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ABSTRACT
The Paxos protocol is the foundation for building many fault-tolerant
distributed systems and services. This paper posits that there are
significant performance benefits to be gained by implementing Paxos
logic in network devices. Until recently, the notion of a switch-
based implementation of Paxos would be a daydream. However,
new flexible hardware is on the horizon that will provide customiz-
able packet processing pipelines needed to implement Paxos. While
this new hardware is still not readily available, several vendors and
consortia have made the programming languages that target these
devices public. This paper describes an implementation of Paxos in
one of those languages, P4. Implementing Paxos provides a critical
use case for P4, and will help drive the requirements for data plane
languages in general. In the long term, we imagine that consensus
could someday be offered as a network service, just as point-to-
point communication is provided today.

1. INTRODUCTION
Paxos [13] is one of the most widely used protocols for solv-

ing the problem of consensus, i.e., getting a group of participants
to reliably agree on some value used for computation. Paxos is
used to implement state machine replication [12, 27], which is the
basic building block for many fault-tolerant systems and services
that comprise the core infrastructure of data centers, such as Open-
Replica [22], Ceph [5], and Google’s Chubby [4]. Since most data
center applications critically depend on these services, Paxos has a
dramatic impact on the overall performance of the data center.

While Paxos is traditionally implemented as an application-level
service, this paper posits that there are significant performance ben-
efits to be gained by moving certain Paxos logic into network de-
vices. Specifically, the benefits would be twofold. First, since the
logic traditionally performed at servers would be executed directly
in the network, consensus messages would travel fewer hops and
be processed “on the wire”, resulting in decreased latencies. Sec-
ond, rather than executing server logic (including expensive mes-
sage broadcast operations) in software, the same operations could
be implemented in specialized hardware, improving throughput.

Until recently, the notion of a switch-based implementation of
Paxos would be a daydream. Paxos logic is more complex than the
standard match-action abstraction offered by most switches, as it
involves maintaining and consulting persistent state [8]. Moreover,
a switch-based Paxos would require a protocol specific header and
processing behavior, which would depend on a customized hard-
ware implementation (and possibly coordination with a vendor).

However, the landscape for network computing hardware has be-
gun to change. Forwarding devices are becoming more powerful,
and importantly, more programmable. Several devices are on the
horizon that offer flexible hardware with customizable packet pro-

cessing pipelines, including Protocol Independent Switch Archi-
tecture (PISA) chips from Barefoot networks [2], FlexPipe from
Intel [11], NFP-6xxx from Netronome [20], and Xpliant from Cav-
ium [30]. Such hardware significantly lowers the barrier for exper-
imenting with new dataplane functionality and network protocols.

While this new hardware is still not readily available for re-
searchers and practitioners to experiment with, several vendors and
consortia have made programming languages that target these de-
vices available. Notable examples include Huawei’s POF [28], Xil-
inx’s PX [3], and the P4 Consortium’s P4 [1]. Consequently, it is
now possible for researchers to write programs that will soon be
deployable on hardware, and run them in software emulators such
as Mininet [19].

In this paper, we describe an implementation of Paxos in the
P4 language [1]. Our choice for P4 is pragmatic: the language
is open and relatively more mature than other alternatives. Al-
though Paxos is a conceptually simple protocol, there are many
details that make an implementation challenging. Consequently,
there has been a rich history of research papers that describe Paxos
implementations, including attempts to make Paxos Simple [14],
Practical [17], Moderately Complex [29], and Live [6].

Our implementation artifact is interesting beyond presenting the
Paxos algorithm in a new syntax. It helps expose new practical con-
cerns and design decisions for the algorithm that have not, to the
best of our knowledge, been previously addressed. For example, a
switch-based implementation cannot synthesize new messages. In-
stead, we have to map the Paxos logic into a “routing decision”.
Moreover, targeting packet headers and switch hardware imposes
memory and field size constraints not present in an application li-
brary implementation.

