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1. Introduction. This paper considers the allocation problem in combinatorial auctions. In a com-
binatorial auction, we have a set of heterogenous indivisible items that are sold to competing bidders.
The bidders value bundles of items, rather than only valuing single items individually. Thus, bidders can
express complex combinatorial preferences over items.

Formally, a set M of items, |M |=m, is sold to n bidders. To denote the i’th bidder’s value for each
bundle of items S ⊆ M , we use a function vi, where vi(S) denotes the value of the bundle S for bidder
i. The function vi is called the valuation of bidder i. Two common assumptions are that for each bidder
i, vi is normalized (vi(∅) = 0), and monotone (for each S ⊆ T ⊆ M, vi(S) ≤ vi(T )). The goal is to
partition the items between the bidders in a way that maximizes the social welfare – the sum of bidders’
values for the bundles that are allocated to them. That is, we wish to find an allocation (S1, ..., Sm),
Si ∩ Sj = ∅ for i 6= j, that maximizes

∑
i vi(Si).

Two aspects make this problem hard to solve. Firstly, the “input” is of exponential size – a naive rep-
resentation of a valuation will require 2m values, one for each bundle – while we would like our algorithms
to run in time that is polynomial in m and n (the natural parameters of the problem). Secondly, even
for valuations that can be succinctly described, the optimization problem is computationally hard. Much
work has addressed the problem of identifying special cases that can be efficiently solved or approximated,
as well as understanding the underlying computational limitations – see chapters 10 – 13 of Cramton et
al. [3].
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There are two possible approaches to formalizing the computational model. These approaches differ
in how the “input” is accessed. The first approach calls for fixing some bidding language in which the
input valuations are encoded. This approach requires algorithms to run in time that is polynomial in the
input length (under this encoding). This kind of approach makes sense in cases in which a sufficiently
natural bidding language exists. The second approach treats the valuations as black boxes and assumes
that each valuation is represented by oracles that can only answer a fixed type of queries. Three types
of queries are commonly considered:

(i) Value queries: The query specifies a subset S ⊆ M of items and receives the value vi(S) as the
reply. This query is very natural from a computer science point of view, but, in general, is quite
weak.

(ii) Demand queries: The query specifies a vector p = (p1, ..., pm) of “item prices”, and the reply is
the set that would be “demanded” by the queried bidder given these item prices, i.e., a subset S
that maximizes the expression vi(S)−∑

j∈S pj . This query is natural from an economic point of
view as it corresponds to the revealed preferences of the bidders (i.e., what is directly observable
from their behavior). Blumrosen and Nisan [2] and Dobzinski and Schapira [7] showed that
demand queries are strictly stronger than value queries (in the sense that value queries can be
simulated by a polynomial number of demand queries, but exponential number of value queries
might be required to simulate a single demand query).

(iii) General queries: In this model we allow the oracles to answer any kind of query (however,
each query can only be addressed to a single valuation). This model captures the communication
complexity (between the bidders) of the problem, and due to its strength is mostly interesting
for proving lower bounds.

Combinatorial auctions with general valuations are well understood from a computational perspective:
the optimal allocation can be approximated to within a factor of O(

√
m) in polynomial time, but not

within a factor of m1/2−ε, for any constant ε > 0. This is true even for the case of single-minded bidders,
as shown by Lehmann et al. [13], and Sandholm [20]. The lower bound holds even for the general queries
model, whereas the upper bound requires demand queries, but value queries do not suffice [7, 2].

An important special case of combinatorial auctions is the one in which the valuations are known to
be complement-free, i.e., all input valuations are known to be subadditive: v(S ∪ T ) ≤ v(S) + v(T ) for
all S, T 1. Lehmann et al. [12] exhibit a strict hierarchy of subclasses within this class of valuations:
OXS ⊂ GS ⊂ SM ⊂ XOS ⊂ CF . The CF and SM classes are easy to define: CF is the class of
subadditive (complement-free) valuations; SM is the set of submodular valuations, i.e., v(S ∪T ) + v(S ∩
T ) ≤ v(S)+ v(T ) for all S, T . We will not define the class of GS ((gross) substitute) valuations here, but
we will note that economists often assume valuations to be in this class as in some sense this corresponds
to “convex economies”. The OXS and XOS classes are defined syntactically (see a survey by Nisan
[16]). We will later present the syntactic definition of the XOS class (Section 2).

The allocation problem becomes gradually harder as we move upwards within this hierarchy; a strongly
polynomial time algorithm exists if the input valuations are given in the OXS language; a polynomial
time algorithm, based on linear programming, exists for the class GS, as shown by Nisan and Segal [19].
For the SM class no polynomial time algorithm exists – an NP-hardness result for a simple submodular
bidding language is shown in a paper by Lehmann et al. [12], and an exponential communication lower
bound was proven by Nisan and Segal [19]. However, Lehmann et al. [12] exhibit a polynomial-time
2-approximation algorithm that uses value queries only. No approximation algorithms (better than
the O(

√
m)-approximation for general valuations) were previously known for the higher levels in this

hierarchy.

1.1 Upper Bounds. The main message relayed in this paper is that for the two higher levels of the
hierarchy better upper bounds exist:

Theorem 1.1 There exists a polynomial-time algorithm that finds an O( log m
log log m ) approximation for

valuations in the CF class, using demand queries.

1It is also possible to consider the “dual” class of substitute-free valuations (v(S ∪ T ) ≥ v(S) + v(T ), for disjoint

S, T ⊆ M). However, it turns out that the lower bound for general valuations, by Nisan [15], also applies to this class.
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This algorithm is based on careful randomized rounding of the linear programming relaxation of the
problem; a deterministic algorithm is obtained via derandomization.

For the more restricted XOS class we obtain improved approximation ratios.

Theorem 1.2 There exists a polynomial-time ( e
e−1 )-approximation algorithm for valuations given in the

XOS language.

We also present a 2-approximation algorithm for this class. Although the approximation guarantee is
worse than e

e−1 , the 2-approximation algorithm has several advantages: it is combinatorial, fast, simple,
and deterministic. Moreover, it serves as the main building block for constructions of truthful mechanisms
for combinatorial auctions [4, 6].

