CAPSULE: Language and System Support for Efficient
State Sharing in Distributed Stream Processing Systems

Giuliano Losa*! Vibhore Kumar#2

Martin Hirzel#s

Robert Soulé#st

Henrique Andrade*** Bugra Gedik**
Kun-Lung Wu#”

*Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
*Thomas J. Watson Research Center, IBM Research, 19 Skyline Drive, Hawthorne, NY 10532, USA?
*Department of Computer Engineering, Bilkent University, Bilkent, Ankara, 06800 Turkey

Lgiuliano.losa@epfl.ch,{ 2vibhorek,*hirzel,”klwu } @us.ibm.com, { *henrique.c.m.andrade, *bgedik } @ gmail.com,’soule @cs.nyu.edu

ABSTRACT

Data stream processing applications are often expressed as data
flow graphs, composed of operators connected via streams. This
structured representation provides a simple yet powerful paradigm
for building large-scale, distributed, high-performance applications.
However, there are many tasks that require sharing data across op-
erators, and across operators and the runtime using a less struc-
tured mechanism than point-to-point data flows. Examples include
updating control variables, sending notifications, collecting met-
rics, building collective models, etc. In this paper we describe
CAPSULE, which fills this gap. CAPSULE is a code generation
and runtime framework that offers an easy to use and highly flex-
ible framework for developers to realize shared variables (CAP-
SULE term for shared state) by specifying a data structure (at the
programming-language level), and a few associated configuration
parameters that qualify the expected usage scenario. Besides the
easy of use and flexibility, CAPSULE offers the following impor-
tant benefits: (1) Custom Code Generation - CAPSULE makes use
of user-specified configuration parameters and information from
the runtime to generate shared variable servers that are tailored for
the specific usage scenario, (2) Composability - CAPSULE sup-
ports deployment time composition of the shared variable servers to
achieve desired levels of scalability, performance and fault-tolerance,
and (3) Extensibility - CAPSULE provides simple interfaces for ex-
tending the CAPSULE framework with more protocols, transports,
caching mechanisms, etc. We describe the motivation for CAP-
SULE and its design, report on its implementation status, and then
present experimental results.

Categories and Subject Descriptors

B.3.2 [Design Styles]: Shared Memory; D.2.11 [Software Archi-
tectures]: Data Abstraction

*Currently employed by Goldman Sachs.
TCurrently student at New York University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DEBS ’12, July 16-20, 2012, Berlin, Germany.

Copyright 2012 ACM 978-1-4503-1315-5 ...$10.00.

Keywords

Distributed Shared State, Stream Processing, Consistency Models

1. INTRODUCTION

Distributed data stream processing systems [3, 1] often provide
an abstraction of a data-flow graph, composed of operators and con-
nected via streams, to express stream processing applications [19].
The data-flow graph based representation provides a simple but
powerful paradigm for building large-scale, distributed and high-
performance applications. While traditional wisdom warns against
the use of shared state in distributed stream processing systems that
strive for high-performance and scalability, there are data stream
processing applications that can benefit from the existence of a state
sharing mechanism. Example usage scenarios, shown in Figure 1,
include externally accessible ‘control’ variables that affect the be-
havior of operators contained in a streaming application, operators
that need to efficiently persist their state to facilitate restart in event
of a failure, or shared data structures with a usage specific consis-
tency model that are accessed by multiple operators.

These usage scenarios are derived from our experiences with
System S [3] — a large-scale, distributed data stream processing
middleware, which has been under development at the IBM T. J.
Watson Research Center. Due to the lack of system-supported ab-
stractions for state sharing, such functionality has been painstak-
ingly implemented using custom written code by many applica-
tions. It is evident that i) there are usage scenarios that can ben-
efit from the existence of a state sharing mechanism, and ii) the
users, in absence of such a mechanism, will implement custom
workarounds that might not only be cumbersome and complex but
might be inefficient too.

Implementing a state sharing mechanism for a high-performance
data stream processing system like System S poses a very unique
set of challenges and opportunities. System S, with its declarative
programming language SPADE [13], offers an easy to use interface
for expressing a wide-range of streaming applications. As a result,
the design of the state sharing mechanism has to maintain the same
level of ease of use and provide flexibility for handling a wide range
of usage scenarios. Another important requirement stems from the
needs of the stream processing applications, and these include scal-
ability, high-performance and fault-tolerance. To deal with these
challenges, besides a careful design, one can exploit the ability of
stream processing applications to tolerate a range of relaxed con-
sistency guarantees. We now describe these requirements and op-
portunities in some detail:

o Lase of Use & Flexibility - Many of the users of System S creat-
ing stream processing applications are domain experts and an-

System S)D SPADE

Runtime Operator

int threshold
CaPSULE

Runtime

Shared
Variable

(a) A user may want to associate externally modifiable
control variables with operators to affect the behavior of
streaming application at runtime.

