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SDN Languages are Limited

2

SDNs have simplified network management 
and increased programability 

But, existing SDN languages focus mostly  
on packet forwarding 

Network orchestration frameworks expose 
extremely simple APIs (if at all)



  
Need More Than Forwarding
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Support traffic engineering goals through 
bandwidth caps and guarantees 

Apply packet-processing functions such as 
NAT, DPI, load-balancers, etc. 

Provide an intuitive programming interface 
with compose-able policies



Merlin Approach
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Specify

Compile

Specify global network policy in a 
high-level declarative language.

Map to a constraint problem.  
Provision network, select paths,  
and decide function placement.

Generate device-specific code and 
configuration to enforce policy.

Enforce

Delegate to tenants for refinement. 
Verify that modifications conform to 
global policy. Re-solve if necessary.

Transform
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Policy Language

Specify network behavior with high-level abstractions
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Basic Policy

7

Informally: Ensure that HTTP traffic between two hosts is 
processed by NAT and DPI functions (in that order) and gets 
a guarantee of 100MB/s.
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	  [	  x	  :	  	  
	  	  	  	  	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  tcp.dst	  =	  80)	  	  
	  	  	  	  	  	  -‐>	  .*	  nat	  .*	  dpi	  .*	  	  
	  ],	  min(x,100MB/s)	  

Informally: Ensure that HTTP traffic between two hosts is 
processed by NAT and DPI functions (in that order) and gets 
a guarantee of 100MB/s.
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Identifier {

Informally: Ensure that HTTP traffic between two hosts is 
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a guarantee of 100MB/s.
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Predicates identify 
which traffic{
Regular expressions 
for paths, functions

{

Identifier {

Informally: Ensure that HTTP traffic between two hosts is 
processed by NAT and DPI functions (in that order) and gets 
a guarantee of 100MB/s.



Basic Policy
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	  [	  x	  :	  	  
	  	  	  	  	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  tcp.dst	  =	  80)	  	  
	  	  	  	  	  	  -‐>	  .*	  nat	  .*	  dpi	  .*	  	  
	  ],	  min(x,100MB/s)	  

Predicates identify 
which traffic{
Regular expressions 
for paths, functions

{
Caps or guarantees 
for bandwidth

{

Identifier {

Informally: Ensure that HTTP traffic between two hosts is 
processed by NAT and DPI functions (in that order) and gets 
a guarantee of 100MB/s.



Aggregate Policy
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Informally: Place an bandwidth cap on FTP data and control 
traffic. Data traffic must be processed by a DPI function.



Aggregate Policy
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	  [	  y	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  tcp.dst	  =	  20)	  -‐>	  .*	  dpi	  .*	  
	  	  	  z	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  tcp.dst	  =	  21)	  -‐>	  .*	  
	  ],	  
	  max(y	  +	  z,50MB/s)

Informally: Place an bandwidth cap on FTP data and control 
traffic. Data traffic must be processed by a DPI function.



Aggregate Policy
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	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
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	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  tcp.dst	  =	  21)	  -‐>	  .*	  
	  ],	  
	  max(y	  +	  z,50MB/s)

Informally: Place an bandwidth cap on FTP data and control 
traffic. Data traffic must be processed by a DPI function.

FTP data{
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	  [	  y	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  tcp.dst	  =	  20)	  -‐>	  .*	  dpi	  .*	  
	  	  	  z	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  tcp.dst	  =	  21)	  -‐>	  .*	  
	  ],	  
	  max(y	  +	  z,50MB/s)

Informally: Place an bandwidth cap on FTP data and control 
traffic. Data traffic must be processed by a DPI function.

FTP data{

FTP control{



Aggregate Policy
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	  [	  y	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  tcp.dst	  =	  20)	  -‐>	  .*	  dpi	  .*	  
	  	  	  z	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  tcp.dst	  =	  21)	  -‐>	  .*	  
	  ],	  
	  max(y	  +	  z,50MB/s)

Bandwidth constraints 
written as formulas 

{

Informally: Place an bandwidth cap on FTP data and control 
traffic. Data traffic must be processed by a DPI function.