1.2 Lower Bounds. We prove lower bounds for approximation for both CF and XOS. The class
CF does not have a natural bidding language and so the lower bound is for the oracle model. The lower
bound for the class XOS is actually two separate lower bounds: an NP-hardness result for the bidding
language model, and a communication lower bound for the oracle model. No inapproximability result for
any of these classes was previously known.

Theorem 1.3 Exponential communication is required for approximating the optimal allocation among
CF valuations to within a factor of 2− ε, for any constant ε > 0.

Theorem 1.4 (1) It is NP-hard to approximate the optimal allocation among valuations given in the
XOS language to within any constant factor better than e/(e − 1). (2) Exponential communication is
required for approximating the optimal allocation among XOS valuations to within any constant factor
better than e/(e− 1).

The last theorem shows that our algorithm for the class XOS is tight.

1.3 Handling Selfishness. In many settings in which the combinatorial auction problem arises, it is
natural to assume that the bidders are selfish. That is, the bidders are interested only in maximizing their
own utility, and might therefore misreport their preferences if it suits their interests. We are therefore
interested in truthful algorithms that by introducing payments guarantee that if each bidder is to simply
report his true value he will maximize his profit. Surprisingly, to date, very few computationally-feasible
truthful mechanisms for this problem are known that do not apply only to very restricted single-parameter
domains. We present an approximation algorithm that makes use of value queries only, and ensures
truthfulness.

Theorem 1.5 There exists a truthful polynomial-time algorithm that finds an O(
√

m)-approximation for
valuations in the class CF using value queries only.

This approximation ratio may seem quite bad when contrasted with the fact that for the class of
submodular valuations constant-approximation algorithms that use only value queries exist (e.g., by
Lehmann et al. [12]). However, it turns out that this algorithm is optimal in the value oracle model,
even if all bidders have XOS valuations, and even ignoring truthfulness constraints:

Theorem 1.6 Every approximation algorithm for combinatorial auctions with XOS bidders that uses
only value queries, requires an exponential number of queries to achieve an approximation ratio better
than m

1
2−ε, for any constant ε > 0.

1.4 Subsequent Work. Subsequently to this paper, Feige [9] improved the upper bound for com-
binatorial auctions with complement-free valuations to 2. This upper bound uses demand queries. The
communication lower bound we present implies that this upper bound is tight.

We now discuss subsequent work related to submodular valuations. Khot, Lipton, Markakis, and
Mehta [11] showed that no approximation better than e

e−1 using value queries only is possible, unless
P = NP . This lower bound was recently strengthened to an unconditional one by Mirrokni et al. [?].
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Vondrak [21] has shown that this lower bound is tight by exhibiting a matching upper bound that uses
value queries only. In the demand queries model Feige and Vondrak [10] obtained an approximation ratio
slightly better than e

e−1 . They also show that approximating the welfare with demand oracle in this case
is APX-hard.

Another line of research which stemmed in this paper is obtaining truthful mechanisms for combi-
natorial auctions with complement-free valuations. Dobzinski [4] obtained an approximation ratio of
O(log m log log m) for subadditive valuations using a randomized mechanism, improving over a previous
result of [6]. One of the main ingredients in these results is the 2-approximation algorithm for XOS valu-
ations presented in this paper. In addition, Feige [9], showed how to convert the log m

log log m -approximation
algorithm of this paper to a truthful one (under a weaker notion of truthfulness). The best determin-
istic mechanism for complement-free valuations is still the O(

√
m)-mechanism presented in this paper.

Dobzinski and Nisan [5] proved that one cannot achieve a much better approximation factor using this
type of algorithms – maximal in range algorithms (see the discussion in Section 5).

1.5 Open Questions. This paper and subsequent work determined the optimal bounds possible
for the upper levels of the hierarchy, namely combinatorial auctions with XOS and complement-free
valuations.

• The main open question is closing the gap between the known upper and lower bounds for
submodular valuations in the demand oracles model. In particular, no communication lower
bound is known.

• It would also be interesting to achieve these approximation ratios using combinatorial algorithms
(most state-of-the-art algorithms are based on randomized rounding of the LP relaxation of the
problem).

• Another major open question which is still open is to determine how well truthful mechanisms
can approximate the welfare in all levels of the hierarchy.

2. Definition and Representation of XOS. This section discusses the definition and representa-
tion of XOS valuations. Recall, that as discussed in the introduction the class of XOS valuations strictly
contains the class of submodular valuations [12].

A valuation is called additive (a.k.a. linear) if for all S ⊆ M , v(S) = Σj∈Sv({j}). Thus, an additive
valuation is defined by the values a1, ..., am it assigns to items 1, ...,m respectively. We describe an
additive valuations by the following clause:

(x1 : a1 ∨ x2 : a2 ∨ ... ∨ xm : am)

We can now define XOS valuations:

Definition 2.1 A valuation v is said to be XOS if there is a set of additive valuations {w1, ..., wt}, such
that v(S) = maxk{wk(S)} for all S ⊆ M . We denote XOS valuations by

(x1 : w1({x1}) ∨ ... ∨ xm : w1({xm}))⊕ ...⊕ (x1 : wt({x1}) ∨ ... ∨ xm : wt({xm}))
where each of the clauses connected by the ⊕ sign represents an additive valuation.

We note that the number of clauses t might be exponentially large. We call a clause of an additive
valuation w, for which v(S) = maxk{wk(S)}, a maximizing clause for S in v (if there are several such
clauses we arbitrarily choose one). An XOS oracle is an oracle that given a bundle S returns a maximizing
clause for S (for a specific valuation v).

2.1 Efficiently Simulating XOS and Demand Queries. We now show that if the input is given
in the form of an XOS expression, XOS oracles and demand oracles can be simulated in time that is
polynomial in the input size. We also prove that if all valuations are submodular then value queries can
simulate XOS queries in polynomial time. Therefore, if all valuations are submodular, the algorithm
presented in this section requires demand queries only (recall that a value query can be simulated by a
polynomial number of demand queries [2]).
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Proposition 2.1 Given an XOS valuation as an XOS expression, we can evaluate both XOS queries
and demand queries in time polynomial in the input size.