3 | | zca | | o Passive
Standby

checkpoint

(b) An operator, for achieving fault-tolerance, may want to
efficiently checkpoint its state to a shared object, which can
then be used by a passive standby in case of a failure.

Repository

(c) A group of operators can collaborate to build a reposito-
ry of interesting events which can be watched for by anoth-
er set of operators.

Figure 1: Example usage scenarios

alysts, with sufficient but not a deep understanding of issues
related to management of distributed shared state. To not ad-
versely impact the usability, and to accommodate the needs of
the wide cross-section of stream processing applications, the
shared state implementation should not only be easy to use but
should also be flexible.

e Scalability, High-Performance & Fault-Tolerance - Stream pro-
cessing applications operate on large volumes of rapidly arriv-
ing data. In some cases the shared state may have to be shared
with a number of other stream processing operators, or it may
have to handle a large number reads or writes per second, or
even provision for replication of shared state. These usage sce-
narios are representative of the applications that will make use
of shared state and require the state sharing mechanism to scale,
offer high-performance and be able to tolerate faults in some
scenarios.

e Relaxed Consistency Guarantees - Given the challenges involved
in implementing state sharing for stream processing applica-
tions, in some usage scenarios, it would be impossible to offer
the desired levels of scaling and performance without relax-
ing the consistency guarantees. It is not surprising that many
stream processing applications can tolerate relaxed consistency
guarantees; and our state sharing mechanism should be able to
exploit such relaxations.

1.1 Existing Solutions

Traditionally, developers have relied on message passing, dis-
tributed shared memory or even database systems for enabling state
sharing in distributed systems. In general, distributed systems that
are based on message passing tend to offer better performance due
to the application specific nature of the implementation. However,
the application specific nature of the system also implies more lines
of custom code, which in turn makes this paradigm more cumber-
some and error-prone. Message passing systems generally fail to

offer the ease of use that users have come to expect from System S
and SPADE. Distributed shared memory, on the other hand, offers
an easy to use abstraction of the underlying distributed memory and
hides several protocol and transport level details from the devel-
oper. However, as would be expected from a generic implementa-
tion, it suffers from lack of scalability and inadequate performance
due to its inability to exploit application level knowledge. This lack
of scalability, inadequate performance and inflexibility rules out
off the shelf distributed shared memory systems. Finally, Database
systems lack the performance that is needed for many distributed
applications. This is because database systems provide more func-
tionality than needed, resulting in performance overheads. It is am-
ply clear that the existing solutions for state sharing are not the right
fit for use in distributed data stream processing systems. The fol-
lowing examples illustrate some of the usage scenarios for a state
sharing mechanism in distributed stream processing systems.

EXAMPLE 1. Many applications need their stream operators to be
dynamic. They may need to control the way these operators process
and/or route the incoming data stream. Consider an application like
the one shown in Figure 1, which might be filtering some streaming
data to extract a subset that is of interest to the user. For efficiency
and scalability reasons, a large number of filter operators might be
deployed on many machines. In long running stream processing
applications a user may occasionally want a means to modify the
filtering criteria associated with the operators. This scenario re-
quires externally accessible shared state that is tuned for frequent
reads and infrequent writes.

EXAMPLE 2. In a stream processing application, with potentially
thousands of operators, it is not uncommon to have operator fail-
ures. In many cases the operators contained in a streaming applica-
tion cannot tolerate to lose the accumulated data because of a fault
in the system. A way for providing operator fault tolerance is to
regularly checkpoint their state to be able to restore it elsewhere if
the processing node supporting the operator fails. By using a repli-

cated implementation of shared state, every operator could period-
ically write snapshots of its state to a shared object. The System S
runtime would access this replicated state to restore an operator and
restart it. Providing this very general primitive would ease operator
fault tolerance implementation in all applications.

EXAMPLE 3. Some stream processing applications process data
by making use of a complex analytic model. The model itself is
highly dynamic and should be continuously adjusted as more data
is observed. A concrete example is predicting failures in a semi-
conductor fab. The fab has numerous sensors measuring physical
parameters associated with its different units. By processing the
flux of information from those sensors, one can detect patterns that
lead to failure of some components with a high probability, but
those patterns are highly sensitive to changes in the environment
that cannot be controlled. The data from the sensors has thus to be
continuously processed and correlated to failures in order to adapt
the model to the changing conditions. For performance and scal-
ability reasons the model could be built cooperatively by multiple
operators and used by numerous others. Devising a wiring scheme
with streams would be very complex in this case, whereas using
the SPADE type system to represent the model as one shared object
would render the task simple, allowing the programmer to focus on
application level algorithms instead of data dissemination issues.