Beyond these contributions, the exercise of implementing Paxos
serves as a non-trivial use case for P4 that involves logic far more
complex than the relatively small examples published in existing
literature [1]. A P4-based implementation helps drive the devel-
opment of the language by illustrating challenges and identifying
future directions for research. Finally, for users of P4, we hope that
making the code publicly available with an extensive description
will provide a useful, concrete example of techniques that can be
applied to other dataplane applications. All source code, as well
as a demo running in Mininet, is publicly available under an open
source license1.

The rest of this paper is organized as follows. We first provide
short summaries of the Paxos protocol (§2) and the P4 language
(§3). We then discuss our implementation in detail (§4), followed
by a discussion of optimizations, challenges, and future work (§5).
Finally, we discuss related work (§6), and conclude (§7).

1https://github.com/usi-systems/p4paxos
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Figure 1: The Paxos protocol Phase 2 communication pattern.

2. PAXOS BACKGROUND
Paxos [13] is perhaps the most widely used consensus protocol.

Participants are processes that communicate by exchanging mes-
sages. A participant may simultaneously play one or more of four
roles: proposers propose a value; acceptors choose a single value;
and learners learn what value has been chosen. One process, typi-
cally a proposer or acceptor, acts as the coordinator, which ensures
that the protocol terminates and establishes an ordering of mes-
sages. The coordinator is chosen via an application-specific proto-
col, called leader election, which is external to the Paxos protocol.

A Paxos instance is one execution of consensus. An instance be-
gins when a proposer issues a request, and ends when learners know
what value has been chosen by the acceptor. Below, we describe
one instance of Paxos. However, throughout this paper, references
to Paxos implicitly refer to multiple instances chained together (i.e.,
Multi-Paxos [6]). The protocol proceeds in a sequence of rounds.
Each round has two phases.
Phase 1. The coordinator selects a unique round number rnd and
asks the acceptors vote for the value in the given instance. Vot-
ing means that they will reject any requests (Phase 1 or 2) with
round number less than rnd. Phase 1 is completed when a majority-
quorum Q of acceptors confirms the promise to the coordinator. If
any acceptor already accepted a value for the current instance, it
will return this value to the coordinator, together with the round
number received when the value was accepted (vrnd).
Phase 2. Figure 1 illustrates the communication pattern of Paxos
participants during Phase 2. The coordinator selects a value accord-
ing to the following rule: if no acceptor in Q returned an already
accepted value, the coordinator can select any value. If however
any of the acceptors returned a value in Phase 1, the coordinator is
forced to execute Phase 2 with the value that has the highest round
number vrnd associated to it. In Phase 2, the coordinator sends a
message containing a round number (the same used in Phase 1).
Upon receiving such a request, an acceptors accepts it and broad-
casts it to all learners, unless it has already received another mes-
sage (Phase 1 or 2) with a higher round number. Acceptors update
their rnd and vrnd variables with the round number in the message.
When a quorum of acceptors accepts the same round number, con-
sensus is reached: the value is permanently bound to the instance,
and nothing will change this decision. Acceptors send a 2b message
to the learners with the accepted value. When a learner recieves a
majority quorum of messages, they can deliver the value.

As long as a nonfaulty coordinator is eventually selected, there
is a majority quorum of nonfaulty acceptors, and at least one non-
faulty proposer, every consensus instance will eventually decide on
a value.
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Figure 2: A switch-based Paxos architecture. Switch hardware is
shaded grey, and commodity servers are colored white.

3. P4 BACKGROUND
P4 [1] is a data-plane programming language. Its design is mo-

tivated by the need for customizable packet processing in network
devices. Such customization could support both the evolving Open-
Flow standard [18], and specialized data-center functionality, for
example, to simplify network management or enable data-center
specific packet encapsulations. Consequently, P4 provides high-
level abstractions that are tailored directly to the needs of network
forwarding devices. In this section, we focus primarily on those
constructs used in the Paxos implementation. A complete language
specification is available online [23].

The P4 language presents an abstract forwarding model in which
packets are processed by a sequence of tables. The tables match
header fields, and perform actions that forward, drop, or modify
packets. The P4 compiler is responsible for mapping the abstract
representation onto a concrete realization in the particular target
platform (e.g., FPGAs, software switches, or reconfigurable hard-
ware switches [2, 11, 30]).