Proof. Given an XOS valuation and a vector of prices we wish to simulate a demand oracle. First,
let us note that it is easy to simulate a demand oracle for an additive valuation in polynomial time,
by simply choosing all profitable items. Since the input is given as an XOS formula and each clause
is an additive valuation, it is enough to simulate a demand oracle for each clause and choose the most
profitable option. The entire process requires time polynomial in the input size. ¤

If the input is not given as an XOS expression, then we do not know how to answer XOS queries given
only a demand oracle. However, for the more restricted class of submodular valuations, even the weaker
value oracle suffices to answer XOS queries, as the following proposition shows:

Proposition 2.2 An XOS clause for a bundle S of a submodular valuation v can be calculated in poly-
nomial time using value queries only.

Proof. Given a bundle S we show how to construct the corresponding XOS clause. Fix some
arbitrary order of the items in S. Without loss of generality, let S = {1, . . . , |S|}. Let tj be the marginal
utility of the j’th item given the previous j − 1 items: tj = v({1, . . . , j}) − v({1, . . . , j − 1}). The XOS
clause is (t1 ∨ . . . ∨ t|S|).

All that we have to prove is that v(S) = Σj∈Stj , and that for every T ⊆ S, v(T ) ≥ Σj∈T ti. For that
we use an alternative definition of submodular valuations (see [12] for an equivalence proof): a valuation
v is submodular if for every item j, and bundles W,T , W ⊆ T , j /∈ T , we have that v(W ∪{j})−v(W ) ≥
v(T ∪ {j})− v(T ).

The first property holds simply by construction. To see that v(T ) ≥ Σj∈T ti, fix T , and let tTj be the
marginal utility of item j in T , using the same order we used in S (that is, order the items in S, and
delete items that are not in T , while keeping the relative order of the rest of the items). Recall that
an alternative definition of submodular valuation says that the marginal utility does not decrease when
items are deleted, hence v(T ) = Σj∈T tTi ≥ Σj∈T ti

Finally, to show that this clause can be constructed using value queries only, observe that we only have
to calculate the marginal utility of an item, which can be done by two value queries for each item. ¤

3. Approximating the Welfare with Demand Oracles. Randomized rounding of an LP-
relaxation of a problem is a standard technique, and our algorithms use it. However, when one attempts
randomized rounding on packing problems such as combinatorial auctions the results are not good; A
randomized choice will very likely yield non-feasible solutions, unless the probabilities chosen reduce the
expected quality of solution by a large O(

√
m) factor.

Both algorithms we present in this section start with a randomized rounding procedure for obtaining
a “pre-allocation”. This allocation has a value that is close to the optimum, but unfortunately is not
feasible. Feasibility issues are handled differently in the complement free and the XOS cases, and indeed
a much better ratio is obtained for the XOS case.

Before describing the randomized rounding procedure, let us recall the standard LP relaxation for
combinatorial auctions:

Maximize: Σi,Sxi,Svi(S) Subject to:

– For each item j: Σi,S|j∈Sxi,S ≤ 1
– for each bidder i: ΣSxi,S ≤ 1
– for each i, S: xi,S ≥ 0

Even though the linear program has exponentially many variables, it may still be solved in polynomial
time. This is done by solving the dual linear program using the ellipsoid method. Using the ellipsoid
method requires a “separation” oracle, and this may be directly implemented using the demand oracles
of the bidders. This was first proven by Nisan and Segal [19], and in more details by Blumrosen and
Nisan [2].
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The pre-allocation is obtained via randomized rounding as follows: For each bidder i we independently
choose a set Si by performing the following random experiment: each set S is chosen with probability
xi,S , and the empty set is chosen with probability 1− ΣSxi,S .

Observe that the randomized rounding solution outputs an integral solution with an expected value
of OPT ∗, the optimal fractional solution. However, the solution is not feasible, as an item might be
allocated to more than one bidder. The two algorithms we present greatly differ in how they solve this
infeasibility.

A word about the oracles needed to implement our algorithms. The algorithm for complement-free
valuations we present in this section requires access to a demand oracle (for each specific valuation v).
Both algorithms for XOS valuations we present require in addition access to an XOS oracle.

3.1 Complement-Free Valuations. Indeed, the pre-allocation produces a non-feasible solution.
However, these non-feasible solutions are only a logarithmic factor away from feasibility (in the sense
that with high probability each item is allocated at most a logarithmic number of times). For general
valuations this fact does not help, but as we will show it suffices for CF valuations (see also [7] for
another setting, the k-duplicates version of combinatorial auctions, in which this fact leads to good
approximations).

The main observation at the heart of our algorithm is that one may partition this logarithmically-
non-feasible solution into a logarithmic-size family of feasible solutions. For the case of complement-free
valuations, the quality of one of these solutions can be bounded from below.

The original version of the algorithm claimed a ratio of O(log m). Feige [9] observed that the algorithm
actually provides an approximation ratio of O( log m

log log m ), and this is the ratio that is presented here. We
also note that Feige [9] presents an example which shows that the approximation ratio of the algorithm

is at least Ω(
√

log m
log log m ).

(i) Use randomized rounding to find a “pre-allocation” S1, ..., Sn of pairs < i, Si > with the following
properties, where k = O( log m

log log m ):

• Each item j appears at most k times in {Si}i, with j ∈ Si.
• ∑

i vi(Si) ≥ 1
3 · (Σi,Sxi,Svi(S)).

(ii) For each bidder i, partition Si into a disjoint union Si = S1
i ∪ ... ∪ Sk

i such that for each
1 ≤ i1 < i2 ≤ n and 1 ≤ r ≤ k, it holds that Sr

i1
∩ Sr

i2
= ∅.

This is done as follows: for each i = 1, ..., n and each r = 1, ..., k, we let Sr
i = {j ∈

Si|j appears in exactly r − 1 of the sets S1, ..., Si−1}.
(iii) Find the r that maximizes

∑
i vi(Sr

i ), and for each i allocate Ti = Sr
i to bidder i.

(iv) If there is a bidder i with vi(M) ≥ Σivi(Ti) then allocate i all items (and allocate nothing to the
rest of the bidders).

Theorem 3.1 If all input valuations are complement-free then the algorithm produces an allocation that
is an O(k) = O( log m

log log m )-approximation to the optimal one.

We now prove the theorem. Towards this end, let us keep track of the “quality” of solution implied
by the intermediate steps.