1.2 Contributions

In this paper we present CAPSULE, a code generation and run-
time framework that provides IBM’s System S stream processing
middleware the capability to efficiently share state across multiple
runtime entities including data-flow operators, daemons and run-
time console under a range of usage scenarios. In the remainder of
this section we outline the main contributions of this work:

e Language-Level Constructs & Seamless Access - CAPSULE
offers constructs at SPADE language-level to declare shared
variables, specify their visibility characteristics and specify con-
figuration parameters like fault-tolerance requirements, expected
read/write ratio, expected variable size (in case of dynamic sized
shared variables), etc. to customize the variable for the partic-
ular usage scenario. Once a shared variable has been declared
it can be used to seamlessly access the shared state, treating the
variable as a regular SPADE data-type.

e Optimized Custom Code Generation - CAPSULE makes use of
code generation to embed suitable protocol, transport, caching
mechanism, etc. into the implementation of each shared vari-
able. These customizations are based on the user-specified con-
figuration parameters and the information gathered from the
runtime system.

e Capability to Compose Variables - Internally, to achieve desired
levels of scalability, performance and fault-tolerance, CAPSULE
makes use of its capability to hierarchically compose variables
into groups of variables that are related using a specific proto-
col. For instance, a single shared variable visible to the user
might in fact be composed of three causally related variables,
and each such causally related variable might in turn be imple-
mented as two atomically related variables.

o Extensible Architecture - CAPSULE architecture contains well-
defined interfaces for implementing more consistency proto-
cols, transport mechanisms and caching mechanisms. This is
an important attribute of our architecture because it is not pos-
sible to envision all the possible usage scenarios and we cannot
select and restrict the system to particular protocol, transport or
caching mechanisms.

2. BACKGROUND: SYSTEM S & SPADE

System S is a large-scale, distributed data stream processing mid-
dleware under development at the IBM T. J. Watson Research Cen-
ter. It supports structured as well as unstructured data stream pro-
cessing and can be scaled to a large number of compute nodes.
The System S runtime can execute a large number of long-running
applications that take the form of data-flow graphs. A data-flow
graph consists of a set of Processing Elements (PEs) connected by
streams, where each stream carries a series of Stream Data Objects
(SDOs). The PEs are basic execution containers that are distributed
over compute nodes and a node is generally host to multiple PEs.
The compute nodes are organized as a shared-nothing cluster of
workstations (COW) or as a large supercomputer (e.g., Blue Gene).
The PEs communicate with each other via input and output ports,
which are connected by streams.

SPADE (Stream Processing Application Declarative Engine) is
the declarative stream processing engine of System S. It is also
the name of the declarative language used to program applications.
The language is used to express parallel and distributed data-flow
graphs containing the operators and resulting streams required to
carry out the actual processing for an application. SPADE currently
offers toolkits of type-generic built-in stream processing operators.
It is also possible to augment a toolkit with additional user-defined
built-in operators (UBOPs) or create new toolkits altogether. The
SPADE language also features a broad range of stream adapters
that can be used to ingest data from outside sources and publish
data to outside destinations, such as network sockets, relational
and XML databases, file systems, as well as several proprietary
platforms. SPADE makes use of code generation to fuse operators
into processing elements so as to match application characteristics
such as communication patterns among the operators as well as
processing capabilities of a particular compute node. This code
generation approach is extremely powerful because through sim-
ple recompilation one can go from a fully fused application to a
fully distributed one, adapting to different ratios of processing to
1/0 provided by different computational architectures (e.g., blade
centers versus Blue Gene).

3. CAPSULE OVERVIEW

Architecturally, CAPSULE contains two, more or less indepen-
dent sub-systems - one interacts with the SPADE compiler to gen-
erate custom and optimized code for realization of shared variables
and the other interfaces with the System S runtime infrastructure
to assist in deployment and management of the shared variables
at runtime. Figure 2 shows the interaction of the two CAPSULE
components, labeled CAPSULE Code Generator and CAPSULE
Daemon with the remainder of System S.

A typical System S application developer will make use of the
SPADE language to specify the data-flow, and the associated shared
variables with their corresponding configuration parameters. The
SPADE program is then submitted to the compiler, which along
with the generation of System S artifacts (like the processing el-
ements) also generates a model that describes the shared variable
structure and configuration parameters. The CAPSULE code gen-
erator makes use of the model supplied by the SPADE compiler
and the runtime information determined by CAPSULE daemons
to generate the shared variable servers, the corresponding shared
variable description language or SVDL file and the shared vari-
able stubs to enable access to the shared variable.