FTP data{

FTP control{



Syntactic Sugar
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srcs	  :=	  {192.168.1.1} 
dsts	  :=	  {192.168.1.2}	  	  
foreach	  (s,d)	  in	  cross(srcs,dsts):	  
	  	  	  tcp.dst	  =	  80	  -‐>	  
	  	  	  (	  .*	  nat	  .*	  dpi	  .*)	  at	  min(100MB/s)	  

Informally: Ensure that HTTP traffic between two hosts is 
processed by NAT and DPI functions (in that order) and gets 
a guarantee of 100MB/s (again).
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9

srcs	  :=	  {192.168.1.1} 
dsts	  :=	  {192.168.1.2}	  	  
foreach	  (s,d)	  in	  cross(srcs,dsts):	  
	  	  	  tcp.dst	  =	  80	  -‐>	  
	  	  	  (	  .*	  nat	  .*	  dpi	  .*)	  at	  min(100MB/s)	  

Informally: Ensure that HTTP traffic between two hosts is 
processed by NAT and DPI functions (in that order) and gets 
a guarantee of 100MB/s (again).

Set literals{
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srcs	  :=	  {192.168.1.1} 
dsts	  :=	  {192.168.1.2}	  	  
foreach	  (s,d)	  in	  cross(srcs,dsts):	  
	  	  	  tcp.dst	  =	  80	  -‐>	  
	  	  	  (	  .*	  nat	  .*	  dpi	  .*)	  at	  min(100MB/s)	  

Informally: Ensure that HTTP traffic between two hosts is 
processed by NAT and DPI functions (in that order) and gets 
a guarantee of 100MB/s (again).

Set literals{
Set operators  
and iterators

{



Syntactic Sugar
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srcs	  :=	  {192.168.1.1} 
dsts	  :=	  {192.168.1.2}	  	  
foreach	  (s,d)	  in	  cross(srcs,dsts):	  
	  	  	  tcp.dst	  =	  80	  -‐>	  
	  	  	  (	  .*	  nat	  .*	  dpi	  .*)	  at	  min(100MB/s)	  

Informally: Ensure that HTTP traffic between two hosts is 
processed by NAT and DPI functions (in that order) and gets 
a guarantee of 100MB/s (again).

Set literals{
Set operators  
and iterators

{

Merlin can concisely express a range of network policies. 
More examples in HotNets ’13.



Compiler

Localize policies, allocate resources, 
and generate target code
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Remove Distributed State
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 max(y + z, 50MB/s)

Localizer

 max(y,25MB/s) + max(z,25MB/s)

Enforcing aggregate caps requires 
distributed state (e.g., FTP control  
and data traffic) 

Compiler re-writes formulas so that they 
only require local state 

There is an inherent trade-off: increased 
scalability vs. risk of under-utilization



	  [	  x	  :	  	  
	  	  	  	  	  (eth.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  eth.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  tcp.dst	  =	  80)	  	  
	  	  	  	  	  	  -‐>	  .*	  nat	  *.	  dpi	  .*	  	  
	  ],	  min(x,100MB/s)	  

Extract Policy Constraints
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Note resource  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Encode with flow conservation and capacity constraints
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Encode with flow conservation and capacity constraints

nat
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Encode with flow conservation and capacity constraints
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Choose Path Heuristic
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Weighted Shortest Path: 
Minimizes total number of hops in 
assigned paths (standard)


Min-Max Ratio: 
Minimizes the maximum fraction of 
reserved capacity (balance)


Min-Max Reserved: 
Minimizes the maximum amount of 
reserved bandwidth (failures)

h1

h2

300MB/s

100MB/s

h1

h2

400MB/s

0MB/s

h1

h2

50MB/s

350MB/s



Generate Code
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Network 
Switches

Encode paths using NetCore [POPL ’12] 
Generate tags for routing 

Install rules on OpenFlow switches

Middleboxes Translate function to Click [TOCS’00] 
Install on software middleboxes

End Hosts
Generate code for Linux tc and iptables 
Experimental support for Merlin kernel 

module based on netfilter



Dynamic Adaptation

Enable policy delegation and verify refined policies
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Delegate Policies
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	  	  [x	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2)	  -‐>	  .*],	  
	  	  	  max(x,	  100MB/s)

Informally: Ensure that traffic between two hosts has a 
bandwidth cap of 100MB/s.