When writing a P4 program, developers use five core constructs:
(i) packet headers define a collection of fixed-width field; (ii)
parsers describe how to transform packets to a parsed representa-
tion, from which header instances may be extracted; (iii) tables
specify which fields are examined from each packet, how those
fields are matched, and actions performed as a consequence of the
matching; (iv) actions, which are invoked by tables, modify fields;
add or remove headers; drop or forward packets; or perform state-
ful memory operations; and (v) control blocks specify how tables
are composed.

Beyond these five basic abstractions, P4 offers additional lan-
guage constructs for performing stateful operations. Our imple-
mentation of Paxos uses registers and metadata. Registers provide
persistent state organized into an array of cells. When declaring a
register, developers specify the size of each cell, and the number
of cells in the array. Metadata provides a mechanism for storing
volatile per-packet state that may not be derivable from the header.

4. P4 PAXOS
Figure 2 illustrates the architecture of a switch-based Paxos, which

we describe in detail below. In the figure, switch hardware is shaded
grey, and commodity servers are colored white.
Overview. As with any Paxos implementation, there are four
roles that participants in the protocol play: proposers, coordina-
tors, acceptors, and learners. However, while proposers and learn-
ers are implemented as application libraries that run on commodity
servers, a switch-based Paxos differs from traditional implementa-
tions in that coordinator and acceptor logic executes on switches.



An instance of consensus is initiated when one of the proposers
sends a message to the coordinator. The protocol then follows
the communication pattern illustrated in Figure 12. Although the
Paxos protocol described in Section 2 has two phases, Phase 1 does
not depend on any particular value, and can be run in advance for
a large bounded number of instances [13]. The pre-computation
needs to be re-run under two scenarios: either the Paxos instance
approaches the number of pre-computed instances, or the device
acting as coordinator changes (possibly due to failure).
System assumptions. It is important to note that the Paxos pro-
tocol does not guarantee or impose an ordering on consensus in-
stances. Rather, it guarantees that for a given instance, a major-
ity of participants agree on a value. So, for example, the i-th in-
stance of consensus need not complete before the (i + 1)-th in-
stance. The application using Paxos must detect if a given instance
has not reached consensus. In such an event, the instance may be
re-initiated. The protocol naturally ensures that re-executing an al-
ready agreed-upon instance cannot change the value. The process
of detecting a missing instance and re-initiating consensus depends
on the details of the particular application and deployment. For ex-
ample, if proposers and learners are co-located, then a proposer can
observe if an instance has reached consensus. If they are deployed
on separate machines, then proposers would have to employ some
other process (e.g., using acknowledgments and timeouts).

We should also point out that the illustration in Figure 2 only
shows one coordinator. If the other participants in the Paxos pro-
tocol suspect that the switch is faulty, the coordinator functionality
can be moved to either another switch or a server that temporarily
assumes the role of coordinator. The specifics of the leader-election
process are application-dependent. We have elided these details
from the figure to simplify the presentation of our design.
Prototype implementation. The proposer and learner code is
written as Python modules, while coordinator and acceptor code
is written in P4. All messages are sent over UDP to an IP Mul-
ticast address. Using TCP is unnecessary, since we don’t require
reliable communication. Using IP Multicast is expedient, since it is
supported by most switch hardware, and allows us to reuse readily
available functionality to send messages to a group of receivers.
Paxos header. In a traditional Paxos implementation, each par-
ticipant receives messages of a particular type (e.g., Phase 1A, 2A,
etc.), executes some processing logic, and then synthesizes a new
message which it sends to the next participant in the protocol.

However, switches cannot craft new messages; they can only
modify fields in the header of the packet that they are currently
processing. Therefore, a switch-based Paxos needs to map partici-
pant logic into forwarding decisions, and each packet must contain
the union of all fields in all Paxos messages.