(i) The randomized rounding procedure returns the optimal fractional solution OPT ∗ =
Σi,Sxi,Svi(S), which is an upper bound to the value of the integral optimal allocation, OPT .
The detailed calculations needed to prove that this step indeed ends with a solution that satisfies
all the required conditions are given later. At this point we will indicate the types of calculations
used and what they yield. From the first inequality of the LP and using standard probability
bounds one can show that for every item j, the probability that it appears in more than k chosen
sets is exponentially small in k. The expected value of

∑
i vi(Si) at this stage is only slightly

less than Σi,Sxi,Svi(S) = OPT ∗. It follows that with very high probability none of the required
constraints are violated, and thus we have

∑
i vi(S) ≥ 1

3 ·OPT ∗
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(ii) The main point here is that indeed for every fixed r, the sets {Sr
i }i are pairwise disjoint and are

thus a valid allocation. This follows directly from the construction, as every duplicate instances
of every item j are allocated to sets Sr

i with sequentially increasing r. Note that we always keep
r ≤ k since each item appears in at most k sets in {Si}.

(iii) The crucial use of complement-freeness comes here: since for each fixed i, Si =
⋃

r Sr
i , the fact

that vi is complement free implies that
∑

r vi(Sr
i ) ≥ vi(Si). By summing over all i we get that∑

r

∑
i vi(Sr

i ) =
∑

i

∑
r vi(Sr

i ) ≥ ∑
i vi(Si) ≥ 1

3 ·OPT ∗. It is now clear that by choosing the r that
maximizes

∑
i vi(Sr

i ) we get that
∑

i vi(Sr
i ) ≥ OPT∗

3k . Thus, the allocation T1 = Sr
1 , ..., Tn = Sr

n

is an O( log(m)
log log m ) approximation to the optimal allocation (and even to the optimal fractional

allocation).

3.1.1 Details of Stage (i). For each j ∈ M , let Ej denote the random variable that indicates
whether j was allocated more than k times. Let B be the random variable that indicates whether
vi(Si) < 1

3OPT ∗. We will prove that Pr[∨jEj ∨B] < 5
6 .

We first prove that Pr[∨jEj ] < 1
n . Fix an item j. Let Zi,j be the random variable that determines

whether j ∈ Si. Obviously, Zi,j receives values in {0, 1}. Because of the randomized rounding method
we used, we have that the variables {Zi,j}i are independent. We define Zj = ΣiZi,j (i.e., Zj is the
number of times item j appears in {Si}). By the linearity of expectation and the first condition of the
LP formulation we have that E[Zj ] ≤ 1. We now use the following known proposition, (see, e.g., the
book by Mitzenmacher and Upfal [14]):

Lemma 3.1 Let X1,...,Xn (for sufficiently large n) be independent Bernoulli trials such that for 1 ≤ i ≤
m, Pr[Xi = 1] = pi, and Σipi = 1. Let X = X1 + ... + Xm. Then

Pr[X >
3 log m

log log m
] ≤ 1

m2

and thus we have that

Pr[item j appears in more than
log m

3 log log m
bundles in {Si}] ≤ 1

m2

By applying the union bound we get that the probability that any one of the items appears in more than
log m

3 log log m bundles in {Si} is smaller than m · 1
m2 = 1

m .

We will now prove that Pr[B] < 3
4 . W.l.o.g. maxi vi(M) = 1 (otherwise, we can divide all valuations

by maxi vi(M)). If OPT ∗ ≤ 3, then giving M to the bidder that maximizes vi(M), is a feasible allocation
which provides a good approximation. Therefore, from now on we assume that OPT ∗ > 3. Let A be the
random variable that gets the value of Σivi(Si) after step (i). We will see that A ≥ Σivi(S)

3 with high
probability.

We make use of the following corollary from Chebyshev’s inequality:

Lemma 3.2 Let X be the sum of independent random variables, each of which lies in [0, 1], and let
µ = E[X]. Then, for any α > 0, Pr[|X − µ| ≥ α] ≤ µ

α2 .

We can now upper bound the probability that event B occurs.

Pr[B] = Pr[A <
OPT ∗

3
] ≤ Pr[|A−OPT ∗| ≥ 2OPT ∗

3
] ≤ 9

4OPT ∗
≤ 3

4

the last inequality is because OPT ∗ > 3. Therefore, using the union bound:

Pr[∨m
t=1Et ∨B] ≤ Σj∈M Pr[Ej ] + Pr[B] ≤ 1

n
+

3
4

<
5
6

We have shown that with good probability it is possible to create a solution for which all the necessary
conditions hold.
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3.2 XOS Valuations. The algorithm presented in this section is based on exploiting the structure of
the syntactically defined XOS class. Recall that the class of XOS valuations strictly contains submodular
valuations.

The algorithm starts by obtaining a pre-allocation as described in the beginning of the section, where
each bidder gets at most one bundle. The next step is to “replace” the valuation of a bidder with the
XOS clause that corresponds to the bundle he got in the pre-allocation. Now we find the optimal solution
using the “new” valuations. Observe that a simple greedy algorithm finds the optimal allocation if all
bidders have additive valuations.

We are left with showing that the value of the generated allocation is not too far from the optimal
fractional solution. Once again, the syntactic properties of XOS come to our aid: we analyze the
algorithm by separately setting a lower bound on the contribution of each single item to the total social
welfare.

(i) Obtain a “pre-allocation” S1, ..., Sn using the randomized rounding procedure.

(ii) Let (x1 : pi
1 ∨ ... ∨ xm : pi

m) be the maximizing clause for Si in vi.

(iii) Allocate the j’th item to bidder i for which pi
j ≥ pi′

j , for all i′ ∈ N .

Note that Step (i) requires access to a demand oracle, and Step (ii) requires access to an XOS oracle.
We do not know if an XOS oracle can be simulated using demand queries only, in the case of general
XOS valuations. However, if a valuation is submodular, a demand oracle (and in fact, a value oracle)
suffices, as was shown before. Thus, if all valuations are submodular only demand oracles are needed to
implement the algorithm.

Theorem 3.2 If all input valuations are XOS then the algorithm produces an allocation that is a
( 1
1−(1− 1

n )n )-approximation to the optimal one.

Proof. Observe that the allocation produced by the algorithm is indeed a feasible one. Thus, all
that is left to prove is that it achieves the desired approximation ratio.