Transform Policies 
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Transform Policies 
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	  	  	  [x	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  	  tcp.dst	  =	  22)	  -‐>	  .*	  ],	  
	  	  	  [y	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  	  tcp.dst	  =	  80)	  -‐>	  .*	  log	  .*	  ],	  
	  	  	  [z	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  	  !(tcpDst=22|tcpDst=80))	  -‐>	  .*	  dpi	  .*],	  
	  	  	  max(x,	  50MB/s)	  
	  	  	  and	  max(y,	  25MB/s)	  
	  	  	  and	  max(z,	  25MB/s)



Transform Policies 
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	  	  	  [x	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  	  tcp.dst	  =	  22)	  -‐>	  .*	  ],	  
	  	  	  [y	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  	  tcp.dst	  =	  80)	  -‐>	  .*	  log	  .*	  ],	  
	  	  	  [z	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  	  !(tcpDst=22|tcpDst=80))	  -‐>	  .*	  dpi	  .*],	  
	  	  	  max(x,	  50MB/s)	  
	  	  	  and	  max(y,	  25MB/s)	  
	  	  	  and	  max(z,	  25MB/s)

gra
nula
rity
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	  	  	  	  	  	  	  	  	  tcp.dst	  =	  80)	  -‐>	  .*	  log	  .*	  ],	  
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	  	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  	  !(tcpDst=22|tcpDst=80))	  -‐>	  .*	  dpi	  .*],	  
	  	  	  max(x,	  50MB/s)	  
	  	  	  and	  max(y,	  25MB/s)	  
	  	  	  and	  max(z,	  25MB/s)
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	  	  	  [x	  :	  (ip.src	  =	  192.168.1.1	  and	  
	  	  	  	  	  	  	  	  	  ip.dst	  =	  192.168.1.2	  and	  
	  	  	  	  	  	  	  	  	  tcp.dst	  =	  22)	  -‐>	  .*	  ],	  
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	  	  	  	  	  	  	  	  	  tcp.dst	  =	  80)	  -‐>	  .*	  log	  .*	  ],	  
	  	  	  [z	  :	  (ip.src	  =	  192.168.1.1	  and	  
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	  	  	  	  	  	  	  	  	  !(tcpDst=22|tcpDst=80))	  -‐>	  .*	  dpi	  .*],	  
	  	  	  max(x,	  50MB/s)	  
	  	  	  and	  max(y,	  25MB/s)	  
	  	  	  and	  max(z,	  25MB/s)

gra
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rity
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Verify Transformed Policies
Essential operation:  

Ensure that new policy implies the old (i.e., P1 ⊆ P2) 

Algorithm 

Perform pair-wise comparison of statements 

Check for path inclusion in overlaps 

Check aggregate bandwidth constraints 

Implementation 

Decide predicate overlap using SAT 

Decide path inclusion using DFAs

19



Adapt to Network Changes

A small runtime component, called a negotiator, is distributed in  
a hierarchical overlay of the network 

Negotiators exchange messages amongst themselves to: 

Modify (i.e., refine) policies 

Verify policy modifications 

They can be instantiated with different adaptation schemes

20



Negotiator Implementations
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Evaluation

Demonstrating Merlin’s expressiveness, 
ability to manage the network, and scalability

22



Example Network Policies

23

Baseline Basic all-pairs connectivity between hosts

Bandwidth 10% of traffic classes get a guarantee of 
1Mbps, and a cap of 1Gbps

Firewall All packets with tcp.dst = 80 are  
routed through a firewall

Middlebox
Hosts are partitioned into two sets (trusted 
and untrusted). Inter-set traffic must pass 

through a middle box.

Combination All of the above

Policies to manage Stanford network topology



Merlin Is Expressive
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Merlin Managing Hadoop
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• Measured completion time for word count: 

1. Without background traffic

2. With background traffic

3. With background traffic  

+ Merlin reserve 90% capacity




Merlin Managing Ring Paxos
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Figure 5: Ring-Paxos (a) without and (b) with Merlin.