Figure 3 shows the P4 specification of a common packet header
for Paxos messages. To keep the header small, the semantics of
some of the fields change depending on which participant sends
the message. The fields are as follows: (i) msgtype distinguishes
the various Paxos messages (e.g., 1A, 2A, etc.); (ii) inst is the
consensus instance number; (iii) rnd is either the round number
computed by the proposer or the round number for which the accep-
tor has cast a vote; vrnd is the round number in which an acceptor
has cast a vote; (iv) swid identifies the sender of the message; and
(v) value contains the request from the proposer or the value for
which an acceptor has cast a vote.

2In the figure, the initial message is called a request. This is a
slight abuse of terminology, since the term request often implies
a response, or a client-server architecture, neither of which is re-
quired in Paxos. However, calling it a request helps to distinguish
it from other messages.

1 header_type paxos_t {
2 fields {
3 msgtype : 8;
4 inst : INST_SIZE;
5 rnd : 8;
6 vrnd : 8;
7 swid : 64;
8 value : VALUE_SIZE;
9 }

10 }
11

12 parser parse_paxos {
13 extract(paxos);
14 return ingress;
15 }

Figure 3: Paxos packet header and parsers.

Given the storage limitations of the target platform, there are
practical concerns that must be addressed in a switch-based Paxos
that are not normally considered in a traditional implementation.
First, the number of instances that can be pre-computed in Phase 1
is bound by the size of the inst field. If this field is too small, then
consensus could only be run for a short time. On the other hand,
the coordinator and acceptor code must reserve sufficient memory
and make comparisons on this value, so setting the field too big
could potentially impact performance. Second, it would seem natu-
ral to store the value in the packet payload, not the packet header.
However, Paxos must maintain the history of values, and to do so
in P4, the field must be parseable, and stored in a register. We are
therefore forced to keep value in the header. Third, not all values
in value will have the same size. This size is dependent on the
application. While P4 plans to support variable length fields, the
current version only supports fixed length fields. Since we have to
conservatively set the value to the size of the largest value, we are
storing potentially unused bytes.

We will need to run experiments on an actual hardware deploy-
ment to determine the appropriate field sizes. For now, our imple-
mentation uses reasonable default values. Constants such as mes-
sage types are implemented with #define macros, since there is
no notion of an enumerated type in P4.
Proposer. Proposers initiate an instance of consensus. The pro-
poser logic is implemented as a library that exposes a simple API
to the application. The API consists of a single method submit,
which is used by the application to send values. The proposer com-
ponent creates a switch Paxos message to send to the coordinator,
and writes the value into the header.
Coordinator. A coordinator brokers requests on behalf of pro-
posers. They ensure that only one process submits a message to the
protocol for a particular instance (thus ensuring that the protocol
terminates), and impose an ordering of messages. When there is a
single coordinator, as is the case in our prototype, a monotonically
increasing sequence number can be used to order the messages.
This sequence number is written to the inst field of the header.

A coordinator should only receive request messages, which are
sent by the proposer. When messages arrive, they only contain a
value. Mapping coordinator logic to stateful forwarding rules and
actions, the switch must perform the following operations: (i) write
the current instance number and an initial round number into the
message header, (ii) increment the instance number for the next
invocation, (iii) store the value of the new instance number, and
(iv) broadcast the packet to all acceptors.

Figure 4 shows the P4 implementation. One conceptual chal-
lenge is how to express the above logic as match+action table ap-
plications. When packets arrive in the control block (line 20),



1 register reg_inst {
2 width : INST_SIZE;
3 inst_count : 1;
4 }
5

6 action handle_request() {
7 modify_field(paxos.msgtype, PAXOS_2A);
8 modify_field(paxos.rnd, 0);
9 register_read(paxos.inst, reg_inst, 0);

10 add_to_field(paxos.inst, 1);
11 register_write(reg_inst, 0, paxos.inst);
12 }
13

14 table tbl_sequence {
15 reads { paxos.msgtype : exact; }
16 actions { handle_request; _nop; }
17 size : 1;
18 }
19

20 control ingress {
21 /* process other headers */
22 if (valid(paxos)) {
23 apply(tbl_sequence);
24 }
25 }

Figure 4: Coordinator code.

