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ABSTRACT
In the presence of self-interested parties, mechanism design-
ers typically aim to achieve their goals (or social-choice func-
tions) in an equilibrium. In this paper, we study the cost
of such equilibrium requirements in terms of communica-
tion, a problem that was recently raised by Fadel and Se-
gal [15]. While a certain amount of information x needs
to be communicated just for computing the outcome of a
certain social-choice function, an additional amount of com-
munication may be required for computing the equilibrium-
supporting prices (even if such prices are known to exist).

Our main result shows that the total communication needed
for this task can be greater than x by a factor linear in the
number of players n, i.e., n · x. This is the first known
lower bound for this problem. In fact, we show that this
result holds even in single-parameter domains (under the
common assumption that losing players pay zero). On the
positive side, we show that certain classic economic objec-
tives, namely, single-item auctions and public-good mecha-
nisms, only entail a small overhead. Finally, we explore the
communication overhead in welfare-maximization domains,
and initiate the study of the overhead of computing pay-
ments that lie in the core of coalitional games.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of algorithms
and problem complexity; J.4 [Social and behavioral sci-
ences]: Economics
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1. INTRODUCTION
Consider the goal of implementing algorithms in envi-

ronments with self-interested players. We seek algorithms
that admit the following two preliminary properties: first,
tractability in the information-theoretic sense, i.e., a low
amount of information needs to be communicated in order
to realize the outcome of the algorithm. Second, incentive
compatibility, i.e., the existence of some payment scheme
that supports the implementation of the algorithm in equi-
librium. In this work, we show that tractability and the ex-
istence of supporting payments are insufficient to establish
that implementing the algorithm in equilibrium will indeed
be simple. This is due to the fact a non-trivial amount of
additional communication between the different parties may
be required in order to compute the equilibrium-supporting
prices.

The question of how much overhead one incurs from the
computation of incentive-compatible payments was recently
introduced by Fadel and Segal [15], who termed this over-
head the communication cost of selfishness. In their paper,
they studied the communication overhead both for Bayesian
equilibria and for ex-post equilibria. In this work we focus
only on ex-post equilibria - i.e., situations in which players
would not want to change their behavior in retrospect, even
if they were told (after the fact) everything about the other
players. Our main result shows that the amount of commu-
nication that is required to compute equilibrium-supporting
prices may increase the communication complexity of the
algorithm by a factor that is linear in the number of players.

Theorem: [Informal] There are social-choice functions
such that their outcome can be computed by communicating
x bits, but determining both the outcome and equilibrium-
supporting prices may require about n ·x bits of communica-



tion, where n is the number of players.

We prove that this result holds even for very simple single-
parameter domains, where in each possible outcome every
player either “wins” or “loses”. The theorem is proven un-
der the common normalization assumption, which in the
single-parameter domain that we consider, simply means
that losing players pay zero. While this assumption does
not seem very restrictive at first glance, we currently do not
know how to relax it. (The normalization assumption is
only required for proving the above lower bound and actu-
ally strengthen our upper bounds.) Whether a similar result
can be proven without the normalization assumption is left
as an open question. Our lower bound is the first evidence
that the communication overhead due to the demand for in-
centive compatibility may be significant. This linear factor
in the number of players may become substantial in large-
scale electronic-commerce systems.

Informally, in order to prove our main result we need to
construct a social-choice function f for which the following
requirements hold:

1. f can be implemented in ex-post equilibrium (in single-
parameter domains this means that f should be monotone,
see Section 2).

2. f can be computed with low communication complex-
ity.

3. Computing the equilibrium-supporting prices requires
high communication complexity.

The difficulty in finding such a social-welfare function is
demonstrated by contrasting such desirable functions with
two classic economic problems, public goods and single-item
auctions. For these problems, we show that the requirements
are not met. This enables us to prove upper bounds for these
two problems, by showing that the additional information
required to compute the equilibrium-supporting prices is low
(up to a small constant multiplicative factor). This claim is
proven in an inherently different way for each one of these
problems.

Public goods: Consider a social planner who wants to
know whether a bridge should be built or not. A set of
players have privately known utilities from using the bridge
v1, ..., vn and the bridge should be built only if

Pn
i=1 vi ≥ C

where C is its construction cost. We prove that comput-
ing the outcome plus the payments merely requires about
three times the communication requirements of computing
the outcome alone. Hence, the overhead in this case is small.

Single-item auction: In a single-item auction, players
have private values v1, ..., vn for the item on sale, and our
goal is to sell the item to the player with the highest value.
We prove that determining the right allocation and the ap-
propriate payments requires at most three times the com-
munication needed to determine the allocation alone. For
the special case of n = 2, we prove an even better upper
bound. The 2-player problem turns out to be equivalent to
the following interesting communication complexity prob-
lem: there are 2 players, each holding a number represented
by k bits. What is the communication complexity of com-
puting the minimum of these two numbers (such that both
players will know the result)? While proving an upper bound

of k + O(
√

k) is fairly easy, we prove even a better bound of
k + O(log k).

As these two problems illustrate, coming up with a social-
welfare function for which all of our requirements hold is
a non-trivial task. We stress that achieving a better lower
bound than the linear lower bound shown in this paper may
be hard. This is due to the fact that it is likely to involve
the construction of multi-parameter non-welfare maximiz-
ing social-choice functions, a class of functions that is little
understood.

Welfare Maximizing Social-Choice Functions. Finally,
we turn our attention to welfare-maximizing environments.
This is the prominent example of an objective function that
can always be implemented in equilibrium (using the family
of VCG mechanisms). We discuss two well studied pricing
schemes: (1) prices that support an ex-post Nash equilib-
rium. (2) price levels in the core.

Fadel and Segal [15] showed that maximizing social wel-
fare in ex-post equilibrium incurs a low communication over-
head. However, their simple solution, that belongs to the
VCG family (each player is paid the sum of the values of
the others), is impractical in many settings since it involves
paying the players. Under the assumption of No-Positive-
Transfers, we argue that the solution to this problem is
not straightforward anymore. We show a simple linear up-
per bound on the informational overhead of computing the
equilibrium-supporting prices, for a special case of this prob-
lem, and pose the following two open questions: (1) can a
similar linear upper bound can be proven for general valua-
tions? (2) does a matching lower-bound exist, even for our
special case?

