S

Q\ Stream plassing
Opening the Levees for

Y,
Stream Processing

IBM PL Day 7 May 2009

Martin Hirzel, Henrique Andrade, Bugra Gedik
Vibhore Kumar, Giuliano Losa, Robert Soulé,
Kun-Lung Wu

J

1

About this Talk

Technical Non-technical

* A language for « EXxercise:
stream computing pragmatic PL design
(work in progress) « Experience: PL guy

iIn different domain

/
UNDER

IIISTIIIB'I'IIII| 2

Cluster Stream Processing

Applications: trading, medical monitoring,
fleet management, radio astronomy,
production plant control, etc.

Continuous high-volume
data stream processing

SPADE and System S

- SPADE Native
h? graphw(operators ﬂ-

Outline

Systems Solution
Language Problem
Language Design
Design Process
Future Work

PL Problem

SPADE Native il
graphw(operators O

o

Problem:
Design SPADE language and compiler.

Priorities:
Performance: Ultra-fast streaming on a cluster.
Generality: Support diverse set of applications.
Usability: Hide complexity of distributed systems.

technical and
P L P ro b I e nontechnical

SPADE Native
graphw(operators O

o

ion 2 ickly build
Problem: yersion ey oA

Co-Design SPADE language and compiler. .., System S
Priorities:

Performance: Ultra-fast streaming on a cluster.

Generality: Support diverse set of applications.

Usability: Hide complexi@of distributed systems.
\

) beyond StreamIt, StreamSQL, ...
also, interface with (new and legacy) native code -

Outline

Systems Solution
Language Problem
Language Design
Design Process
Future Work

Terminology

_

Stream
 Infinite sequence of tuples
e Edge in stream graph
Operator FileSource
 Reusable stream transformer
 May be primitive or composite
Operator invocation

e Defines its output streams
* Vertex in stream graph

Port

e Point where streams
connect to operator

Operator invocation

SPADE Stream Graph

stream<...> Bid = FileSource() { /11
/12
} 113
stream<...> Quote = FileSource(){ //4
115
) Opera’t_oi\ ’_F:i\)rt 116
r stream<...> Sale = Join(Bid; Quote) { //7
St?é:m I8
/19
/110
1111
L} 1112
() = FileSink(Sale){ ... } M3

10

SPADE Types

stream<string buyer, string item, decimal64 price> Bid = FileSource() { /11
/12
} 113
stream<string seller, string item, decimal64 price> Quote = FileSource() { //4
115
} /16
stream<string buyer, string seller, string item> Sale = Join(Bid; Quote) { 117
/18
/19

/110

1111

} /112

() = FileSink(Sale){ ... } M3

11

SPADE Operator Customization

stream<string buyer, string item, decimal64 price> Bid = FileSource() { /N1
param fileName : "BidSource.dat"; format: csv; /12
} /113
stream<string seller, string item, decimal64 price> Quote = FileSource() { //4
param fileName : "SaleSource.dat"; format: csv; /15
} /16
stream<string buyer, string seller, string item> Sale = Join(Bid; Quote) { 117
window Bid . sliding, time(30); /18
Quote : sliding, count(50); /119
param match : Bid.item == Quote.item && Bid.price >= Quote.price; //10
output Sale - item = Bid.item:; /111
} /1112
() = FileSink(Sale) { param fileName: "Result.dat"; format: csv; } 113

12

SPADE Operator Definition

* Previous slides invoke and customize
operators, but don’t define them.

« Support for 2 kinds of operator definition

13

SPADE Operator Definition

 Previous slides invoke and customize

operators, but don’t define them.
» Support for 2 kinds of operator definition:

Composite operator

Primitive operator

Encapsulates
SPADE stream graph

Encapsulates
imperative code

Written in SPADE

Written in native
language (e.g. C++)

Invoked/customized
from SPADE

Invoked/customized
from SPADE

Specialized by compiler

Specialized by compiler
14

Composite Operator Parameters

Original graph Composite op. M Expanded graph

15

PL Problem Revisited

. SPAD Native
h? grapﬂ[operators o]®

Problem:
Design SPADE language and compiler.

Priorities:
Performance: Generate specialized operator code.
Generality: Arbitrary graphs, arbitrary C++ code.
Usability: Composite operators, clear syntax.

16

df\/fechnical and
nontechnical

SPAD Native
grapﬂ[operators O

PL Problem Revisite

o

on 2 ickly build
Problem: version quickly bui
Co-Design SPADE language and compiler.
Priorities:

Performance: Generate specialized operator code.
Generality: Arbitrary graphs, arbitrary C++ code.
Usability: Composite operators, clear syntax.

17

Outline

Systems Solution
Language Problem
Language Design
Design Process
Future Work

18

Language Design: Reuse+Combine
PHP SQL ML
Code generation Type system

ch/y\ Ptr/\

Spade 1 q Spade 2

Aurora Scheme
Tuple streaming Composite operators
StreamSQL Streamlt C-like Syntax

(Incomplete map of language influences) 19

lterate

Language Design

Published tech report,
started coding

Designed compiler
components

Feb
‘09

Feedback on spec from
talk, revised some more

Jan
‘09

Feedback on spec from
wiki, revised design

(&
[
o

‘08

Wrote parser grammar

Nov
‘08

Wrote language spec,
published internally

Oct
‘08

Collected and prioritized
requirements

Sep
‘08

20

Language Design:

* Meeting preparation
— Agenda (which features to discuss)
— Examples (so everyone can see the issues)

* During the meeting
— Project agenda and examples
— Project meeting notes (decisions and rationale)
— Be humble (maybe you are not right)
— When “stuck” on an item, move on to next item
— Wrap up meeting after 1 hour max

« After meeting, send notes to everyone

21

Outline

Systems Solution
Language Problem
Language Design
Design Process
Future Work

22

Design Goals and Limits

Performance

.3
& .
N A
8 .
N .
.

L
~ .
a .
L .
L7 .
a .
[.
L] .
L .
L .
) .
1] .
&)
& .
ol .
& .
& .
& .
& .
L]

Generality Usability

23

Opening the Levees

Performance
gLanguage-enabled optimizations

Distributed state o Formalized “correctness”

Generality Usability

24

@ Stream processing
@ pade

Conclusions

<|||

* Emerging technologies are
language design opportunities.

* Practical language design:
reuse, combine, iterate.

* Language specification available as TR.

25