Hadoop computation proceeds in three stages: the system
(i) applies a map operator to each data item to produce a
large set of key-value pairs; (ii) shuffles all data with a given
key to a single node; and (iii) applies the reduce operator to
values with the same key. The many-to-many communica-
tion pattern used in the shuffle phase often results in heavy
network load, making Hadoop jobs especially sensitive to
background traffic. In practice, this background traffic can
come from a variety of sources. For example, some appli-
cations use UDP-based gossip protocols to update state, such
as system monitoring tools [63, 62], network overlay man-
agement [32], and even distributed storage systems [63, 14].
A sensible network policy would be to provide guaranteed
bandwidth to Hadoop jobs so that they finish expediently,
and give the UDP traffic only best-effort guarantees.

With Merlin, we implemented this policy using just three
policy statements. To show the impact of the policy, we ran
a Hadoop job that sorts 10GB of data, and measured the time
to complete it on a cluster of four servers, under three differ-
ent configurations:

1. Baseline. Hadoop had exclusive access to the network.
2. Interference. we used the iperf tool to inject UDP

packets, simulating background traffic.
3. Guarantees. we again injected background traffic, but

guaranteed 90 percent of the capacity for Hadoop.

The measurements demonstrate the expected results. With
exclusive network access, the Hadoop job finished in 466
seconds. With background traffic causing network conges-
tion, the job finished in 558 seconds, a roughly 20% slow
down. With the Merlin policy providing bandwidth guaran-
tees, the job finished in 500 seconds, corresponding to the
90% allocation of bandwidth.

Ring-Paxos. State-machine replication (SMR) is a funda-
mental approach to designing fault-tolerant services [41, 56]
at the core of many current systems (e.g., Googles Chubby [7],
Scatter [23], Spanner [12]). State machine replication pro-
vides clients with the abstraction of a highly available ser-
vice by replicating the servers and regulating how commands
are propagated to and executed by the replicas: (i) every non-
faulty replica must receive all commands in the same order;
and (ii) the execution of commands must be deterministic.

Because ordering commands in a distributed setting is a
non-negligible operation, the performance of a replicated
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Figure 6: Compilation times for Internet Topology Zoo.

service is often determined by the number of commands that
can be ordered per time unit. To achieve high performance,
the service state can be partitioned and each partition repli-
cated individually (e.g., by separating data from meta-data),
but the partitions will compete for shared resources (e.g.,
common nodes and network links).

We assessed the performance of a key-value store ser-
vice replicated with state-machine replication. Commands
are ordered using an open-source implementation of Ring
Paxos [44], a highly efficient implementation of the Paxos
protocol [42]. We deployed two instances of the service,
each one using four processes. One process in each service
is co-located on the same machine and all other processes
run on different machines. Clients are distributed across six
different machines and submit their requests to one of the
services and receive responses from the replicas.

Figure 5 (a) depicts the throughput of the two services; the
aggregate throughput shows the accumulated performance
of the two services. Since both services compete for re-
sources on the common machine, each service has a sim-
ilar share of the network, the bottlenecked resource at the
common machine. In Figure 5 (b), we provide a bandwidth
guarantee for Service 2. Note that this guarantee does not
come at the expense of utilization. If Service 2 stops send-
ing traffic, Service 1 is free to use the available bandwidth.

Summary. Overall, these experiments show that Merlin poli-
cies can concisely express real-world policies, and that the
Merlin system is able to generate code that achieves the de-
sired outcomes for applications on real hardware.

6.3 Compilation and Verification
The scalability of the Merlin compiler and verification

framework depend on both the size of the network topology
and the number of traffic classes. Our third experiment eval-
uates the scalability of Merlin under a variety of scenarios.

Compiler. We first measured the compilation time needed
by Merlin to provide pair-wise connectivity between all hosts
in a topology. This task, which could be computed offline,
has been used to evaluate other systems, including VMware’s
NSX, which reports approximately 30 minutes to achieve
100% connectivity from a cold boot [40]. We used the Inter-
net Topology Zoo [29] dataset, which contains 262 topolo-
gies that represent a large diversity of network structures.

9

• Measured throughput for co-located key-value  
stores backed by state machine replication 

• Merlin prioritizes traffic for one service



Compilation Is Fast  
For Basic Connectivity
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Figure 5: Ring-Paxos (a) without and (b) with Merlin.