Finally, we initiate the study of the complexity of comput-
ing payment schemes that lie in the core of the respective
coalitional game. A payment scheme is in the core if there
is no subset of players that can deviate (with the “seller”)
and reach an outcome that betters their payoffs. We present
a simple argument showing that computing core outcomes
incurs, in general, a low informational overhead. Unfortu-
nately, this positive result necessitates the computation of
points in the core that are unreasonable in practice. A more
reasonable core outcome is the one defined by Ausubel and
Milgrom [1]. We show that the communication overhead of
computing such core points is unbounded.

1.1 Related Work
Fadel and Segal [15] were the first to study the commu-

nication overhead of incentive compatibility. They proved
exponential upper bounds, both for Bayesian-Nash equilib-
ria and an ex-post equilibria. They presented a surprising
matching exponential lower bound for the Bayesian case,
but their only lower bound for the ex-post equilibrium case
was 1 extra bit. The main open question posed in their
paper remains unsolved: can the exponential upper bound
for the communication overhead in ex-post implementation
be matched by a lower bound?1 [15] also proves a linear (in

1This question appears to be hard to solve. The overhead
in known to be at most linear (in the number of players)
for welfare-maximization objectives and in single-parameter
domains [15]. In other (multi-dimensional, arbitrary ob-
jectives) domains, the space of implementable social-choice
function is not well understood. Therefore, constructing
such a negative example is hard.



the number of players) upper bound on the communication
overhead of incentive compatibility in single-parameter do-
mains. Both [15] and our paper belong to a more general
line of research studying communication and information
aspects of various economic environments, for example in
auctions [12, 5, 6] and in more general economic domains [4,
14]. A recent survey on this line of research in the context
of combinatorial auctions is found in [13]. The basic model
for communication complexity was presented by Yao [16]. A
survey on communication complexity can be found in [9].

The question of the computational burden of computing
payments in social-welfare maximizing environments has re-
ceived some attention in the past: one of the open ques-
tions raised in the seminal paper by Nisan and Ronen [11] is
whether VCG payments could be discovered with a smaller
computational cost than that of the in näıve solution that
solves n + 1 separate problems (once for determining the
outcome, and n additional solutions where players are ex-
cluded in turns). Indeed, [8] proved that when auctioning
shortest paths, VCG prices can be determined by solving
a single shortest-path problem (see also the recent work by
[7]). [3] showed, via linear-programming duality, that calcu-
lating VCG prices can be done in certain domains by solv-
ing two optimization problems. The above results consider
computational complexity, while in this paper we measure
the additional communication complexity of computing the
appropriate payments.

1.2 Organization of the Paper
The rest of the paper is organized as follows: we present

our model and notations in Section 2. We prove a con-
stant upper bound on the informational overhead of incen-
tive compatibility for the classic model of single-item auc-
tions in Section 3. In Section 4, we prove our results for pub-
lic goods problems. We present a construction that proves
a linear lower bound in Section 5. Finally, in Section 6, we
explore welfare-maximizing social-choice functions.

2. BACKGROUND AND THE MODEL

2.1 Mechanism Design
The mechanism design setting considered in this paper is

as follows: there is a set N of n players, and a set of outcomes
O. Each player i has a valuation function, or type, vi : O →
R≥0, that belongs to a set of valuation functions Vi. A
social-choice function (SCF) is a function that assigns every
n-tuple of players’ valuation functions v = (v1, ..., vn) ∈ V1×
. . .×Vn (“type-profile”) an outcome o ∈ O. Each vi is private
and only known to i.

A payment function is a function p : V1 × . . .× Vn → Rn.

Definition 1. A social-choice function f is said to be
implementable (in the ex-post Nash sense) if there is a pay-
ment function p such that the following holds:

∀v = (v1, ..., vn) ∈ V1 × . . .× Vn, ∀i ∈ N, ∀v′i ∈ Vi,

vi(f(v))− p(v) ≥ vi(f(v′i, v−i))− p(v′i, v−i)

(where (v′i, v−i) is the type profile in which i has type v′i and
every player j 6= i has type vj)

Informally, f is implementable if it is possible to come
up with a payment scheme that incentivizes players to re-
port truthful information. For example, the social-choice
function in single-item auctions (where the item should be
sold to the player with the highest value) is f(v1, ..., vn) ∈
arg maxi∈Nvi, where vi is the value of agent i for the item.
The payment scheme in a second-price (Vickrey) auction is
known to implement this social-choice function in equilib-
rium.

In this paper we provide several examples of single-parameter
domains, where the type on a player can be represented by
a single scalar. We consider specific single-parameter envi-
ronments where every outcome defines whether each player
“wins” or “loses” (f(v) ⊆ N is the set of winners). The
player gains a value of vi ≥ 0 if she wins, and she gains 0
when losing. We focus on normalized mechanisms in which
losers pay 0. The following is a well known characterization
of implementable single-parameter social-choice functions.

Definition 2. A single-parameter SCF f is monotone if
for every player i ∈ N , all v−i ∈ V−i and all v′i > vi s.t.
v′i, vi ∈ Vi it holds that if i ∈ f(vi, v−i) then i ∈ f(v′i, v−i).

The following observation is well known (see, e.g., [10] and
the reference therein).

Observation 2.1. A single parameter SCF f is imple-
mentable if and only if it is monotonic. In the case of nor-
malized mechanisms a winner has to pay the minimal bid
she has to declare in order to win.

2.2 Communication Overhead of Incentive
Compatibility

We consider the communication problem in which each
vi is private and only known to i, and the players need to
exchange information in order to compute the outcome of
f . We work in the broadcast model in which each sent bit
is received by all players (and not addressed only to one
player). Let CC(f) denote the communication complexity of
computing the outcome of f . Informally, the communication
complexity of a function is the minimal number of bits that
is required to compute the function (for any input).

How much additional communication burden is imposed
by the necessity to compute payments that guarantee truth-
fulness? Let CC(f, p) denote the communication complexity
of computing the outcome of f and payments that guarantee
incentive compatibility (that is, computing the outcome of
both f and some payment function that leads to the imple-
mentability of f .).

