier model described in [20], except that we
do not hold locks around updates, and, instead, use optimistic
forms of concurrency 1 and consistency control, primarily for
high availability.

The overall architecture is depicted in Figure 1, which shows
how end-devices connect to bases through proxies. The request
queue stores objects that need to be checked in to the base, and
is managed by an operating system service running on the client.
The reply queue contains objects that are downloaded from the
base for servicing client cache misses and client commit confir-
mation replies for previously checked-in objects that have been
successfully merged at the base, and is managed by the proxy.
The reply queue contains entries whose state is soft – entries
are retired from the queue either when a client dequeues them,
or after a timer expires. It is acceptable for the state to be soft
because there is still a persistent state at the base, which can be
accessed by the client, either through the same, or a different
proxy, after a lengthy disconnection. Also, because of this flex-
ibility (arising due to proxies operating in a soft-state mode) in
selecting a proxy, we can guarantee high availability of proxies.

Given this model, we can define object persistence as follows:
we consider an object to have write-stabilized [16] if and only if
a copy of the object reaches its base, where, after passing object-

1for updates made to the same object across different proxies

185



4

Post-pc client

Infrared

TCP/IP

SAN

Cluster BASE

Request Queue Reply Queue

���
���
���
���

���
���
���
���
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���
��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Fig. 1. Overview of the Data Management Service Architecture

specific per-write dependency checks, it is merged with other
objects and committed to stable storage. The copies that are
manipulated by the post-pc units are only leased (can be recalled
if inconsistencies show up) and cached copies of objects that are
stored immutably in bases.

Thus, access devices may manipulate objects that are down-
loaded through an active proxy, and may check in modified
copies of these objects through another proxy. Enough log in-
formation is generated by our operating system service running
on the access devices so that the updates propagated to bases
through proxies can be unambiguously ordered and merged at
the bases. This procedure is described in more detail in Sec-
tion IV. So, object consistency is defined from the perspective
of the write-order seen at the base.

In summary, we employ a proxy-brokered, infrastructure-
backed, single master data management scheme for consistent,
highly available, and persistent storage management. These
ideas are summarized in Table I [17].

Type Nature State Connectivity Capability
Clients End Cache Zero or Talk

devices only meager to proxies
Active Shared, Soft Good, talk +Operators,
Proxies untrusted state with bases paths
Bases Trusted, Master No +Highly

Well-run durable partitions available

TABLE I

III. DEGREES OF OBJECT CONSISTENCY VERSUS

AVAILABILITY

There is a fundamental theorem [17] governing data avail-
ability, consistency, and network characteristics, called the CAP
theorem, which we have exploited for supporting efficient data
management. It states that it is only possible to choose two of
the three features of strong consistency, availability, and network
partitioning. One can not afford the luxury of working under all
three conditions - either we forego strong consistency for main-
taining high data availability under network partitions, or we

forego high availability for maintaining strong consistency in the
presence of network partitions by making one side of a network
partition unavailable (typically, the smaller side), or we create
special conditions for having both strong consistency and high
availability (by ensuring no network partitioning). Traditionally,
databases have adopted the first approach, making them unscal-
able for handling large number of simultaneous network connec-
tions from clients by techniques such as redundancy and repli-
cation, while all weakly consistent systems, such as Bayou [16]
and Coda [18], have taken the second path. The third case is fa-
miliar in single node desktop machines, where there is no scope
for partial failures.

We strive to attain consistency and high availability in
bases by using cluster computers interconnected by high-speed
system-area networks (SANs) running in highly controlled en-
vironments that have a very low probability of failure (the SAN,
for example, can be constructed to have a cyclic topology so
that the network does not partition under a single node or router
failure [17]) so as to scale across the number of wide-area client
requests that can be processed while presenting a single-master
view of data outside the base (because multiple master replicas
have a fair share of problems, such as slow convergence, and
greater probability of conflicts [19] [16]). We attain high avail-
ability by replicating persistent objects inside bases so that we
can tolerate independent failures of components. We insure de-
gree 3 consistency [25] among the replicas through a lazy update
protocol [8] [12]. Thereby, we attain both strong consistency
and high availability within a base.

