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About this Talk

Technical Non-technical

* A language for « EXxercise:
stream computing pragmatic PL design
(work in progress)  « Experience: PL guy

iIn different domain

/
UNDER

IIISTIIIB'I'IIII| 2



Cluster Stream Processing

Applications: trading, medical monitoring,
fleet management, radio astronomy,
production plant control, etc.

Continuous high-volume
data stream processing
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PL Problem
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Problem:
Design SPADE language and compiler.

Priorities:
Performance: Ultra-fast streaming on a cluster.
Generality: Support diverse set of applications.
Usability: Hide complexity of distributed systems.
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Co-Design SPADE language and compiler. .., System S
Priorities:

Performance: Ultra-fast streaming on a cluster.

Generality: Support diverse set of applications.

Usability: Hide complexi@of distributed systems.
\

) beyond StreamIt, StreamSQL, ...
also, interface with (new and legacy) native code -
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Terminology

_

Stream
 Infinite sequence of tuples
e Edge in stream graph
Operator FileSource
 Reusable stream transformer
 May be primitive or composite
Operator invocation

e Defines its output streams
* Vertex in stream graph

Port

e Point where streams
connect to operator




Operator invocation

SPADE Stream Graph

stream<...> Bid = FileSource() { /11
/12
} 113
stream<...> Quote = FileSource(){ //4
115
) Opera’t_oi\ ’_F:i\)rt 116
r stream<...> Sale = Join(Bid; Quote) { //7
St?é:m I8
/19
/110
1111
L} 1112
() = FileSink(Sale){ ... } M3
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SPADE Types

stream<string buyer, string item, decimal64 price> Bid = FileSource() { /11
/12
} 113
stream<string seller, string item, decimal64 price> Quote = FileSource() { //4
115
} /16
stream<string buyer, string seller, string item> Sale = Join(Bid; Quote) { 117
/18
/19

/110

1111

} /112

() = FileSink(Sale){ ... } M3
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SPADE Operator Customization

stream<string buyer, string item, decimal64 price> Bid = FileSource() { /N1
param fileName : "BidSource.dat"; format: csv; /12
} /113
stream<string seller, string item, decimal64 price> Quote = FileSource() { //4
param fileName : "SaleSource.dat"; format: csv; /15
} /16
stream<string buyer, string seller, string item> Sale = Join(Bid; Quote) { 117
window Bid . sliding, time(30); /18
Quote : sliding, count(50); /119
param match : Bid.item == Quote.item && Bid.price >= Quote.price; //10
output Sale - item = Bid.item:; /111
} /1112
() = FileSink(Sale) { param fileName: "Result.dat"; format: csv; } 113
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SPADE Operator Definition

* Previous slides invoke and customize
operators, but don’t define them.

« Support for 2 kinds of operator definition

13



SPADE Operator Definition

 Previous slides invoke and customize

operators, but don’t define them.
» Support for 2 kinds of operator definition:

Composite operator

Primitive operator

Encapsulates
SPADE stream graph

Encapsulates
imperative code

Written in SPADE

Written in native
language (e.g. C++)

Invoked/customized
from SPADE

Invoked/customized
from SPADE

Specialized by compiler

Specialized by compiler
14



Composite Operator Parameters

Original graph Composite op. M Expanded graph
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PL Problem Revisited
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Problem:
Design SPADE language and compiler.

Priorities:
Performance: Generate specialized operator code.
Generality: Arbitrary graphs, arbitrary C++ code.
Usability: Composite operators, clear syntax.

16
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Problem: version quickly bui
Co-Design SPADE language and compiler.
Priorities:

Performance: Generate specialized operator code.
Generality: Arbitrary graphs, arbitrary C++ code.
Usability: Composite operators, clear syntax.

17



Outline

Systems Solution
Language Problem
Language Design
Design Process
Future Work

18



Language Design: Reuse+Combine
PHP SQL ML
Code generation Type system

ch/y\ Ptr/\

Spade 1 q Spade 2

Aurora Scheme
Tuple streaming Composite operators
StreamSQL Streamlt C-like Syntax

(Incomplete map of language influences) 19
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Language Design

Published tech report,
started coding

Designed compiler
components

Feb
‘09

Feedback on spec from
talk, revised some more

Jan
‘09

Feedback on spec from
wiki, revised design

(&
[
o

‘08

Wrote parser grammar

Nov
‘08

Wrote language spec,
published internally

Oct
‘08

Collected and prioritized
requirements

Sep
‘08

20



Language Design:

* Meeting preparation
— Agenda (which features to discuss)
— Examples (so everyone can see the issues)

* During the meeting
— Project agenda and examples
— Project meeting notes (decisions and rationale)
— Be humble (maybe you are not right)
— When “stuck” on an item, move on to next item
— Wrap up meeting after 1 hour max

« After meeting, send notes to everyone

21
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Design Goals and Limits

Performance
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Generality Usability
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Opening the Levees

Performance
gLanguage-enabled optimizations

Distributed state o Formalized “correctness”

Generality Usability
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@ Stream processing
@ pade

Conclusions

<|||

* Emerging technologies are
language design opportunities.

* Practical language design:
reuse, combine, iterate.

* Language specification available as TR.
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