In order to formally define the informational overhead of
incentive compatibility we need to be concrete about the in-
formation each player holds: Let fk be a social-choice func-
tion with n players such that each player’s valuation is rep-
resented using k bits of information, for some fixed k ∈ N.
Formally, fk : {0, 1}k×n → O, i.e., for every (v1, v2, ..., vn)
with each vi ∈ {0, 1}k, fk picks an outcome fk(v1, v2, ..., vn).

Definition 3. The informational overhead of incentive
compatibility of fk is defined to be CC(fk,p)

CC(fk)
.

Our main result shows that for some social-choice func-
tions fk a significant informational overhead may be in-
curred, and we prove that this holds even in single para-
meter domains. Formally, in such domains the valuation of



a player is given by a number in [0, 1] represented by k bits
(k is the precision in the representation of vi). That is, for
every player i there is some ti ∈ {0, ..., 2k − 1}, such that
vi = ti · 2−k.

2.3 Communication Complexity: Background
and Basic Observations

This section presents some basic background of some of
the tools we use from the theory of communication complex-
ity. For a comprehensive survey on the subject we refer the
reader to [9].

Observation 2.2. If the range of function f is of size m
(|Range(f)| = m), then any communication protocol for f
requires at least log(m) bits.

Observation 2.3. For any implementable function fk with
n players each holding k bits it holds that CC(fk) ≤ k(n −
1) + dlog(|Range(fk)|)e and CC(fk, p) ≤ kn (Range(fk) is
the set of different outcomes in the range of fk).

Proof. This is shown by considering two trivial pro-
tocols: To compute fk, each of the players but the last
one transmits all his information, and the last player com-
putes the outcome and transmits the outcome. As there are
|Range(fk)| possible relevant outcomes, dlog(|Range(fk)|)e
bits are clearly sufficient to encode all these outcomes. To
compute CC(fk, p) simply let all players transmit all of their
private information.

Our proofs use a common communication-complexity tech-
nique called fooling sets. Intuitively, a fooling set is a large
set of possible inputs such that any communication proto-
col must be able to distinguish between every two of them.
Fooling sets arguments are based on following well known
property of communication protocols. If a protocol executes
exactly the same on two inputs, it must do so on any possible
“combinations” of these inputs, thus must output the same
outcome. For completeness, we give a formal definition of
the fooling-set technique in Appendix A.1.

3. SINGLE-ITEM AUCTIONS
A well known economic setting is the single-item auction,

where a seller aims to sell an item to the bidder who values
it the most.

Definition 4 (Single-Item-Auction).
Input: valuations v1, ..., vn ∈ N
Output: a bidder with the highest value, i.e., arg maxi∈Nvi

(breaking ties lexicographically).

If bidder i wins his value for the outcome is vi, otherwise
his value for the outcome is 0. From Single-Item-Auction
we can derive the function Single-Item-Auctionk for the
case that vi = ti · 2−k for some integer ti ∈ {0, ..., 2k − 1}
and is represented by a k-bit string. It is well known that if
the winner pays the second highest price then the auction is
truthful.

Next we show that for Single-Item-Auction the infor-
mational overhead of incentive compatibility is at most a
small constant (3).

Proposition 3.1. The informational overhead of incen-
tive compatibility for the social-choice function Single-Item-
Auction is at most 3.

Proof. To prove the claim we show that for every k,
it holds for the social-choice function fk =Single-Item-
Auctionk that CC(fk, p) ≤ 2 · CC(fk) + k ≤ 3 · CC(fk).
The last weak inequality is a result of the following claim:2

Claim 1. For every n ≥ 2, CC(Single-Item-Auctionk)≥
k

Proof. We shall prove that CC(fk) is large by construct-
ing a“fooling set”of size 2k. By Theorem A.1 this shows that
CC(fk) ≥ k. Consider all pairs (v1, v2) such that v1 = v2.
No two such pairs can be mapped by a protocol that com-
putes f to the same monochromatic rectangle (exactly the
same execution of the protocol which leads to the same out-
come). Let (v1, v2) and (v′1, v

′
2) be two such type-profiles

that are mapped to the same rectangle. Observe, that for all
these type-profiles bidder 1 wins and bidder 2 loses. W.l.o.g.,
let v1 < v′1. Then, (v1, v

′
2) should also be mapped to the

same rectangle. However, this leads to a contradiction be-
cause in this case player 2 should win. Hence, there are at
least 2k rectangles, and so any protocol that computes f
must transmit at least k bits.

To show that CC(fk, p) ≤ 2CC(fk) + k we present a sim-
ple protocol for CC(fk, p): run the protocol for fk to find
the player with highest value. Remove the highest bidder
and run the protocol for fk again. Now the players know
who is the player with the second highest value. Finally,
this player transmits his value, which requires k more bits.

3.1 An improved analysis forn = 2

Auctioning a single item is probably the most fundamental
problem in mechanism design. In this section we present a
better analysis of the communication burden in second-price
auctions with two players. We present an iterative mecha-
nism where players broadcast their information in turns, and
an alphabet-changing trick that allows us to save in informa-
tion (a similar protocol without changing alphabets proves

a 1 + O(
√

k) bound).

Theorem 3.2. For the social-choice function Single-Item-
Auctionk and n = 2, the information overhead of incentive

compatibility is at most 1 + O( log(k)
k

).

The proof appears in Appendix B. We note that the proof
of this result implies that the informational overhead of in-
centive compatibility for Single-Item-Auction with n = 2
is extremely small and tend to 1 very fast with k.

4. THE PUBLIC-GOOD SETTING
We now consider another classic economic setting - the

construction of a public project (”public good”). Each player
in a set of players has a “benefit” of vi from using the public
good, and the social planner aims to build it only if the sum
of benefits exceeds the construction cost C. The function is
defined given the parameter C ≥ 0.

Definition 5 (C-Public-Good).
Input: valuations v1, ..., vn ∈ N.

Output: ”Build” if
Pn

i=1 vi ≥ C, ”Do not build” Otherwise.