For every bidder i and bundle S, let (x1 : p
(i,S)
1 ∨ ... ∨ xm : p

(i,S)
m ) be the maximizing clause for S in

vi. It holds that:

OPT ∗ = Σi,Sxi,Svi(S) = Σi,Sxi,S(Σjp
(i,S)
j ) = Σj(Σi,Sxi,Sp

(i,S)
j )

Let Qj be the random variable that equals maxi∈N{pi
j}, after the randomized rounding step. Let ALG

be the random variable that receives the value of the total social welfare after assigning each item
as in the algorithm. Due to the properties of XOS valuations, ALG ≥ ΣjQj . This is because if
(x1 : p

(i,S)
1 ∨ ... ∨ xm : p

(i,S)
m ) is the maximizing clause of S in vi then, by XOS, for every T ⊆ S

Σj∈T p
(i,S)
j ≤ vi(T ).

We will now show that the expectation of Qj is bounded from below by (1− (1− 1
n )n) · (Σi,Sxi,Sp

(i,S)
j ).

Thus, by the linearity of expectation:

E[ALG] ≥ ΣjE[Qj ] ≥ Σj(1− (1− 1
n

)n) · (Σi,Sxi,Sp
(i,S)
j ) = (1− (1− 1

n
)n)OPT ∗

Lemma 3.3 For every item j,

E[Qj ] ≥ (1− (1− 1
n

)n) · (Σi,Sxi,Sp
(i,S)
j )

Proof. Fix an item j. We will lower bound the expected value of E[Qj ] by considering a different

way of assigning j. Let Xj
i = ΣS|j∈Sxi,S and V j

i =
ΣS|j∈Sxi,Sp

(i,S)
j

Xj
i

. That is, Xi is the probability that

bidder i gets item j in the “pre-allocation”, and V j
i is the expected value of j to bidder i, conditioned on

i receiving j in the “pre-allocation”.



Dobzinski et al.: Approximations Algorithms for CA’s with CF Bidders
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS 9

Order the bidders in the decreasing order of their V j
i ’s. Without loss of generality, let us assume this

order to be 1, ..., n. We assign j to the highest ranked (first) bidder who got item j in the “pre-allocation”.
Denote by Tj the expected value of j in this allocation. Observe that E[Qj ] ≥ E[Tj ] because E[Qj ] is
the expected value of item j when j is always assigned to the bidder with the highest (per-item) value
for j in the “pre allocation” (as in the algorithm). Therefore, to prove the lemma we will bound E[Tj ]
from below. It is easy to see that

E[Tj ] = Xj
1V j

1 + (1−Xj
1)Xj

2V j
2 + ... + (1−Xj

1)(1−Xj
2) · ... · (1−Xj

n−1)X
j
nV j

n

Note that, due to the first condition of the LP, Xj
1 + ...+Xj

n ≤ 1. Therefore, we have for every 1 ≤ k ≤ n
that:

1− (1−Xj
1) · ... · (1−Xj

k) ≥ 1− (1− Σk
i=1X

j
i

k
)k ≥ (1− (1− 1

k
)k)Σk

i=1X
j
i ≥ (1− (1− 1

n
)n)Σk

i=1X
j
i (1)

where the last two inequalities are derived using elementary calculus. Define V j
n+1 = 0. Multiplying

Equation 1 by (V j
k − V j

k+1) for every 1 ≤ k ≤ n, and summing over all k’s shows that:

E[Tj ] ≥ (1− (1− 1
n

)n)(ΣiV
j
i Xj

i ) = (1− (1− 1
n

)n)(Σi,S|j∈Sxi,Sp
(i,S)
j )

¤
¤

3.3 A Combinatorial 2-Approximation Algorithm for XOS Valuations. We now present a
2-approximation algorithm for combinatorial auctions with XOS bidders. While the approximation guar-
antee is worse than the e

e−1 guarantee of the previous algorithm, the current algorithm is combinatorial,
fast, and simple.

(i) Initialize S1 = ... = Sn = ∅, and p1, ..., pm = 0.
(ii) For each bidder i = 1...n :

(a) Let Si be the demand of bidder i at prices p1, ..., pm.
(b) For all i′ < i take away from Si′ any items from Si: Si′ ← Si′ − Si.
(c) Let (x1 : qi

1∨, ...,∨xm : qi
m) be the maximizing clause for Si in vi.

(d) For all j ∈ Si, update pj = qi
j .

Notice that in Step (ii)a we require access to a demand oracle, and in Step (ii)c we require access to
an XOS oracle.

Theorem 3.3 The algorithm provides a 2 approximation to the optimal allocation.

Proof. For each T ⊆ M , we denote by pi(T ) the sum of the prices of the items in T at the i’th stage
of the algorithm. Let ∆i = pi(M)−pi−1(M), i.e., the total difference in prices between stages (i−1) and
i (with p0(M) = 0). Let A1, ..., An be the allocation generated by the algorithm. Let O1, ..., On be the
optimal allocation. We will prove the Σivi(Oi) ≤ 2Σivi(Ai). To do so, we prove three simple lemmas:

Lemma 3.4 The social welfare of the allocation generated by the algorithm is at least the sum of items’
prices at the end of the algorithm (after the n’th stage). That is, pn(M) ≤ Σivi(Ai).

Proof. Consider a specific bidder i. Let T be the bundle assigned to that bidder by the algorithm
in stage i. Obviously Ai ⊆ T . Because vi is an XOS valuation, we have that pi(Ai) ≤ vi(Ai). However,
since the items in Ai were not reassigned after the i’th stage, and so their prices were not altered,
pi(Ai) = pn(Ai). We have that pn(Ai) ≤ vi(Ai), and so pn(M) = Σn

i=1p
n(Ai) ≤ Σn

i=1vi(Ai). ¤

Lemma 3.5 The prices assigned to the items throughout the execution of the algorithm are non-decreasing.