Since the connections between a user and the proxies, as well
as between proxies and bases may partition, we can not hope to
have strong consistency if we simultaneously want high avail-
ability. We therefore relax the strong (degree 3) consistency
requirement, opting, instead, for eventual consistency, and, by
applying application-specific conflict resolution procedures, for
low probability of requiring manual reconciliation of conflicts.
This probability can be lowered further by electing lower de-
grees of consistency, such as degree 2 or degree 1, without dras-
tically affecting the application semantics: for example, we may
risk e-mail messages that are treated as objects getting reordered
while a user’s mailbox is updated at the base if we use use two
different transactions with degree 2 consistency for this purpose
instead of a single transaction with degree 3 consistency; but
this is not a serious problem (if the client really cares, the email
reader at the client can include identifiers inside messages and
present the messages in the correct order finally to the user). On
the other hand, we gain flexibility and parallelism by using two
transactions because the two different transactions can be simul-
taneously initiated by two different proxies, and serviced by two
different replicas within a base. Thus, in the email example, con-
sider a transaction T2 that read the mailbox length that has been
modified (but not yet committed) by transaction T1 which had
started earlier, and updated the mailbox length to account for the
new message; if T1 were to now abort for some reason, such as
the replica on which T1 was running has crashed, etc., T2 would
also have to abort, or else the mailbox would be left in an incon-
sistent state. We avoid such problems by carefully choosing the
correct degree of consistency required for an application, and
enforcing it efficiently and correctly within the cluster. Single

186



5

machine Unix systems do not encounter such problems because
server processes are carefully multi-threaded to avoid problems
on single machines, but this is still a limitation of the system
because such processes can not work together efficiently as a
cluster, although it is fairly easy to make them work correctly
by using coarse-grained file locks. Note that Unix file systems
also do not support avoiding Read/Write conflicts, required for
degree 2 consistency, because Unix does not have the notion of
atomicity beyond the boundary of a system call, and this is an-
other limitation in developing efficient distributed applications.

IV. THE PROGRAMMATIC APPROACH

We now examine the major components of our data manage-
ment service that need to be present on the end-device clients,
active proxies, and bases, and how they interact with each other.
In our proposed implementation, we have an object manager
running on the mobile unit that manages the limited persistent
storage available on the devices intelligently by multiplexing
persistent storage amongst uncommitted, but modified, objects
belonging to all applications. Applications are required to type
objects strongly, so that application-specific conflict resolution
policies can be initiated at the bases. This object manager also
doubles as a cache and hoard manager, automatically detecting
the hot-set of objects that need to be kept around in memory, and
accepting requests from applications about objects that need to
be retained or prefetched. Thus, it possible for applications on
the clients to operate completely asynchronously. It also holds
a log of all updates made to objects from the last time of suc-
cessful commit. When disconnected, it serves objects from its
cache if it can, and records any update activity. When connected
to a proxy, it initiates a secure connection after appropriate au-
thentication, and downloads the set of modified objects and the
update log into the proxy. To economize on log size, we opt for
logical logging [9], and the log records are retained until explicit
commit confirmations for the corresponding items are received
from bases through the response queues in the proxies (see Fig-
ure 1), although the objects themselves may be purged earlier.
The idea is that once the items are downloaded into the proxies,
they are stored until a connection can be established with the
base. Thus, proxies serve to decouple the user from a base, and
users interact with bases by means of the request queue present
on the end-device, and the response queue present on the proxy
(see Figure 1).

The approach of manipulating Application Data Units [23]
has been widely recognized to be a good design principle, and,
in our case, the unit of manipulation at the base is an object,
such as a form, a database tuple, calendar entry, or an email
message, that can be specified according to the needs of an ap-
plication. An entire object is updated atomically at a base once
all modifications of an object are shipped from a proxy to the
base. For performance reasons, multiple objects can be simul-
taneously transferred from a proxy to the base, where each one
is handled individually. Multiple proxies may simultaneously
apply changes to an object at a base (this can happen, for exam-
ple, due to user mobility), but each update is rendered atomic
locally at the base, and no locks are required between a proxy
and a base. In effect, we achieve update serialization across
proxies by performing all updates locally at the bases. Local

fine-grained locking techniques would have to be used within a
base, but locks can be acquired and released quickly, and dead-
locks can be detected fairly cheaply; it is also possible to use
lock-free implementations [21].

There is one problem with this approach: if the master server
running on the base does not know the list of proxies that con-
tain copies of objects checked in, how can we achieve eventual
consistency? The answer is that the client carries log informa-
tion about the objects that have been submitted through various
proxies for re-integration at the bases. By our assumption that a
proxy is well-connected, we can guarantee that eventually, these
updates can reach the master server. In this scheme, we do not
need expensive pairwise reconciliation between proxies. The
log records about objects checked in through various proxies
can be purged at the client once the server assures it that the ob-
ject updates have successfully retired. If there were any object
conflicts, they explicitly show up, just like in the popular con-
current versions system (CVS); but this is the rare case, and the
conflicts can be remedied fairly easily manually.