2We prove this claim for completeness. Similar claims were
proven before, e.g., in [12].



It is easy to observe that the payments that implement
this SCF in a normalized mechanism are pi = C−Pj 6=i vj in

the case of ”Build” (and all players win). Again, we consider
the derived SCF C-Public-Goodk for the case that vi =
ti ·2−k for some integer ti ∈ {0, ..., 2k−1} and is represented
by a k-bit string.

In the next section we consider the problem for the case
of 2 agents. We show that the informational overhead of
incentive compatibility for that case is almost 2. Yet, in the
following section we show that when moving to an n-player
setting the overhead remains constant and does not grow
with n.

4.1 A Lower Bound for 2-Player Settings
We start by considering the case of only 2 players and

show that there is lower bound that is almost 2 on the in-
formational overhead of incentive compatibility.

Proposition 4.1. Assume n = 2. For any ε > 0, for
any large enough k there exists a cost C such that the infor-
mational overhead of incentive compatibility for the social-
choice function C-Public-Goodk is at least 2− ε.

Proof. To prove the claim we consider the SCF fk =C-
Public-Goodk for the case that the cost C of the public
good is 1− 2−k.

By Observation 2.3 it holds that CC(fk) ≤ k+1 (as there
are only 2 possible outcomes |Range(fk)| = 2). In order to
prove the proposition we show below that CC(fk, p) ≥ 2k−
1. This implies that the informational overhead of incentive
compatibility of C-Public-Goodk is at least 2k−1

k+1
= 2 −

3
k+1

. Clearly for any ε > 0 there is a k such that this is
larger than 2− ε. To conclude the proof of the theorem we
next show that CC(fk, p) ≥ 2k − 1.

Claim 2. When n = 2 and C = 1− 2−k,
CC(C-Public-Goodk, p) ≥ 2k − 1.

Proof. Figure 1 describes the function fk. We shall
call any pair of possible values (v1, v2) a type-profile. Ob-
serve, that there are 22k possible type-profiles, out of which
22k−1 + 2k−1 > 22k−1 are type profiles in which v1 + v2 ≥
C. We shall prove that for every two type-profiles v =
(v1, v2) and v′ = (v′1, v

′
2), such that v1 + v2 > C, v′1 + v′2 >

C, and v 6= v′, it must hold that any protocol that com-
putes incentive-compatible payments outputs p(v1, v2) =
(p1(v1, v2), p2(v1, v2)) 6= p(v′1, v

′
2) = (p′1(v1, v2), p

′
2(v1, v2)).

This would imply that fk has at least 22k−1 different out-
comes in its range, which means that at least log(22k−1) =
2k − 1 bits must be transmitted (by Observation 2.2).

Let v = (v1, v2) and v′ = (v′1, v
′
2) be two type-profiles such

that v1 + v2 > C, v′1 + v′2 > C, and v 6= v′ (different type-
profiles in which both players win). W.l.o.g. assume that
v1 6= v2. Then, we shall show that p2(v1, v2) 6= p2(v

′
1, v

′
2).

As shown in Figure 1, the payment of a winning player must
be the minimal value it needed in order to win. That is,
the payment of player 1 is the horizontal projection on the
diagonal line, and the payment of player 2 is the vertical
projection on the diagonal line. Hence, if the value of player
1 is v1 then the payment of player 2, p2(v1, v2), is exactly
C−v1 (that is, the minimal value of player 2 for which they
both win). Similarly, p2(v

′
1, v

′
2) = C − v′1. Since v1 6= v′1 we

conclude that p2(v1, v2) 6= p2(v
′
1, v

′
2).

The theorem follows.

Figure 1: The description of the 2-Not-Too-Far social-

choice function. For every profile of values for the play-

ers, the figure shows whether A wins, B wins or both. In

all other profiles both lose. The hardness of this exam-

ple is due to the fact that every two profiles of values for

which the two players win (e.g., x and y in the picture)

is associated with different prices. Note that the prices

are determined by a projection on the diagonals defined

by the social-choice function.

4.2 A Constant Upper Bound for n-Player Set-
tings

As we have seen, for n = 2 the informational overhead of
the public good function is essentially 2.3 One might hope
that a generalization of this function to an n-player setting
leads to a lower bound of n. Yet we show that this is not
the case.

Theorem 4.2. Fix ε > 0. For any C, the informational
overhead of incentive compatibility of the social-choice func-
tion C-Public-Goodk with n ≥ 3 agents and k that is large
enough is at most 2 · n

n−1
+ ε < 3 + ε.

We refer the reader to Appendix C for the proof of the the-
orem.

5. MAIN RESULT: A LINEAR LOWER
BOUND

In order to prove a lower bound of n we must identify
a social-choice function f such that CC(f) is substantially
(essentially factor n) smaller that CC(f, p).

5.1 Another Lower Bound for 2 Players
The reader may expect a straightforward generalization of

the 2-player public-good problem to enable us to get an Ω(n)
lower bound for general single-parameter domains. However,
as shown in Section 4.2 this is not the case. In fact, the n-
player public-good problem is such that the communication
cost of selfishness is never greater than 3 + ε.

We will now present a construction that does extend to n
players, and thus obtains a linear lower bound. We will start
by presenting the construction and the proof for 2 players,
and then we will describe the general construction and proof.

Consider the 2-player social-choice function depicted in
Figure 1. As before, we have 2 players 1, 2, each holding a

3It is relatively easy to derive a matching upper bound of
about 2 as it is clear that 2k bits are always sufficient to
compute the payments and it is relatively easy to show that
k bits are necessary to compute the outcome.



value vi = ti·2−k for an integer t ∈ {0, ..., 2k−1}, represented
by a k-bit string. Player i’s utility from winning is vi, and his
utility from losing is 0. Player 1 wins if and only if v2 ≥ 1/2
and v1 ≥ v2 − 1/2. Similarly, player 2 wins if and only if
v1 ≥ 1/2 and v2 ≥ v1 − 1/2. We shall refer to fk as the
“Not-Too-Fark” social-choice function. It is easy to check
that Not-Too-Fark is monotone and thus its informational
overhead of incentive compatibility is finite.