Proof. By contradiction. Let S be the set that maximizes the demand of the i’th bidder at the i’th
stage of the algorithm. Let (x1 : q1 ∨ ... ∨ xm : qm) be the XOS clause of S in vi. Now, assume there is
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an item j ∈ S for which qj < pi
j . vi is an XOS valuation and so we have that Σt∈(S−{j})qt ≤ vi(S − {j})

and Σr∈Sqr = vi(S). Hence:

vi(S)− Σr∈Spi
r = Σr∈Sqr − Σr∈Spi

r = (qj − pi
j) + (Σt∈(S−{j})qt − Σt∈(S−{j})pi

t) <

(Σt∈(S−{j})qt − Σt∈(S−{j})pi
t) < vi(S − {j})− Σt∈(S−{j})pi

t

and this is a contradiction to the definition of S. ¤

Lemma 3.6 The social welfare of the optimal allocation is at most twice the sum of items’ prices at the
end of the algorithm. That is, Σivi(Oi) ≤ 2pn(M).

Proof. Recall that ∆i represents the “demand” of player i at prices pi−1. Hence, for each i,
1 ≤ i ≤ n, ∆i = maxT⊆M (vi(T )− pi−1(T )) (otherwise, i would have chosen a different bundle of items).
We have:

vi(Oi)− pi−1(Oi) ≤ ∆i.

since the prices do not decrease throughout the algorithm, the following inequality holds:

vi(Oi)− pn(Oi) ≤ ∆i.

by summing up on both sides of the equation we get:

Σn
i=1vi(Oi)− Σip

n(Oi) ≤ Σi∆i

Σivi(Oi)− pn(M) ≤ pn(M)

Σivi(Oi) ≤ 2pn(M)

¤
Putting the lemmas together we have that

Σivi(Oi) ≤ 2pn(M) ≤ 2Σivi(Ai)

¤
The following example shows that the algorithm cannot achieve an approximation ratio better than 2:

consider a combinatorial auction with two goods, a and b, and two bidders. The first bidder’s valuation
is v1({a}) = v1({b}) = v1({a ∪ b}) = 1. The valuation of the second bidder is v2({a}) = 0, v2({b}) =
v2({a ∪ b}) = 1. A welfare of 2 can be achieved by allocating a to the first bidder, and b to the second
bidder. However, the first bidder might wish to get b at the first stage, and the optimal social welfare
achieved is only 1. Hence, the approximation ratio achieved by the algorithm is not better than 2.

4. Lower Bounds

4.1 A Lower Bound for Complement-Free Valuations.

Theorem 4.1 For every constant ε > 0, any (2−ε)-approximation algorithm for a combinatorial auction
with bidders that have CF valuations, requires an exponential amount of communication.

Proof. Nisan [15] considers the following combinatorial auction: each bidder i has a set Ti of bundles
that he is potentially interested in. We also have that all the Ti’s have the same size, t. A specific instance
of this combinatorial auction is determined by specifying a set Ii for each bidder i, Ii ⊆ Ti, which denotes
the bundles our bidder is interested in. The valuation of each bidder i is the following: vi(S) = 1 if there
exists some R ∈ Ii such that R ⊆ S, and 0 otherwise. Nisan shows that distinguishing between the case
where there is (1) an allocation that assigns each bidder i a (superset of a) set he is interested in from
Ii (and so the optimal welfare is n), and between (2) only one bidder is assigned a superset of a bundle
from Ii he is interested in (and so the optimal welfare is 1), requires t bits of communication, for t that
is exponential in n and m (for n < m

1
2−ε), for any constant ε > 0. This shows in particular that every

approximation algorithm that provides an approximation ratio better than n for combinatorial auctions
with general valuations requires exponential communication.

Let us now reduce this combinatorial auction to make the valuations complement free. Define new
complement-free valuations as follows: v′i(S) = vi(S) + 1, for S 6= ∅. These new valuations are indeed
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complement free, since the value of each non-empty bundle is at least 1, and no bundle has a value larger
than 2.

Consider an instance with valuations v1, . . . , vn. We can see that distinguishing between the following
cases requires exponential communication: the optimal social welfare is n + 1, and the optimal social
welfare is 2n (since distinguishing between these cases is equivalent to distinguishing between the corre-
sponding cases in the auction presented in [15]). Hence, we have proved that for every n ≥ 2 achieving
2n

n+1 -approximation requires exponential communication, as needed. ¤

4.2 Lower Bounds for XOS Valuations. We prove two lower bounds: one in the bidding language
model (an NP-hardness result), and one communication lower bound.

Theorem 4.2 It is NP-hard to approximate the optimal allocation among valuations given in the XOS
language to within any factor better than e/(e− 1), for n,m →∞.

Proof. We will show a polynomial-time reduction from MAX-k-COVER. MAX-k-Cover is defined
as follows: Given m items, and a collection of subsets of these items, the objective is to maximize the
number of items which can be covered by k subsets. Feige [8] proved that it is NP-hard to approximate
this problem within a better factor than e

e−1 .

This problem can be converted into a combinatorial auction with XOS valuations: given an instance
of MAX-k-COVER, we create an auction with k bidders and m goods. All bidders will have the same
XOS valuation: a clause for each subset in the MAX-k-COVER problem where the value of every item
in the clause is 1.

Observe that every choice of k subsets in the MAX-k-COVER corresponds to an allocation in the
combinatorial auction with the same value, by assigning all items in set i to bidder i (and avoid assigning
one item to more then one bidder). In the other direction, every allocation corresponds to a choice of k
sets in MAX-k-COVER with at least the social welfare value: choose k subsets, so that subset i contains
the items in the clause maximizing bidder i’s gain. Hence, we are guaranteed that the number of items
covered is no less than the social welfare. The theorem follows. ¤

Next we prove an unconditional communication lower bound. The proof is based on reduction from
the approximate-disjointness problem using a probabilistic construction. The reduction relies on a combi-
natorial structure that guarantees the required gap between the optimal solution and all other solutions.
We first define this structure, and then prove its existence via the probabilistic method.

Theorem 4.3 Every protocol for approximating combinatorial auctions with XOS bidders to a factor of
1

1−(1− 1
n )n + ε, for every ε > 0, requires exponential communication. This lower bound also applies for

randomized settings.

Proof. We will prove our lower bound by reducing from the approximate disjointness problem. In
this problem, there are n players, each player i holds a string Ai which specifies a subset of {1, ..., t}. The
goal is to distinguish between the following two extreme cases:

• ∩n
i=1A

i 6= ∅
• for every i 6= j, Ai ∩Aj = ∅

Alon et al. [1] prove that the communication complexity of this problem is Ω( t
n4 ). This result also

holds for randomized protocols with bounded 2-sided error.