V. RELATED WORK

A number of systems for providing high data availability in
conventional systems have been built, and these include systems
such as Bayou [16], Clearinghouse [14], Coda [18], Rover [13],
CVS [28], Ficus [10], Grapevine [2], and Lotus Notes [15]. We
exploit several of their properties, such as weak consistency, re-
play logs, and version vectors. We also differ from them in
several respects: explicit use of objects manipulated by post-
pc devices and managed persistently and consistently by single
masters, provision for different degrees of consistency within
transactions occurring in bases, and partitioning of functionality
among end-units, proxies, and bases.

The Bayou project at Xerox PARC extensively studied the
challenges involved in building weakly consistent replicated
servers for disconnected operations. It uses version vectors de-
veloped in the context of the Locus project at UCLA. Grapevine
was one of the earliest weakly replicated systems that propa-
gated updates via electronic mail. This was extended to use a
background anti-entropy process in Clearinghouse. Pair-wise
reconciliation of replicas is currently used in several systems,
such as Lotus Notes, and Ficus. Systems that organize replicas
into hierarchies, where a replica only exchanges updates with its
parents or children, have also been explored. Examples include
client-server reconciliation protocols in file systems like Coda,
and distributed object systems like Rover. Database systems,
such as Oracle [11] and Sybase [5], use a primary-secondary
or master-snapshot protocols for data management. Because
communication patterns are simple, these systems can easily
maintain accurate information about the state of the replicas
with which they exchange updates. Rover uses asynchronous
queued RPC invocations that are eventually applied to the mas-
ter copy of an object. More recently, the Oceanstore project [15]
at UC Berkeley is currently studying the problem of providing
ubiquitous, highly available, reliable, and persistent storage on
the global scale. In the commercial world, companies such as
Streetspace [26] are setting up terminals, that are similar to prox-
ies, in public places and retail establishments, while companies
such as Fusionone [27] are providing software that make infor-

187



6

mation access seamless across multiple computing devices. The
problem with the latter approach is that the user has to be ex-
plicitly involved in retrieving relevant data and synchronizing it
back into the network, and there is no programmatic service that
applications can leverage.

While many systems mentioned above are designed to sup-
port a file system view, we believe that post-pc operating
systems should support an object view of data management,
both because the probability of automatic conflict resolution is
greater, and because eventual consistency is more swiftly at-
tained: for example, in Coda, an unresolvable situation arises
much less frequently for directories than for normal files be-
cause directly are well-structured.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described and rationalized an archi-
tecture for data management for small devices. We have also
shown how an operating system can provide this functionality
through an additional service layer that every application run-
ning on the end-unit can make use of. This scheme makes it
incrementally deployable, because new applications can be de-
veloped to take direct advantage of this service, while existing
applications can use a wrapper that services requests for objects
which applications assume are stored persistently within the de-
vice. We believe the architecture also reflects the trends in the
deployment of commercial deployment of Internet technologies,
where cluster computing platforms and proxies are increasingly
gaining in importance as service deployment platforms.

We are currently implementing the data management layer in
Java for extensibility, and portability reasons. This service can
then run inside a tiny JVM, such as Waba [31] or KVM [29].
We leverage the work done in projects such as Bayou and Coda
to provide a programmatic scalable, and available solution that
guarantees eventual consistency. A key requirement in our ar-
chitecture is security: all communication between the client de-
vices and proxies, as well as between proxies and bases must be
strongly authenticated and encrypted. To this end, we are de-
veloping a secure RMI layer within the JVM so that secure RMI
connections can be initiated between clients and proxies. We are
also actively examining the more difficult problem of treating
the proxies themselves as completely untrustable infrastructure
services.

In conclusion, in this paper, we have examined the problem of
operating system support for efficient data management in small
devices, proposed a new architecture based on current possibil-
ities and trends, dealt explicitly with objects managed by sin-
gle masters which are made both highly available and strongly
consistent, and demonstrated how a single middleware layer of
proxies can provide efficient asynchronous data support for stor-
age constrained mobile devices.

REFERENCES

[1] Amir, E., McCanne, S., and Katz, R. An Active Service Framework and
it Application to Real-time Multimedia Transcoding. Proceedings of SIG-
COMM 1998. Vancouver, Canada, Sep 1998.

[2] Birrell, A., Levin, R., Needham, R. M., and Schroeder, M. D. Grapevine:
An exercise in distributed computing. Communications of the ACM. Apr
1982.

[3] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S.,
Sturgis, H., Swinehart, D., and Terry, D.. Epidemic algorithms for repli-

cated database maintenance. Proceedings Sixth Symposium on Principles
of Distributed Computing. Vancouver, Canada, Aug 1987.

[4] Golding, R. A. A weak-consistency architecture for distributed informa-
tion services. Computing Systems, 5(4):379-405, Fall 1992.