Proposition 5.1. For any ε > 0, for any k large enough
the informational overhead of incentive compatibility for the
social-choice function Not-Too-Fark is at least 2− ε.

Proof. Let fk =Not-Too-Fark. By Observation 2.3 it
holds that CC(fk) ≤ k + 2 as there are 4 outcomes in the
range (any subset of the player can win).

We show below that CC(fk, p) ≥ 2k − 2. From this we

derive that CC(fk,p)
CC(fk)

≥ 2k−2
k+2

= 2 − 6
k+2

. Clearly as this a

monotonic function of k that converge to 2, for any ε > 0
there is a k such that this is larger than 2 − ε. We next
derive the promised lower bound on CC(fk, p).

Claim 3. For n = 2, CC(Not-Too-Fark, p) ≥ 2k − 2.

Proof. Consider the type-profiles (v1, v2) such that both
v1 and v2 are at least 1/2. Observe, that there are exactly
22k−2 such type-profiles, and that both players win for each
such type profile.

We shall prove that for every two such type-profiles v =
(v1, v2) and v′ = (v′1, v

′
2) it must hold that any commu-

nication protocol that computes incentive-compatible pay-
ments outputs p(v1, v2) 6= p(v′1, v

′
2). Therefore, any such

protocol has at least 22k−2 outcomes in its range. By Ob-
servation 2.2 this implies that the minimal number of bits
that must be transmitted by any such protocol is at least
log(22k−2) = 2k − 2.

W.l.o.g., assume that v1 6= v′1. From Figure 1 one can
deduce that in the event that both players win the pay-
ment of each is the other’s player’s value minus 1/2. We
shall show that p2(v1, v2) 6= p2(v

′
1, v

′
2). Clearly p2(v1, v2) =

v1 − 1/2 (the minimal value for which 2 would win). Simi-
larly, p2(v

′
1, v

′
2) = v′1 − 1/2. Since v1 6= v′1 we conclude that

p2(v1, v2) 6= p2(v
′
1, v

′
2).

The theorem follows.

5.2 A Linear Lower Bound for n Players
We are now ready to prove the main theorem of this paper.

The social-choice function for which we shall prove a lower
bound of about n is an extension of 2-Not-Too-Fark to
n-player settings.

Definition 6 (Not-Too-Fark).
Input: valuations v0, ..., vn−1 ∈ N represented by strings of k
bits.
Output: A set of winning players from N . Player i wins if
one of the following happen:

1. vj ≥ 1/2 for every j ∈ N .

2. vj ≥ 1/2 for every j ∈ N, j 6= i, and
vi ≥ vi+1 (mod n) − 1/2.

We first observe that the function Not-Too-Fark is im-
plementable, and therefore the informational overhead of in-
centive compatibility is well defined. Indeed, it is easy to see
that if player i wins in Not-Too-Fark and increases its bid,
i will still win.

Observation 5.2. The social-choice function Not-Too-
Fark is monotone.

We are now ready to present the main result, a linear lower
bound on the informational overhead of incentive compat-
ibility for a single-parameter SCF. This is done by show-
ing that computing both the function and the payments
(CC(f,p)) requires lots of communication since there are
many different price-vectors the mechanism should distin-
guish between; also, computing the function alone (CC(f))
requires a low amount of communication since after all play-
ers declared if their value exceeds 1/2 using 1 bit each, the
only relevant information is held by up to two players (vi

and vi+1 for some i).

Theorem 5.3. For any ε > 0 and for k large enough,
the informational overhead of incentive compatibility for the
social-choice function Not-Too-Fark is at least n− ε.

Proof. Let fk =Not-Too-Fark. We show below that
CC(fk, p) ≥ n(k−1) (Claim 4) and that CC(fk) ≤ n+k+1

(Claim 5). From these two facts we derive that CC(fk,p)
CC(fk)

≥
n(k−1)
k+n+1

= n− n(n+2)
n+k+1

. Clearly for any ε > 0 there is a k such
that this is larger than n− ε. We next derive the promised
bounds on CC(fk, p) and CC(fk).

Claim 4. CC(Not-Too-Fark, p) ≥ n(k − 1).

Proof. There are 2n(k−1) type-profiles (v0, . . . , vn−1) such
that each vi is at least 1/2. For all these type-profiles
all players win. Let (v0, . . . , vn−1) and (v′0, . . . , v

′
n−1) be

two different such type-profiles. Let p(v0, . . . , vn−1) and
p(v′0, . . . , v

′
n−1) be the incentive-compatible payments out-

putted by a communication protocol for these two type-
profiles. We shall show that these two payment vectors must
be different. This is derived from the fact that
pi(v0, . . . , vn−1) = vi+1 (mod n) − 1/2, and similarly,
pi(v

′
0, . . . , v

′
n−1) = v′i+1 (mod n) − 1/2. Hence, as shown in

Proposition 4.1, if any coordinate j ∈ {0, 1, ..., n − 1} is
such that vi 6= v′i this implies that pj−1(v0, v2, ..., vn−1) 6=
pj−1(v

′
0, v

′
2, ..., v

′
n−1). Therefore, any protocol that computes

incentive-compatible payments has at least 2n(k−1) outcomes
in the range of fk and thus requires at least n(k − 1) bits
(by Observation 2.2). We conclude that CC(fk, p) ≥ n(k −
1).

Claim 5. CC(Not-Too-Fark) ≤ n + k + 1.

Proof. We show that CC(fk) ≤ k+n+1 by exhibiting a
communication protocol that computes fk and only requires
k + n + 1 bits: First, each player i transmits a single bit bi

that indicates whether his value is at least 1/2 (i transmits
1 if vi ≥ 1/2). If bi = 1 for all i then all players win. If
for two or more players bi = 0 then all players lose. If there
is a player j such that bj = 0 and for all other players it
holds that bi = 1 then all other players (but j) lose. In this
case, in order to determine whether player j wins, player j+
1 (mod n) transmits all of his bits. Player j (who now knows
vj+1 (mod n)) checks whether vj ≥ vj+1 (mod n) − 1/2 (in
which case player j wins). He now broadcasts an additional
bit informing the others of the result (1 indicating “I win”
and 0 indicating “I lose”). Observe, that overall k + n + 1
bits were transmitted, and that the protocol does indeed
compute Not-Too-Fark. So, CC(fk) ≤ k + n + 1.