We show a reduction from the approximate-disjointness problem on vectors of size t = e
2m
n to the

problem of finding an optimal solution in combinatorial auctions with XOS bidders. We then prove a
communication lower bound for distinguishing between the case the optimal value is m and the case it is
m[1− (1− 1

n )n].

We will create a set F = {Ps}s=1,...,t, where each Ps is a partition of M into n disjoint subsets
{P 1

si
, ..., Pn

si
}. This set of partitions will have the following property:
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Definition 4.1 A set of partitions F = {Ps}s=1,...,t is said to have the (n, ε)-covering property if for
every choice of indices 1 ≤ s1, s2, ...sn ≤ t, such that no two are equal, it holds that | ∪n

i=1 P i
si
| ≤

m[1− (1− 1
n )n + ε].

Lemma 4.1 For every ε > 0, there exists a set F of partitions with the (n, ε)-covering property of size

|F | = t = e
(1−(1− 1

n
)n)mε2

3n .

Proof. We use probabilistic construction to obtain such a set: each partition Ps will be chosen
independently at random (each element will be placed in exactly one of the P i

s with equal probability).
We will require the following version of the Chernoff bounds:

Lemma 4.2 Let X1, ..., Xm be independent random variables that take values in {0, 1}, such that for all
i, Pr[Xi = 1] = p for some p. Then, the following holds, for 0 ≤ ε ≤ 1:

Pr[ΣiXi > (1 + ε)pm] ≤ e−
pmε2

3

Fix indices: 1 ≤ s1, s2, ..., sn ≤ t, such that no two are equal. For every j ∈ M let Yj be the random
variable that receives a value of 1 if j ∈ ∪n

i=1P
i
si

and 0 otherwise. Observe that E[Yj ] = 1− (1− 1
n )n.

Using the last claim, we have that for any 0 < ε < 1:

Pr[| ∪n
i=1 P i

si
| > (1 + ε)m[1− (1− 1

n
)n]] =

Pr[ΣjYj > (1 + ε)m[1− (1− 1
n

)n]] ≤ e−
(1−(1− 1

n
)n)mε2

3

Since there are at most tn choices of such indices we have that as long as tn < e
(1−(1− 1

n
)n)mε2

3 such a
set of partitions exists. ¤

We are now left with describing the reduction. Assume an instance of the approximate-disjointness

problem on vectors of size t = e
(1−(1− 1

n
)n)mε2

3n , in which player i receives the string Ai ⊆ {1, ..., t}. We
reduce it into a combinatorial auction with n bidders, each with XOS valuation, in the following manner:

Let M = {1, ..., m}. Player i will construct the collection Bi = {P i
s |s ∈ Ai}. Bidder i’s valuation

will consist of |Bi| clauses: ⊗T∈Bi(∨t∈T t = 1). In words, each clause corresponds to a set the player is
interested in, and this clause gives a value of 1 to an item if it belongs to the wanted set, and 0 otherwise.

Observe that if there exists s ∈ ∩Ai, then there is an allocation in which all items are allocated, and
the value of the bundle each player gets is simply the number of items he gets. Thus, the value of this
allocation is m. On the other hand, if for every i 6= j, Ai∩Aj = ∅ then the value of the optimal solution is
at most (1+ ε)m[1− (1− 1

n )n]. The second observation is since the sets have the (n, ε)-covering property,
so the players get together a value of at most ((1 + ε)m[1− (1− 1

n )n])m from the allocated items.

Since the communication complexity of the approximate-disjointness problem is Ω( t
n4 ), in our case

it is Ω(e
(1−(1− 1

n
)n)mε2 ln n

3n ). In particular, as long as m1−ε > n, and for any constant 0 < ε < 1, the
communication complexity is exponential. This concludes the proof of the theorem. ¤

5. Truthful Approximations using Value Queries.

5.1 VCG and Maximal in Range Algorithms. Arguably the main positive result of mechanism
design is the VCG payment scheme. Let us describe this payment scheme when applied to combinatorial
auctions. First, find the optimal solution (O1, ..., On), and allocate accordingly. Then, pay each bidder
the sum of the utilities of the rest of the bidders. That is, bidder i receives a payment of Σk 6=ivk(Ok). Let
us examine the total utility of bidder i: vi(Oi) + Σk 6=ivk(Ok) (the value he gains from the bundle he got
plus his payment). Hence, the total utility of each bidder is equal to the value of the allocation. Observe
that the allocation that maximizes the utility of the bidders is the optimal one. Bidding untruthfully
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can only result in changing the allocation to a suboptimal one, hence decreasing the utility of the bidder.
Thus bidding truthfully is the best action for each bidder2. See [17] for a more formal discussion.

The obvious drawback of using the VCG mechanism is that it requires us to find the optimal solu-
tion. In many settings finding the optimal solution is not computationally feasible, and this is true in
particular in the settings considered in this paper. In general, obtaining an approximate solution using
an approximation algorithm and using the VCG payment scheme (paying each bidder the sum of the
utilities of the rest of the bidders) does not result in a truthful mechanism. In fact, Nisan and Ronen [18]
show that an approximation algorithm becomes truthful using the VCG payment scheme if and only if
the underlying algorithm, is essentially maximal in range.

An algorithm is maximal in range if it limits the range of possible allocations to a smaller set, and
finds the optimal allocation within this restricted range. Incentive compatibility immediately follows
using the same argumentation as before since we find the optimal allocation in the restricted range. The
main challenge in the design of these algorithms is therefore to identify a subset of the range in which
complete optimization is computationally feasible, and then showing that the optimal solution within the
restricted set of solutions always provides the required approximation ratio.

5.2 The Algorithm. We present a maximal in range algorithm for combinatorial auctions with
complement-free bidders. This algorithm makes use of value queries only. The approximation ratio of
this algorithm is O(

√
m). In contrast, Dobzinski and Schapira [7] and Blumrosen and Nisan [2] showed

that for general valuations there is a lower bound of O( m
log m ) for the value oracles model.

(i) Query each bidder i for vi(M), and for vi({j}), for each item j.