[5] Gorelik, A., Wang, Y., and Deppe, M. Sybase Replication Server. Pro-
ceedings of the 1994 ACM SIGMOD Conference. Minneapolis, Minnesota,
May 1994.

[6] Fox, A., Gribble, S. D., Chawathe, Y., Brewer, E. A., and Gauthier, P.
Cluster-Based Scalable Network Services. Proceedings of the Sixteenth
ACM Symposium on Operating Systems Principles. Saint-Maolo, France,
Oct 1997.

[7] Balakrishnan, H. Challenges to Reliable Data Transport over Heteroge-
nous Wireless Networks. Ph.D. thesis, UC Berkeley. Aug 1998.

[8] Gribble, S. Simplifying Cluster-Based Internet Service Construction with
Scalable Distributed Data Structures. Ph.D. Candidacy Qualifying Exam.
Apr 1999.

[9] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, P.
ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Trans-
actions on Database Systems. 17(1): 94-162, 1992.

[10] Guy, R. G., Heidemann, J. S., Mak, W., Page, T. W., Popek, G. J., Roth-
meier, D. Implementation of the Ficus replicated file system. Proceedings
of Summer USENIX Conference. June 1990.

[11] Oracle Corporation. Oracle7 Server Distributed Systems: Replicated Data,
Release 7.1 . Part No. A21903-2, 1995.

[12] Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S. Providing high avail-
ability using lazy replication. ACM Transactions on Computer Systems.
10(4), November, 1992.

[13] Joseph, A. D., deLespinasse, A. F., Tauber, J. A., Gifford, D. A., and
Kaashoek, M. F. Rover: A toolkit for mobile information access. Proceed-
ings of the Fifteenth ACM Symposium on Operating Systems Principles.
Copper Mountain, Colorado, Dec 1995.

[14] Oppen, D. C., and Dalal, Y. K. The Clearinghouse: A decentralized agent
for locating named objects in a distributed environment. ACM Transac-
tions on Office Information Systems. 1(3), July 1983.

[15] Kalwell Jr., L, Beckhardt, S., Halvorsen, T., Ozzie, R., and Grief, I. Repli-
cated document management in a group communication system. Group-
ware Software for Computer-Supported Cooperative Work. Ed. by D.
Marca and G. Bock, IEEE Computer Society Press, 1992.

[16] Peterson, K., Spreitzer, M. J., Terry, D. B., Theimer, M. M., and Demers,
A. J. Flexible Update Propagation for Weakly Consistent Replication. Pro-
ceedings of the 16th ACM Symposium on Operating Systems Principles.
Saint-Malo, France, Oct 1997.

[17] Brewer, A. B., The Ninja Architecture for Robust Distributed Systems.
Unpublished manuscript, UC Berkeley, Jan 2000.

[18] Kistler, J. J., and Satyanarayanan, M. Disconnected Operation in the Coda
File System. ACM Transactions on Computer Systems. Vol. 10, No. 1., Feb
1992.

[19] Gray, J. N., Lorie, R. A., Putzolu, G. R., and Traiger, I. L. Granularity
of Locks and Degrees of Consistency in a Shared Data Base. IFIP Work-
ing Conference on Modeling on Data Base Management Systems. AFIPS
Press, 1977.

[20] Gray, J., Helland, P., O’ Neil, P., and Shasha, D. The Dangers of Replica-
tion and a Solution. Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data. pp. 173-182, 1996.

[21] Greenwald, M., and Cheriton, D. R. The Synergy Between Non-blocking
Synchronization and Operating System Structure. Proceedings of the
Second Symposium on Operating System Design and Implementation.
USENIX, Seattle, October, 1996.

[22] Ritchie, D. M., and Thompson, K. The UNIX Time-Sharing System. Pro-
ceedings of the Fourth ACM Symposium on Operating Systems Principles.
Yorktown Heights, New York, Oct 1973.

[23] Clark, D., and Tennenhouse, D. Architectural Consideration for a New
Generation of Protocols. Proceedings of SIGCOMM 1990. Philadelphia,
PA, Sep 1990.

[24] Srinivasan, R. RPC: Remote Procedure Call Protocol Specification Ver-
sion 2. RFC 1831, Aug 1995.

[25] Gray, J., and Reuter, A. Transaction Processing: Concepts and Techniques.
Morgan Kaufman Publishers. San Francisco, 1993.

[26] http://www.streetspace.com/
[27] http://www.fusionone.com/
[28] http://www.loria.fr/ molli/cvs/doc/cvs toc.html
[29] http://java.sun.com/products/kvm/
[30] http://oceanstore.cs.berkeley.edu/
[31] http://www.wabasoft.com/

188