The theorem follows.



6. WELFARE MAXIMIZATION: VCG AND
THE CORE

In this section we study social-choice functions of a partic-
ular type – social choice functions that maximize the social
welfare. We consider two payment scheme for such envi-
ronments. In Subsection 6.1 we study prices supporting ex-
post Nash equilibria (which are VCG payments under some
conditions). In Subsection 6.2, we introduce the problem of
measuring the communication overhead of computing points
in the core.

Recall that we consider mechanism-design settings with
a social-choice function f , outcome set O and valuation
spaces V1, ..., Vn. Note that in this section we allow multi-
parameter valuations.

Definition 7. A social choice function f is welfare max-
imizing if for every v, f(v) ∈ argmaxo∈O

Pn
i=1 vi(o).

6.1 Ex-post equilibrium: VCG prices

6.1.1 VCG prices: Overview
Recall that with VCG prices the welfare maximizing out-

come o is chosen, and each player pays hi(v−i)−
P

j 6=i vj(o)

(where the hi(·) is a function that does not depend on vi).
It is well known that such payments, for any choice of the
hi’s, supports a dominant strategy equilibrium (in our case,
the mechanisms are iterative and the ex-post equilibrium
concept is used).

Probably the most common choice for the hi terms for
VCG mechanisms is the Clarke pivot rule, where the pay-
ment of each player becomes maxa∈O

P
j 6=i vi(a)−Pj 6=i v(o).

This choice of the hi’s implies that the mechanism has the
following important property:4

Definition 8. A payment scheme has No Positive Trans-
fers (NPT) if for every valuation profile v and every player
i, pi(v) ≥ 0.

6.1.2 Communication Overhead
Fadel and Segal [15] gave an elegant solution to the com-

munication overhead of computing some equilibrium prices.
They show that the overhead is very small: it is an additive
term that is not related to the complexity of the social-choice
function, but only depends on the representation of values
by the players. Recall that the value each player has for an
alternative is represented by at most k bits.

Proposition 6.1 ([15]). For any welfare maximizing
function, CC(f, p) ≤ CC(f) + n · k.

However, Proposition 6.1 computes VCG prices with pos-
itive transfers to the players. When this is not allowed, the
bound on the communication level is no longer trivial. Under
the NPT assumptions, we were able to bound the commu-
nication overhead for settings where every bidder has a zero
valuation. That is, a player with such a valuation will never
affect the outcome. For example, in a combinatorial-auction
model, if the player may have a valuation that gives him a
value of 0 for every possible bundle of items he gets, this
is a zero valuation. Note that settings may exist where the

4It also guarantees another close property of individual ra-
tionality, that is, the utility of the players is never negative.

valuation space has no such valuation (e.g., in combinator-
ial auction a player may always have a value of 10 for either
item a or item b).

A player that reports a valuation function where the value
for every bundle is zero, will actually ensure that the out-
come is computed regardless of his preferences.

Definition 9. We say that a player i has a zero valua-
tion if there exists v0

i ∈ Vi such that for every v−i, f(v0
i , v−i) ∈

argmaxo∈O

P
j 6=i vi(o).

Let CCNPT (f, p) denote the communication complexity
of computing the social-choice function f and some pay-
ments with no positive transfers. Note that this definition
allows us to find payments that are not necessarily VCG
with the Clarke pivot rule; this makes the construction of
lower bounds for this measure actually harder.

Proposition 6.2. Assume that every player has a zero
valuation. Then, for every welfare maximizing function f ,
CCNPT (f, p) ≤ (n + 1)CC(f) + n · k.

Proof. We are given a ”black-box” that computes the
function f(v) using CC(f) bits for every valuation profile v.
We will use this black box once for computing f(v), and n
more times for (v0

i , v−i), where i = 1, ..., n. For computing
the VCG prices, we should also ask the players for vi(o) (o is
the chosen alternative), which may take up to ε = n · k bits
(again, k is the precision or number of bits of the value of a
player for a single alternative) and this term is independent
of CC(f) and is therefore negligible.

We direct the attention of the reader to the following open
questions. Any non-linear upper or lower bounds in this
context will be considered surprising.

Open questions: For welfare maximizing social-choice func-
tions, can equilibrium supporting prices that admit NPT can
be computed:

1. with a linear communication overhead, even without
assuming the zero-valuation property?

2. with o(n) communication overhead, even with the zero-
valuation property?

6.2 Core Outcomes
Consider a coalitional game with a set of n + 1 players

N+ = {0, 1, ..., n} (player 0 is interpreted as the ”seller”) –
where the coalitional value is defined as follows:

• w(S) = maxo∈O

P
i∈S vi(o), if 0 ∈ S.

• w(S) = 0, if 0 /∈ S.

A vector π ∈ Rn+1 is in the core of this coalitional game, if
w(N+) =

P
i∈N+ πi and for every S ⊂ N+ we have w(S) ≤P

i∈S πi. Intuitively, π should be thought of as a vector
of payoffs (utilities), and this payoff vector is in the core if
no subset of players can have a better deal with the social
planner (the ”seller”). It is known ([1]) that the core of this
game is non-empty, and that every core allocation is welfare
maximizing.



Definition 10. A social-choice function f and a pay-
ment scheme p are in the core, if for every profile of val-
uations v, the vector of payoffs

(v1(o)− p1(v), v2(o)− p2(v), ..., vn(o)− pn(v))

is in the core of the respective coalitional game (where f(v) =
o).

We denote the communication complexity of determining
the function f and some set of payments p in the core as
CCcore(f, p).

It turns out that computing a core outcome can be done
with a small communication overhead that is independent
of the communication complexity of f . We can thus prove
a result that is similar in spirit to Proposition 6.1.

Theorem 6.3. CCcore(f, p) ≤ CC(f) + n · k

Proof. The payoff vector (0,...,0) is always in the core
(i.e., every player pays his exact value for the outcome:
pi(v) = vi(o) ). It is easy to see that no coalition can then
deviate. Thus, we can first compute the welfare-maximizing
outcome using CC(f) bits, and then ask each bidder to re-
port his value from this outcome using k bits.