the P4 program checks for the existence of the Paxos header (line
22), and if so, it passes the packet to the table, tbl sequence
(line 23). The table performs an exact match on the msgtype field,
and if it receives Phase 2A message, it will invoke the handle 2a
action. The action updates the packet header fields and persistent
state, relying on a register named reg inst (lines 1-4) to read and
store the instance number.
Acceptor. Acceptors are responsible for choosing a single value
for a particular instance. For each instance of consensus, each in-
dividual acceptor must “vote” for a value. The value can later be
delivered if a majority of acceptors vote the same way. The design
of a switch-based implementation is complicated by the fact that ac-
ceptors must maintain and access the history of proposals for which
they have voted. This history ensures that acceptors never vote for
different values for a particular instance, and allows the protocol to
tolerate lost or duplicate messages.

Acceptors can receive either Phase 1A or Phase 2A messages.
Phase 1A messages are used during initialization, and Phase 2A
messages trigger a vote. The logic for handling both messages,
when expressed as stateful routing decisions, involves: (i) reading
persistent state, (ii) modifying packet header fields, (iii) updating
the persistent state, and (iv) forwarding the modified packets. The
logic differs in which header fields are read and stored.

Figure 5 shows the P4 implementation of an acceptor. Again,
the program must be expressed as a sequence of match+action ta-
ble applications, starting at the control block (line 56). Acceptor
logic relies on several registers, indexed by consensus instance, to
store the history of rounds, vrounds, and values (lines 9-22). It also
defines two actions for processing Phase 1A messages (lines 33-39)
and Phase 2A messages (lines 41-47). Both actions require that the
swid field is updated, allowing other participants to identify which
acceptor produced a message.

The programming abstractions make it somewhat awkward to
express the comparison between the rnd number in the arriving
packet header, and the rnd number kept in storage. To do so,
the arriving packet must be passed to a dedicated table tbl rnd,
which triggers the action read rnd. The action reads the register
value for the instance number of the current packet, and copies the
result to the metadata construct (line 30). Finally, the number in the

1 header_type paxos_metadata_t {
2 fields {
3 rnd : 8;
4 }
5 }
6

7 metadata paxos_metadata_t meta_paxos;
8

9 register swid {
10 width : 64;
11 inst_count : 1;
12 }
13

14 register rnds {
15 width : 8;
16 inst_count : NUM_INST;
17 }
18

19 register vrnds {
20 width : 8;
21 inst_count : NUM_INST;
22 }
23

24 register values {
25 width : VALUE_SIZE;
26 inst_count : NUM_INST;
27 }
28

29 action read_rnd() {
30 register_read(meta_paxos.rnd, rnds, paxos.inst);
31 }
32

33 action handle_1a() {
34 modify_field(paxos.msgtype, PAXOS_1B);
35 register_read(paxos.vrnd, vrnds, paxos.inst);
36 register_read(paxos.value, values, paxos.inst);
37 register_read(paxos.swid, switch_id, 0);
38 register_write(rnds, paxos.inst, paxos.rnd);
39 }
40

41 action handle_2a() {
42 modify_field(paxos.msgtype, PAXOS_2B);
43 register_read(paxos.swid, switch_id, 0);
44 register_write(rnds, paxos.inst, paxos.rnd);
45 register_write(vrnds, paxos.inst, paxos.rnd);
46 register_write(values, paxos.inst, paxos.value);
47 }
48

49 table tbl_rnd { actions { read_rnd; } }
50

51 table tbl_acceptor {
52 reads { paxos.msgtype : exact; }
53 actions { handle_1a; handle_2a; _drop; }
54 }
55

56 control ingress {
57 /* process other headers */
58 if (valid(paxos)) {
59 apply(tbl_rnd);
60 if (paxos.rnd > meta_paxos.rnd) {
61 apply(tbl_acceptor);
62 } else apply(tbl_drop);
63 }
64 }

Figure 5: Acceptor code.

metadata construct can be compared to the number in the current
packet header (line 60).
Learner. Learners are responsible for replicating a value for a
given consensus instance. Learners receive votes from the accep-
tors, and “deliver” a value if a majority of votes are the same (i.e.,
there is a quorum). The only difference between the switch-based
implementation of a learner and a traditional implementation is that
the switch-based version reads the relevant information from the
packet headers instead of the packet payload.



