
1

Opening the Levees for
Stream Processing

IBM PL Day 7 May 2009

Martin Hirzel, Henrique Andrade, Bugra Gedik,
Vibhore Kumar, Giuliano Losa, Robert Soulé,

Kun-Lung Wu

2

About this Talk

Technical
• A language for

stream computing
(work in progress)

Non-technical
• Exercise:

pragmatic PL design
• Experience: PL guy

in different domain

3

Continuous high-volume
data stream processing

Cluster

Applications: trading, medical monitoring,
fleet management, radio astronomy,

production plant control, etc.

Cluster Stream Processing

4

System S
Streaming middleware

Cluster

♠

SPADE
compiler

⊗
σ

π
⊕

Native
operators

SPADE
graph

SPADE and System S

5

Outline

• Systems Solution
• Language Problem
• Language Design
• Design Process
• Future Work

6

Problem:
Design SPADE language and compiler.

Priorities:
Performance: Ultra-fast streaming on a cluster.
Generality: Support diverse set of applications.
Usability: Hide complexity of distributed systems.

♠
SPADE

compiler

⊗
σ

π
⊕

Native
operators

SPADE
graph

PL Problem

7

Problem:
Design SPADE language and compiler.

Priorities:
Performance: Ultra-fast streaming on a cluster.
Generality: Support diverse set of applications.
Usability: Hide complexity of distributed systems.

version 2

Co- with System S

also, interface with (new and legacy) native code

quickly build

beyond StreamIt, StreamSQL, …

♠
SPADE

compiler

⊗
σ

π
⊕

Native
operators

SPADE
graph

PL Problem technical and
nontechnical

8

Outline

• Systems Solution
• Language Problem
• Language Design
• Design Process
• Future Work

9

Terminology

FileSource
Bid Quote

Join

Sink

Sale

FileSource

Stream
• Infinite sequence of tuples
• Edge in stream graph
Operator
• Reusable stream transformer
• May be primitive or composite
Operator invocation
• Defines its output streams
• Vertex in stream graph
Port
• Point where streams

connect to operator

FileSource

10

SPADE Stream Graph

stream<…> Bid = FileSource() { //1
… //2

} //3
stream<…> Quote = FileSource() { //4

… //5
} //6
stream<…> Sale = Join(Bid; Quote) { //7

… //8
… //9
… //10
… //11

} //12
() = FileSink(Sale) { … } //13

FileSource
Bid Quote

Join

Sink

Sale

FileSource

Operator

O
pe

ra
to

r i
nv

oc
at

io
n

Stream

Port

11

SPADE Types

stream<string buyer, string item, decimal64 price> Bid = FileSource() { //1

… //2
} //3
stream<string seller, string item, decimal64 price> Quote = FileSource() { //4

… //5
} //6
stream<string buyer, string seller, string item> Sale = Join(Bid; Quote) { //7

… //8
… //9
… //10
… //11

} //12
() = FileSink(Sale) { … } //13

12

SPADE Operator Customization

stream<string buyer, string item, decimal64 price> Bid = FileSource() { //1
param fileName : "BidSource.dat"; format: csv; //2

} //3
stream<string seller, string item, decimal64 price> Quote = FileSource() { //4

param fileName : "SaleSource.dat"; format: csv; //5
} //6
stream<string buyer, string seller, string item> Sale = Join(Bid; Quote) { //7

window Bid : sliding, time(30); //8
Quote : sliding, count(50); //9

param match : Bid.item == Quote.item && Bid.price >= Quote.price; //10
output Sale : item = Bid.item; //11

} //12
() = FileSink(Sale) { param fileName: "Result.dat"; format: csv; } //13

13

SPADE Operator Definition
• Previous slides invoke and customize

operators, but don’t define them.
• Support for 2 kinds of operator definition

14

SPADE Operator Definition
• Previous slides invoke and customize

operators, but don’t define them.
• Support for 2 kinds of operator definition:

Specialized by compilerSpecialized by compiler

Invoked/customized
from SPADE

Invoked/customized
from SPADE

Written in native
language (e.g. C++)

Written in SPADE

Encapsulates
imperative code

Encapsulates
SPADE stream graph

Primitive operatorComposite operator

15

Composite Operator Parameters

M{Q:S}

O P

$Q R

G H

I J

K L

O P

S R

A

C D

O P

T R

E F

B
… …

… … … …

Original graph Composite op. M Expanded graph

A B
… …

C D
… …

F
… …

E

M{Q:T} C.I
C.J

E.I
E.J

16

Problem:
Design SPADE language and compiler.

Priorities:
Performance: Generate specialized operator code.
Generality: Arbitrary graphs, arbitrary C++ code.
Usability: Composite operators, clear syntax.

♠
SPADE

compiler

⊗
σ

π
⊕

Native
operators

SPADE
graph

PL Problem Revisited

17

version 2

Co-

quickly build

♠
SPADE

compiler

⊗
σ

π
⊕

Native
operators

SPADE
graph

PL Problem Revisited technical and
nontechnical

Problem:
Design SPADE language and compiler.

Priorities:
Performance: Generate specialized operator code.
Generality: Arbitrary graphs, arbitrary C++ code.
Usability: Composite operators, clear syntax.

18

Outline

• Systems Solution
• Language Problem
• Language Design
• Design Process
• Future Work

19

Language Design: Reuse+Combine

PHP

Tick-C

Code generation

Spade 1

StreamSQL

Aurora

Tuple streaming

SQL

Python

Type system

Spade 2

Composite operators

StreamIt

Scheme

C-like Syntax

ML

(Incomplete map of language influences)

20

Language Design: Iterate

Mar
‘09

Feb
‘09

Jan
‘09

Dec
‘08

Nov
‘08

Oct
‘08

Sep
‘08

Published tech report,
started coding
D

esigned com
piler

com
ponents

Feedback on spec from
talk, revised som

e m
ore

Feedback on spec from
w

iki, revised design

W
rote parser gram

m
ar

W
rote language spec,

published internally
C

ollected and prioritized
requirem

ents

21

Language Design: Iterate

• Meeting preparation
– Agenda (which features to discuss)
– Examples (so everyone can see the issues)

• During the meeting
– Project agenda and examples
– Project meeting notes (decisions and rationale)
– Be humble (maybe you are not right)
– When “stuck” on an item, move on to next item
– Wrap up meeting after 1 hour max

• After meeting, send notes to everyone

22

Outline

• Systems Solution
• Language Problem
• Language Design
• Design Process
• Future Work

23

Design Goals and Limits
Performance

Generality Usability

24

Opening the Levees
Performance

Generality Usability

Language-enabled optimizations

Formalized “correctness”Distributed state

25

Conclusions
• Emerging technologies are

language design opportunities.
• Practical language design:

reuse, combine, iterate.
• Language specification available as TR.