As in the VCG case, the above positive result is unreal-
istic, since eliciting the exact valuation of rational players
seems to be impossible. A probably more reasonable point
in the core is the one described by Ausubel and Milgrom [1].
Their payment method can be computed using an iterative
ascending-price bidding process, and also have some desired
incentive properties (see more details in [1, 2]). These prices
are computed by an ascending-price auctions that use per-
sonalized bundle prices. A formal definition of this pricing
scheme can be found in [1], together with a detailed compari-
son to VCG payments. We denote the communication com-
plexity of computing a welfare-maximizing allocation and
the Ausubel-Milgrom core payments by CCAM

core(f, p). We
show by a trivial example that the communication overhead
of computing the Ausubel-Milgrom outcome over computing
the welfare-maximizing outcome is unbounded.

Proposition 6.4.
CCAM

core(f,p)

CC(f)
cannot be bounded from

above by any number α (even when α is allowed to be a
function of the input).

Proof. It is known that for auctions with (gross) substi-
tutes valuations, the Ausubel-Milgrom core prices coincide
with VCG prices. We will show a trivial example where the
optimal allocation can be computed with out any communi-
cation (i.e., known in advance), but computing VCG prices
requires positive amount of communication. Note that this
does not prove the same claim for finding
equilibrium-supporting prices, since if the outcome is known
in advance, any set of prices is incentive compatible. The
example: consider an auction for one item among two bid-
ders 1,2. V1 = {10}, V2 = {0, 1}. Bidder 1 clearly wins, but
the VCG prices need to disclose v2.
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APPENDIX

A. BACKGROUND

A.1 The fooling sets techniques
Suppose that some communication protocol that com-

putes a social function f for a two-player setting cannot
distinguish between (v1, v2) and (v′1, v

′
2), then, that pro-

tocol cannot also tell the difference between these inputs
and (v′1, v2), (v1, v

′
2). This suggests a way for proving lower

bounds on the communication complexity of social-choice
functions: Find a subset of the inputs and prove that every
member in this subset is assigned the same outcome, but
a combination of every two members is assigned a different
outcome. This will imply that any communication protocol
must distinguish between every two members of the subset
of inputs. This, in turn, would mean that the logarithmic
value of the cardinality of this subset is a lower bound on
the number of bits that need to be transmitted in order to
compute f . Formally, let f be a social-choice function. Let
v, v′ be two valuation functions. Let

Vv,v′ = {v′′ = (v′′1 , ..., v′′n)|∀i ∈ N v′′i = vi or v′′i = v′i}
A well known fact in communication complexity (see [9]) is
the following:

Theorem A.1. [Fooling Set Argument] Let f : V =
V1 × . . . × Vn → O be a social-choice function. For every
V ′ ⊆ V such that:

• there is an outcome o∗ ∈ O such that for every v′ ∈ V ′

f(v′) = o∗.

• for every v, v′ ∈ V ′ ∃v′′ ∈ Vv,v′ such that f(v′′) 6= o∗

it holds that CC(f) ≥ log(|V ′|).

B. AN IMPROVED UPPER BOUND FOR SIN-
GLE ITEM AUCTIONS WITH TWO PLAY-
ERS: THE PROOF

In this section we prove Theorem 3.2.

Theorem B.1. For the social-choice function Single-Item-
Auctionk and n = 2, the information overhead of incentive

compatibility is at most 1 + O( log(k)
k

).

Proof. By Observation 1 proved in the proof for Propo-
sition 3.1, CC(fk) ≥ k. The theorem is a direct result of the
following communication-complexity lemma. In the terms of
our model, it shows that for n = 2,
CC(Single-Item-Auctionk, p) ≤ k+O(log(k)) (recall that
in single-item auctions, an equilibrium-supporting price is
well known to be the second-highest price).

Lemma 1. Consider two players 1 and 2, each holds a
number represented by k bits v1, v2 (resp.). Both players
can realize min{v1, v2} with communication of at most k +
O(log(k)) bits.

Proof. We present a protocol that computes fk and
incentive-compatible payments, and requires the transmis-
sion of at most k + O(log(k)) bits. It is well known that if
the winning bidder is charged the value of the losing bid-
der then incentive compatibility is guaranteed (this is the
celebrated “second-price auction”). So, computing fk and

incentive-compatible payments can be done by finding the
identity and value of the bidder with the lowest value.

We consider the following communication protocol: Let
m = dlog(k)e. The two parties (bidders) encode their inputs
(values) using an alphabet of size 2m − 1. The two parties
now take turns sending the symbols (“blocks”) of their in-
put values (from most significant to least significant). The
alphabet symbols are encoded using m bits and are repre-
sented by the strings 0m through 1m−10. The string 1m

is assigned a reserved meaning: “your previous string was
not equal to mine”. If one party sends the 1m string, then
it also sends an additional bit indicating who has the larger
value, and that party then sends all of its remaining symbols
(encoded normally).

What is the maximal cost of this protocol in bits? We are
wasting at most two blocks and one more bit when one party
discovers the differing blocks (the most wasteful possibility
is if the non-sending party realizes that its input is smaller,
in which case he needs to send the string with the reserved
meaning, an additional bit indicating that he has the smaller
value, and repeat the last symbol). The cost is therefore at
most m × R + 2m + 1, where R is the length of the k-
bit input encoded in the alphabet of size 2m − 1. That
is, the number of symbols (blocks) sent times the number
of bits needed to represent each symbol, plus the number
of bits in two additional blocks, and another bit. The size
of R must be such that (2m − 1)R ≥ 2k, that is, we can
set R to be dk/ log(2m − 1)e. Hence, the total cost in bits
(setting m = dlog(k)e) is at most dlog(k)e×dk/ log(k−1)e+
2dlog(k)e+ O(1), which is k + O(log(k)).

The theorem follows.

C. A CONSTANT UPPER BOUND FOR
PUBLIC GOODS: THE PROOF

In this section we prove Theorem 4.2.