Hadoop computation proceeds in three stages: the system
(i) applies a map operator to each data item to produce a
large set of key-value pairs; (ii) shuffles all data with a given
key to a single node; and (iii) applies the reduce operator to
values with the same key. The many-to-many communica-
tion pattern used in the shuffle phase often results in heavy
network load, making Hadoop jobs especially sensitive to
background traffic. In practice, this background traffic can
come from a variety of sources. For example, some appli-
cations use UDP-based gossip protocols to update state, such
as system monitoring tools [63, 62], network overlay man-
agement [32], and even distributed storage systems [63, 14].
A sensible network policy would be to provide guaranteed
bandwidth to Hadoop jobs so that they finish expediently,
and give the UDP traffic only best-effort guarantees.

With Merlin, we implemented this policy using just three
policy statements. To show the impact of the policy, we ran
a Hadoop job that sorts 10GB of data, and measured the time
to complete it on a cluster of four servers, under three differ-
ent configurations:

1. Baseline. Hadoop had exclusive access to the network.
2. Interference. we used the iperf tool to inject UDP

packets, simulating background traffic.
3. Guarantees. we again injected background traffic, but

guaranteed 90 percent of the capacity for Hadoop.

The measurements demonstrate the expected results. With
exclusive network access, the Hadoop job finished in 466
seconds. With background traffic causing network conges-
tion, the job finished in 558 seconds, a roughly 20% slow
down. With the Merlin policy providing bandwidth guaran-
tees, the job finished in 500 seconds, corresponding to the
90% allocation of bandwidth.

Ring-Paxos. State-machine replication (SMR) is a funda-
mental approach to designing fault-tolerant services [41, 56]
at the core of many current systems (e.g., Googles Chubby [7],
Scatter [23], Spanner [12]). State machine replication pro-
vides clients with the abstraction of a highly available ser-
vice by replicating the servers and regulating how commands
are propagated to and executed by the replicas: (i) every non-
faulty replica must receive all commands in the same order;
and (ii) the execution of commands must be deterministic.

Because ordering commands in a distributed setting is a
non-negligible operation, the performance of a replicated
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service is often determined by the number of commands that
can be ordered per time unit. To achieve high performance,
the service state can be partitioned and each partition repli-
cated individually (e.g., by separating data from meta-data),
but the partitions will compete for shared resources (e.g.,
common nodes and network links).

We assessed the performance of a key-value store ser-
vice replicated with state-machine replication. Commands
are ordered using an open-source implementation of Ring
Paxos [44], a highly efficient implementation of the Paxos
protocol [42]. We deployed two instances of the service,
each one using four processes. One process in each service
is co-located on the same machine and all other processes
run on different machines. Clients are distributed across six
different machines and submit their requests to one of the
services and receive responses from the replicas.

Figure 5 (a) depicts the throughput of the two services; the
aggregate throughput shows the accumulated performance
of the two services. Since both services compete for re-
sources on the common machine, each service has a sim-
ilar share of the network, the bottlenecked resource at the
common machine. In Figure 5 (b), we provide a bandwidth
guarantee for Service 2. Note that this guarantee does not
come at the expense of utilization. If Service 2 stops send-
ing traffic, Service 1 is free to use the available bandwidth.

Summary. Overall, these experiments show that Merlin poli-
cies can concisely express real-world policies, and that the
Merlin system is able to generate code that achieves the de-
sired outcomes for applications on real hardware.

6.3 Compilation and Verification
The scalability of the Merlin compiler and verification

framework depend on both the size of the network topology
and the number of traffic classes. Our third experiment eval-
uates the scalability of Merlin under a variety of scenarios.

Compiler. We first measured the compilation time needed
by Merlin to provide pair-wise connectivity between all hosts
in a topology. This task, which could be computed offline,
has been used to evaluate other systems, including VMware’s
NSX, which reports approximately 30 minutes to achieve
100% connectivity from a cold boot [40]. We used the Inter-
net Topology Zoo [29] dataset, which contains 262 topolo-
gies that represent a large diversity of network structures.