Learners only receive Phase 2B messages. When a message
arrives, each learner extracts the instance number, switch id, and
value. The learner maintains a data structure that maps a pair of
instance number and switch id to a value. Each time a new value
arrives, the learner checks for a majority-quorum of acceptor votes.
A majority is equal to f +1 where f is the number of faulty accep-
tors that can be tolerated.
Optimizations. Implementing Paxos in P4 requires 2f +1 accep-
tors. Considering that acceptors in our design are network switches,
this could be too demanding. However, we note that one could
exploit existing Paxos optimizations to spare resources. Cheap
Paxos [16] builds on the fact that only a majority-quorum of ac-
ceptors is needed for progress. Thus, the set of acceptors can be di-
vided into two classes: first-class acceptors, which would be imple-
mented in the switches, and second-class acceptors, which would
be deployed in commodity servers. In order to guarantee fast exe-
cution, we would require f+1 first-class acceptors (i.e., a quorum)
and f second-class acceptors. Second-class acceptors would likely
fall behind, but would be useful in case a first-class acceptor fails.
Another well-known optimization is to co-locate the coordinator
with an acceptor, which in our case would be an acceptor in the
first class. In this case, a system configured to tolerate one failure
(f = 1) would require only two switches.

5. DISCUSSION
The code in Section 4 provides a relatively complex instance of

a dataplane application that we hope can be useful to other P4 pro-
grammers. However, beyond providing a concrete example, the
process of implementing Paxos in P4 also draws attention to re-
quirements for P4 specifically, and dataplane languages in general.
It also highlights future areas of research for designers of consensus
protocols. We expand the discussion of these two topics below.

5.1 Impact on P4 Language
P4 provides a basic set of primitives that are sufficient for im-

plementing Paxos. Other languages, such as POF [28] and PX [3],
offer similar abstractions. Implementing Paxos provides an inter-
esting use case for dataplane programming languages. As a result
of this experience, we developed several “big-picture” observations
about the language and future directions for extensions or research.
Programming with tables. P4 presents a paradigm of “program-
ming with tables” to developers. This paradigm is somewhat unnat-
ural to imperative (or functional) programmers, and it takes some
time to get accustomed to the abstraction. It also, occasionally,
leads to awkward ways of expressing functionality. An example
was already mentioned in the description of the acceptor logic,
where performing a comparison required passing the packet to a
table, to trigger an action, to copy a stored value to the metadata
construct. It may be convenient to allow storage accesses directly
from control blocks.
Modular code development. Although P4 provides macros that
allow source to be imported from other files (e.g., #include), the
lack of a module system makes it difficult to separate functionality,
and build applications through composition, as is usually suggested
as best practice for software engineering. For example, it would be
nice to be able to “import” a Paxos module into an L2 learning
switch. This need is especially acute in control blocks, where
tables and control flow have to be carefully arranged. As the num-
ber of tables, or dataplane applications, grows, it seems likely that
developers will make mistakes.
Error handling. Attempting to access a register value from an
index that exceeds the size of the array results in a segmentation
fault. Obviously, performing bounds checks for every memory ac-

cess would add performance overhead to the processing of pack-
ets. However, the alternative of exposing unsafe operations that
could lead to failures seems equally undesirable. It may be use-
ful in the future to provide an option to execute in a “safe mode”,
which would provide run-time boundary checks as a basic precau-
tion. It would also be useful to provide a way for programs to catch
and recover from errors or faults.
Control of memory layout. While P4 provides a stateful memory
abstraction (a register), there is no explicit way of controlling the
memory layout across a collection of registers and tables, and its
implementation is target dependent. In our case, the tbl rnd and
tbl acceptor tables end up realizing a pipeline that reads and
writes the same shared registers. However, depending on the target,
the pipeline might be mapped by the compiler to separate memory
or processing areas that cannot communicate, implying that our ap-
plication would not be supported in practice. It would be helpful to
have “annotations” to give hints regarding tables and registers that
should be co-located.
Packet ordering . Although the standard Paxos protocol, as de-
scribed in this paper, does not rely on message ordering, several op-
timizations do [8, 15, 26]. One could imagine modifying the data-
plane to enforce ordering constraints in switch hardware. However,
there are currently no primitives in P4 that would allow a program-
mer to control packet ordering.