Theorem C.1. Fix ε > 0. For any C, the informational
overhead of incentive compatibility of the social-choice func-
tion C-Public-Goodk with n ≥ 3 agents and k that is large
enough is at most 2 · n

n−1
+ ε ≤ 3 + ε.

Proof. The players values v1, ..., vn are all in [0, 1] and
we are interested in figuring out whether Σivi ≥ C. Obvi-
ously in C = 0 or C ≥ n then the answer is trivial. So, we
can consider the case C ∈ (0, n). For any integer k′ that is

large enough, we can pick k such that C · 2k ∈ [2k′−1, 2k′ ].
We now consider the function fk and normalize the input
by 2k, that is, we think about the input as if each agent
i has integer value vi ∈ {0, ..., 2k − 1} and the cost C is

dC · 2ke ∈ [2k′−1, 2k′ ]. (note that as the values are now inte-
gers we can round up C · 2k while being left with the same
decision problem). The communication complexity of the
original problem is clearly equivalent to the communication
complexity of the new problem after normalization.

It is easy to see that CC(fk, p) is at most nk′+n, because
of the following protocol: Ask each player if his value is at
least C (this requires n bits). Ask all the players whose val-
ues are lower than C to transmit their vi’s (this requires k′

bits per player, i.e., at most n×k′ bits). An easy observation
is that this simple protocol provides us with sufficient infor-
mation to calculate the prices for all players. We shall now
prove a lower bound on CC(fk) that will imply the theorem.

We prove the following lemmas:



Lemma C.2. If C ≤ n
2
, then for large enough k′ the com-

munication complexity of determining whether Σivi ≥ C is
at least (n

2
− 1) · k′ − f(n) for some function f(·).

Proof. We shall construct a large fooling set and in-
voke Theorem A.1. Consider all the possible type-profiles
(v1, . . . , vn) such that Σivi = C. Obviously for all these
type-profiles Σivi ≥ C. However, any protocol that tries
to determine whether Σivi ≥ C cannot place any two such
type-profiles in the same monochromatic rectangle (see [9])
for the following reason: Let v = (v1, . . . , vn) and v′ =
(v′1, . . . , v

′
n) be two different such type-profiles. Let j be a

coordinate such that vj 6= v′j . W.l.o.g, assume that vj < v′j .
Then, if v and v′ are in the same rectangle then so is the
type profile v′′ = (v′′1 , . . . , v′′n) in which v′′i = v′i for every
i 6= j and v′′j = vj . However, this leads to a contradiction
because Σiv

′′
i < C (since the outcome of the protocol cannot

be the same for v and v′′).
Hence, by finding a lower bound L on the number of possi-

ble type-profiles (v1, . . . , vn) such that Σivi = C, we also find
a lower bound on the number of monochromatic rectangles of
any protocol that computes C-Public-Goodk. This implies
that log L is a lower bound on the number of bits transmitted
by any such protocol. We reach L as follows: First, consider
the case that C ≤ 2k − 1. We consider the following family

of type-profiles: v1 = C − 2k′−1, v2 = ... = v n
2−1 = 0, and

Σn
i= n

2
vi = 2k′−1. Observe, that any type-profile in this fam-

ily is such that Σn
i=1vi = C. How many such type-profiles

are there? There are
�2k′−1+ n

2
n
2

�
ways to distribute 2k′−1 be-

tween n
2
+1 players. This is bounded from below by 2

(k′−1) n
2

( n
2 )

n
2

.

So, any protocol that determines whether Σivi ≥ C needs

to transmit at least log( 2
(k′−1) n

2

( n
2 )

n
2

) = n
2
k′ − n

2
(log(n)) bits.

What if C ≥ 2k − 1? Recall that C ≤ n
2
· 2k (after

the normalization) so in this case observe that for large
enough k we can distribute C − (2k − 1) to players 1, ..., n

2
(in some arbitrary way). This is so as these n

2
agent can

split up to (2k − 1) · n
2
, and for large enough k it holds that

(2k−1) · n
2
≥ 2k · n

2
− (2k−1) ≥ C− (2k−1). So now we are

left with a cost of C′ = 2k − 1 to distribute between agents
n
2

+ 1, ..., n. We can now achieve L by looking at the differ-
ent ways to distribute C′ between players n

2
+ 1, ..., n, i.e.,

such that Σn
i= n

2 +1vi = C′. How many such type-profiles are

there? There are
�C′+ n

2−1
n
2−1

�
ways to distribute C′ between

n
2

players. Now
�C′+ n

2−1
n
2−1

�
=
�(2k−1)+( n

2−1)
n
2−1

� ≥ (2k−1)
( n
2 −1)

( n
2−1)

( n
2 −1)

So, any protocol that determines whether Σivi ≥ C needs
to transmit at least a logarithmic factor of this number,
which is (n

2
− 1) log(2k − 1)− (n

2
− 1) log(n

2
− 1). Note that

n
2
· 2k ≥ C ≥ 2k′−1 thus 2k ≥ 2k′

n
. We conclude that this

number is at least (n
2
−1) log( 2k′

n
−1)−(n

2
−1)(log(n)−2) ≥

(n
2
− 1)k′ − (n

2
− 1)(2 log(n)− 1)

Lemma C.3. If C ≤ n
2
, then for large enough k′ the com-

munication complexity of determining whether Σivi ≤ C is
at least (n

2
− 1) · k′ − f(n) for some function f(·).

Proof. The proof of this lemma is almost identical to

that of the previous one (it involves the construction of the
very same fooling set).

The theorem will now follow because if C ≥ n
2

in the
original formulation then Lemma C.2 implies that CC(f, p)
is at least (n

2
− 1) · k′ − f(n) for some function f(·). If C >

n
2

then the problem is equivalent to figuring out whether
n − Σivi ≥ n − C. That is, it is equivalent to the problem
in which every player has the value 1 − vi and the players
are trying to figure out whether the sum of their values is
at most n− C. This problem is just as hard as the original
problem, as shown by Lemma C.3. By plugging in the values
of CC(fk, p) and CC(f, p) we get an overhead of at most

nk′+n
( n
2−1)·k′−f(n)

, which converges to 2 n
n−1

as k′ goes to infinity.