9

• Measured compilation time for all-pairs connectivity  
on Internet Topology Zoo dataset 

• Majority of topologies completed in <50ms



Solver Adds  
Reasonable Overhead
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Traffic Classes Hosts Switches LP construction (ms) LP solution (ms) Rateless solution (ms)
870 30 45 25 22 33
8010 90 80 214 160 36

28730 170 125 364 252 106
39800 200 125 1465 1485 91
95790 310 180 13287 248779 222

136530 370 180 27646 1200912 215
159600 400 180 29701 1351865 212
229920 480 245 86678 10476008 451

Figure 7: Number of traffic classes, topology sizes, and solution times for fat tree topologies with 5% of the traffic
classes with guaranteed bandwidth.
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Figure 8: Compilation times for an increasing number of traffic classes for (a) all pairs connectivity on a balanced tree,
(b) 5% of the traffic with guaranteed priority on a balanced tree, (c) all pairs connectivity on a fat tree, (d) 5% of the
traffic with guaranteed priority on a fat tree.

class represents a unidirectional stream going from one host
at the edge of the network to another. Thus, the total number
of classes correspond to the number of point-to-point traf-
fic flows. Table 7 shows a sample of topology sizes and
solution times for various traffic classes for fat tree topolo-
gies. For both types of topologies, balanced trees, and fat
trees we took two sets of measurements: the time to provide
pair-wise connectivity with no guarantees, and the time to
provide connectivity when 5% of the traffic classes receive
guarantees. Figure 8 shows the results. As expected, provid-
ing bandwidth guarantees adds overhead to the compilation
time. For the worst case scenario that we measured, on a
network with 400, 000 total traffic classes, with 20, 000 of
those classes receiving bandwidth guarantees, Merlin took
around 41 minutes to find a solution. To put that number
in perspective, B4 [31] only distinguishes 13 traffic classes.
Merlin finds solutions for 100 traffic classes with guarantees
in a network with 125 switches in less than 5 seconds.

These experiments show that Merlin can provide connec-
tivity for large networks quickly and our mixed-integer pro-
gramming approach used for guaranteeing bandwidth scales
to large networks with reasonable overhead.

Verifying negotiators. Delegated Merlin policies can be
modified by negotiators in three ways: by changing the pred-
icates, the regular expressions, or the bandwidth allocations.
We ran three experiments to benchmark our negotiator ver-
ification runtime for these cases. First, we increased the
number of additional predicates generated in the delegated

policy. Second, we increased the complexity of the regular
expressions in the delegated policy. The number of nodes in
the regular expression’s abstract syntax tree is used as a mea-
sure of its complexity. Finally, we increased the number of
bandwidth allocations in the delegated policy. For all three
experiments, we measured the time needed for negotiators
to verify a delegated policy against the original policy. We
report the mean and standard deviation over ten runs.

The results, shown in Figure 9, demonstrate that policy
verification is extremely fast for increasing predicates and
allocations. Both scale linearly up to tens of thousands of al-
locations and statements and complete in milliseconds. This
shows that Merlin negotiators can be used to rapidly adjust
to changing traffic loads. Verification of regular expressions
has higher overhead. It scales quadratically, and takes about
3.5 seconds for an expression with a thousand nodes in its
parse tree. However, since regular expressions denote paths
through the network, it is unlikely that we will encounter
regular expressions with thousands of nodes in realistic de-
ployments. Moreover, we expect path constraints to change
relatively infrequently compared to bandwidth constraints.

Dynamic adaptation. Merlin negotiators support a wide
range of resource management schemes. We implemented
two common approaches: additive-increase, multiplicative
decrease (AIMD), and max-min fair-sharing (MMFS). With
AIMD, tenants adjust resource demands by incrementally
trying to increasing their allocation. With MMFS, tenants
declare resource requirements ahead of time. The negotia-

10

All-pairs connectivity 5% of traffic with 
bandwidth guarantees

• Measured compilation time for fat tree topologies for  
an increasing number of traffic classes 

• 100 traffic classes for 125 switch network in 5 sec



Verification Is Very Fast
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• 10,000 statements verified in less than 21ms 
• Verifying resource allocations is very fast 
• Verifying paths scales with complexity of the expression

Increasing  
Statements

Increasing  
Path  

Expressions

Increasing  
Bandwidth  
Constraints



Conclusion

Merlin dramatically simplifies network management 

It provides abstractions that: 

Let developers program the network as a unified entity 

Allow mapping to a constraint problem for provisioning 

Enable delegation and automatic verification
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http://frenetic-lang.org/merlin

http://frenetic-lang.org/merlin
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