
From a Calculus to an Execution
Environment for Stream Processing

DEBS 2012

1

Robert Soulé Martin Hirzel Buğra Gedik Robert Grimm
Cornell University IBM Research Bilkent University New York University

… to an Execution Environment

2

CQL
(StreamSQL)

StreamIt
(SDF)

Sawzall
(MapReduce)

River
(execution

environment)

System S
(platform)

Fusion
(merge ops)

Fission
(replicate ops)

Placement
(assign hosts)

Benefits of execution
environment:
•  Language portability
•  Optimization reuse

Source languages

O
pt

im
iz

at
io

ns

From a Calculus …

•  Calculus = formal language + semantics
–  Stream calculus, Soulé et al. [ESOP’10]

3

•  Graph language:
– Stream operators

with functions (F)
– Queues (Q)
– Variables (V)

f
q q'

v

•  Semantics:
– Small-step
– Operational
– Sequence of

“operator firings”
F <Q1,V1>
 b <Q2,V2>
 b* …

Benefits of Calculus:
Translation Correctness Proofs

4"

Execute

Execute

Input

Input Output

Output
Tr

an
sl

at
e

Tr
an

sl
at

e

From Abstractions to the Real World

Brooklet calculus River execution environment

Sequence of atomic steps Operators execute concurrently

Pure functions, state threaded
through invocations

Stateful functions, protected
with automatic locking

Non-deterministic execution Restricted execution: bounded
queues and back-pressure

Opaque functions Function implementations

No physical platform,
independent from runtime

Abstract representation of
platform, e.g. placement

Finite execution Indefinite execution

5

Concurrent Execution
Case 1: No Shared State

•  Brooklet operators fire one at a time
•  River operators fire concurrently
•  For both, data must be available

6

o1

v

o2 o3

w x

Single-threaded
operators

Atomic queue
operations

Concurrent Execution
Case 2: With Shared State

•  Locks form equivalence classes over shared variables
•  Every shared variable is protected by one lock
•  Shared variables in the same class protected by same lock
•  Locks acquired/released in standard order

7

o1

v

o2 o3

w w

Minimal locking

Restricted Execution
Bounded Queues

8

o1

v

o2 o3

w w

•  Naïve approach:
block when output queue is full

o2 waits b/c
output q is full

o3 waits b/c
o2 locked w

q

Deadlock!

Restricted Execution
Safe Back-Pressure

9

o1

v

o3

w w

•  Our approach: only block on output queue
when not holding locks on variables

q
o2

5. Move data to
output queue 1. Acquire locks

2. Fire operator 3. Buffer data
in local queue

4. Release locks

Applications of an
Execution Environment

•  Easier to develop source languages
–  Implementation language
– Language modules
– Operator templates

•  Possible to reuse optimizations
– Annotations provide additional information

between source and intermediate language

10

Function Implementations
and Translations

11

logs : {origin : string; target : string} stream;
hits : {origin : string; count : int} stream =
 select istream(origin, count(origin))
 from logs[range 300]
 where origin != target

Bag.filter (fun x -> #expr)

Bag.filter (fun x ->
origin != target)

Select Range Aggr IStream

count win

Expose operators,
communication,

and state
Pre-existing

operator
templates

Translation Support:
Pluggable Compiler Modules

12

select istream(*)
 from quotes[now], history
 where quotes.ask<=history.low
 and quotes.ticker=history.ticker

CQL = SQL + Streaming + Expressions

Expression
analyzer

SQL
analyzer

CQL
analyzer

Symbol
table

is-a
has-a

has-a has-a

Optimization Support:
Extensible Annotations

13

Source
language

River
(execution

environment)

System S
(platform)

Optimizer

Establishes by
construction, e.g.,
Sawzall reducers

commute

Needs to know:
•  Safety
•  Profitability

Establishes, e.g.,
available
resources

Optimization Support:
Current Annotations

Annotation Description Optimization

@Fuse(ID) Fuse operators with same ID
in the same process Fusion

@Parallel() Perform fission on an
operator Fission

@Commutative() An operator’s function is
commutative Fission

@Keys(k1,…,kn)
An operator’s state is

partitionable by fields k1,…,kn
Fission

@Group(ID) Place operators with same ID
on the same machine Placement

14

Evaluation

•  Four benchmark
applications
–  CQL linear road
–  StreamIt FM radio
–  Sawzall web log

analyzer (batch)
–  CQL web log

analyzer (continuous)

•  Three optimizations
–  Placement
–  Fission
–  Fusion

15

Distributed Linear Road
(simplified version from Arasu/Babu/Widom [VLDBJ’06])

16

now proj
ect

istre
am

dup
split

ran
ge

join

istre
am

aggre
gate

join

se
lect

join

ran
ge

parti
tion

proj
ect

dis
tinct

dup-
split

now

proj
ect

aggre
gate

pro
ject

pro
ject

rstre
am

First distributed CQL implementation

CQL: Placement, Fusion, Fission

17

•  Placement + Fusion
 4x speedup on 4 machines

•  Fission
 2x speedup on 16 machines

•  Insufficient work per operator

StreamIt: Placement

18

•  Optimization reuse 1.8x speedup on 4 machines

Sawzall (MapReduce on River)
Fission + Fusion

19

•  Same fission optimizer for Sawzall as for CQL
•  8.92x speedup on 16 machines, 14.80x on 64 cores
•  With fusion, 50.32x on 64 cores

Related Work

20

Stream
processing

Execution
environment

Translators from
languages to IL

CQL
Arasu et al.
[VLDB J.’06]

SVM
Labonte et al.

[PACT’04]

P-Code
Nelson
[CC’79]

This
paper

Conclusions
•  River, execution environment for streaming
•  Semantics specified by formal calculus

– Brooklet, Soulé et al. [ESOP’10]
•  3 source languages, 3 optimizations

– First distributed CQL
–  Language compiler module reuse
– Optimization enabled by annotations

•  Encourages innovation in stream processing
•  h$p://www.cs.nyu.edu/brooklet/

21