5.2 Impact on Paxos Protocol
Consensus protocols typically assume that the network provides

point-to-point communication, and nothing else. As a result, most
consensus protocols make weak assumptions about network behav-
ior, and therefore, incur overhead to compensate for potential mes-
sage loss or re-ordering. However, advances in network hardware
programmability have laid a foundation for designing new consen-
sus protocols which leverage assumptions about network comput-
ing power and behavior in order to optimize performance.

One potentially fruitful direction would be to take a cue from
systems like Fast Paxos [15] and Speculative Paxos [26], which
take advantage of “spontaneous message ordering” to implement
low-latency consensus. Informally, spontaneous message order is
the property that with high probability messages sent to a set of
destinations will reach these destinations in the same order. This
can be achieved with a careful network configuration [26] or in
local-area networks when communication is implemented with IP-
multicast [24].

By moving part of the functionality of Paxos and its variations to
switches, protocol designers can explore different optimizations. A
switch could improve the chances of spontaneous message ordering
and thereby increase the likelihood that Fast Paxos can reach con-
sensus within few communication steps (i.e., low latency). More-
over, if switches can store and retrieve values, one could envision an
implementation of Disk Paxos [9] that relies on stateful switches,
instead of storage devices. This would require a redesign of Disk
Paxos since the storage space one can expect from a switch is much
smaller than traditional storage.

6. RELATED WORK
In prior work [8], we proposed the idea of moving consensus

logic to forwarding devices using two approaches: (i) implement-
ing Paxos in switches, and (ii) using a modified protocol, named
NetPaxos, which solves consensus without switch-based compu-
tation by making assumptions about packet ordering. This paper
builds on that work by making the implementation of a switch-
based Paxos concrete. In the process, we identify areas for future
research both for dataplane programming languages and consensus



protocol design. István et al. [10] have also proposed implementing
consensus logic in hardware, although they focus on Zookeeper’s
atomic broadcast written in Verilog.
Dataplane programming languages. Several recent projects have
proposed domain-specific languages for dataplane programming.
Notable examples including Huawei’s POF [28], Xilinx’s PX [3],
and the P4 [1] language used throughput this paper. We chose to
focus on P4 because there is a growing community of active users,
and it is relatively more mature than the other choices. However,
the ideas for implementing Paxos in switches should generalize to
other languages.
Replication protocols. Research on replication protocols for high
availability is quite mature. Existing approaches for replication-
transparent protocols, notably protocols that implement some form
of strong consistency (e.g., linearizability, serializability) can be
roughly divided into three classes [7]: (a) state-machine replica-
tion [12, 27], (b) primary-backup replication [21], and (c) deferred
update replication [7].

Despite the long history of research in replication protocols, there
exist very few examples of protocols that leverage network behav-
ior to improve performance. The one exception of which we are
aware are systems that exploit spontaneous message ordering, [15,
24, 25]. The idea is to check whether messages reach their des-
tination in order, instead of assuming that order must be always
constructed by the protocol and incurring additional message steps
to achieve it. This paper differs in that it implements a standard
Paxos protocol that does not make ordering assumptions.

7. CONCLUSION
The advent of flexible hardware and expressive dataplane pro-

gramming languages will have a profound impact on networks.
One possible use of this emerging technology is to move logic tra-
ditionally associated with the application layer into the network it-
self. In the case of Paxos, and similar consensus protocols, this
change could dramatically improve the performance of data center
infrastructure. In this paper, we have described an implementation
of Paxos in the P4 language. This implementation is a first step
towards the continued development and evolution of dataplane lan-
guages, that also opens the door for new research challenges in the
design of consensus protocols.
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