(ii) Construct a bipartite graph by defining a vertex aj for each item j, and a vertex bi for each
bidder i. Let the set of edges be E = ∪i∈N,j∈M (aj , bi). Define the cost of each edge (aj , bi) to
be vi({j}). Compute the maximum weighted matching |P | in the graph.

(iii) If the valuation of the bidder i that maximizes vi(M) is higher than the value of |P |, allocate all
items to i. Otherwise, for each edge (aj , bi) ∈ P allocate the j’th item to the i’th bidder.

Theorem 5.1 If all the valuations are complement free, the algorithm provides an O(
√

m)-approximation
to the optimal allocation in polynomial time, and is incentive compatible.

Proof. Observe that the algorithm’s running time is polynomial in n and m, since maximal weighted
matching in bipartite graphs can be solved in polynomial time (in m and n).

The algorithm is clearly a maximal-in-range algorithm, and thus incentive compatibility is guaranteed
by the use of the VCG payment scheme. Let us now prove that the algorithm provides the desired
approximation ratio. Let OPT = {T1, ..., Tk, Q1, ..., Ql} be the optimal allocation in the original auction,
where for each 1 ≤ i ≤ k, |Ti| <

√
m, and for each 1 ≤ i ≤ l, |Qi| ≥

√
m. Let |OPT | = Σl

i=1vi(Qi) +
Σk

i=1vi(Ti).

The first case we consider is when Σl
i=1vi(Qi) ≥ Σk

i=1vi(Ti). Clearly, Σl
i=1vi(Qi) ≥ |OPT |

2 . Since
l ≤ √

m (otherwise, more than m items were allocated), for the bidder i that maximizes vi(Oi) it holds
that vi(M) ≥ vi(Qi) ≥ |OPT |

2
√

m
. Thus, by assigning all items to bidder i we get the desired approximation

ratio.

Consider the case in which Σk
i=1vi(Ti) > Σl

i=1vi(Qi). Clearly, Σk
i=1vi(Ti) > |OPT |

2 . For each i,
1 ≤ i ≤ k, let ci = arg maxj∈Ti vi({j}). Notice, that vi({ci}) ≥ vi(Ti)

|Ti| (this is due to the CF property:

|Ti| · vi({ci}) ≥ Σj∈Tivi({j}) ≥ vi(Ti)). Since for all i’s |Ti| <
√

m, we have that: Σk
i=1vi(ci) > Σivi(Ti)√

m
≥

|OPT |
2
√

m
. By assigning ci to bidder i we get an allocation in which every bidder gets at most one item with

a social welfare of Σk
i=1vi({ci}) ≥ |OPT |

2
√

m
. The second allocation, therefore, guarantees at least that social

welfare. We conclude that the approximation ratio the algorithm guarantees is at least O(
√

m). ¤
2To simplify the presentation, we described a payment scheme in which the mechanism pays the bidders, while it is

probably more natural to assume that the bidders pay the auctioneer for receiving items. The standard way to do that is

to subtract a suitable constant from the payments. See [17] for more details.
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6. A Lower Bound for the Value Oracles Model. The proof of the lower bound takes a concrete
complexity approach. That is, the input is given as a black box that can only answer a specific type of
queries. We only measure the number of queries an algorithm must make in order to achieve a certain
approximation ratio. In particular we ignore any computational work that needs to be done. We stress
that the lower bound we achieve does not depend on any unproven computational assumption.

Theorem 6.1 Approximating a combinatorial auction with XOS bidders to a factor of O(m
1
2−ε), for

any constant ε > 0, requires an exponential number of value queries.

Proof. Fix a small constant δ > 0. We shall construct a combinatorial auction with m items and
k =

√
m bidders. For every S, let aS be the additive valuation that assigns a value of 1 to each item

j ∈ S, and 0 to each item j /∈ S. Let ā be the additive valuation that assigns every item j ∈ M a
value of 1+δ

m
1
2−δ

. (For every bundle of items T ⊆ [m], aS(T ) and ā(T ) denote the value of T in aS and ā,
respectively.)

Let v1, ..., vk be k identical valuations which are defined as follows:

vi(T ) = max( max
S:|S|≤(1+δ)m2δ

{aS(T )}, ā(T ))

Thus, each vi is a maximum over additive valuations, and thus is an XOS valuation.

Choose, uniformly at random, a partition of the items into
√

m disjoint bundles of items T1, . . . , Tk

such that for each i, |Ti| =
√

m. Define v′1, . . . , v
′
k as follows:

v′i(T ) = max{vi(T ), aTi(T )}
Again, each v′i is a maximum over additive valuations, and thus is an XOS valuation.

We now prove that for every player i, it takes an exponential number of value queries to distinguish
between the case that i’s valuation is vi and the case that i’s valuation is v′i. Notice that the optimal
welfare if the valuations are v1 . . . , vk is Θ(m

1
2+2δ), while the optimal social-welfare if the valuations are

v′1 . . . , v′k is m. Hence, the fact that it requires an exponential number of value queries to distinguish
between the valuation profiles v1 . . . , vk and v′1 . . . , v′k implies that an O(m

1
2−2δ)-approximation algorithm

requires an exponential number of value queries.

Consider a specific player i. Fix a bundle S of at most m
1
2+δ. It holds that vi(S) = max{|S|, (1 +

δ)m2δ}. v′i might assign a value higher than vi to S but only if

|S ∩ Ti| > (1 + δ)m2δ

Observe that Ti is selected uniformly at random. Thus, we can use the Chernoff bounds (Claim 4.2), and
claim that Pr[|S ∩ Ti| > (1 + δ)m2δ] is exponentially small.

Now, consider a bundle S of size greater than m
1
2+δ. vi will assign to S the value of (1 + δ) |S|

m
1
2−δ

. v′i
might assign S a higher value, but only if

|S ∩ Ti| > (1 + δ)
|S|

m
1
2−δ

.

Again, using the fact that Ti is chosen uniformly at random we claim that that Pr[|S∩Ti| > (1+δ) |S|
m

1
2−δ

]
is exponentially small.

We conclude that for every bundle S, only with exponentially small probability does one gather
sufficient information to distinguish between the case that i’s valuation is vi and the case that it is v′i.
Hence, with constant probability it requires an exponential number of value queries to distinguish between
vi and v′i. This concludes the proof of the theorem. ¤
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