The shared variable servers are compiled into DLLs (dynamic
link libraries), and encapsulate a server-side transport and protocol
object, and a data object that is either compiled into the shared vari-

(- s
@;\ / :> Co:;:)ilir :>

SPADE Developer ﬂ

Shared Variable

I

Other System S Artifacts

Processing Elements, etc.

s
= o
Application Description Language (ADL)

ﬂ ADL

Configuration Model .) System S Data-Flow
| Shared Variable Servers & SVDL Runtime Deployment
, =)

o
: = SVDL
Runtime Information s CAPSULE :> : +
from CapsuLE daemons ™ Code Generator
! CAPSULE Shared Variable
: Daemons Deployment
1
N Shared Variable Stubs
Compile Time Runtime

Figure 2: Interaction of CAPSULE code generator and daemons with System S components

able server or is a reference to a data object that is remote. To en-
able remote access and composability, the shared variable exports a
remotely accessible data object interface. The SVDL file contains
references to the shared variable server DLLs, contains the variable
name, expresses their composition and also contains the location
where the shared variable server DLLs will be loaded at runtime.
Finally, the shared variable stubs expose an access interface that
is exactly the same as the regular SPADE data types. The stubs
besides the interface code also contain a client-side transport and
protocol object, and may also contain a cache object. More details
about these artifacts will be provided in Section 4.

At deployment time the SVDL file is submitted to any of the
several CAPSULE daemons that may be running on the cluster
nodes. A single CAPSULE daemon is designated as the owner
of the shared variable described in the SVDL file, which then con-
tacts other CAPSULE daemons to deploy the shared variable. Any
System S entity which wants to access the shared variable makes
use of the stub to do so.

4. DETAILED DESIGN

In this section we describe the detailed design of the CAPSULE
framework, and provide details about the interesting design choices
that have been made for the framework. We start by describing
language level features that enable the shared variables, describe
the CAPSULE code generation framework, shared variable servers,
shared variable description language, and describe the CAPSULE
daemon.

4.1 Shared Variable Declaration and Usage

An important feature of the shared variables provided by the
CAPSULE framework is that the shared state can be declared and
accessed as a regular SPADE data type. Furthermore, a user can
provide hints to the CAPSULE framework using the configuration
parameters to assist in generation of code that is customized for
a particular usage scenario. These two features of the CAPSULE
framework are exposed to the end user as language features in the
coming version of the SPADE language.

The syntax for shared variable declaration in SPADE and a cor-
responding example is shown in Figure 3. A shared variable, be-
sides the type declaration, is qualified by modifiers and configs.
Modifiers specify a particular behavior that is enforced in the lan-
guage, whereas configs are passed to the underlying implementa-
tion, which has the freedom to decide what to do with them. There
are three possible modifiers. They specify how to instantiate a
shared variable (static keyword), its visibility to other operators and
applications (public keyword), and if it is mutable or immutable

varDef = varModifier” type ID (‘=" expr)’ varConfigs
varModifier = ‘public’ | ‘static’ | ‘mutable’
varConfigs = 7 | ‘{ ‘config’ confight ‘}’
config = ID ‘" expr ‘;’
public static mutable list<int32> s_1 ({
config
consistency : causal;

sizeHint : 1GB;
writesPerSecond : 5;
readsPerSecond : 500;

Figure 3: Syntax and example of a shared variable declaration

(mutable keyword). The static modifier specifies that all instances
of the operator defining a variable will share the same copy. With-
out this modifier, every operator instance will have its own copy of
the variable. The public modifier affects the visibility of the shared
variable. By default (without the public modifier), a shared vari-
able is visible only in the operator in which it is declared. If the
public modifier is used, the shared variable will be visible in the
whole system. This means that it can be referred to anywhere in
the same application or in another application running in the Sys-
tem S instance. Only static variables can be declared public, and
they can be accessed by providing their name, the name of the op-
erator defining them and the SPADE namespace of the application.
The mutable modifier allows a shared variable to be modified, by
default it is read only. Shared variable optionally have an initializer.
If they are read only, the initializer is mandatory. The SPADE com-
piler statically enforces the restrictions specified by the modifiers.
Once declared, a shared variable can be used as any other SPADE
variable, except that the restriction specified by the modifier have
to be followed (if not, the program will not compile).

Single operations on shared data types are ordered by the under-
lying implementation. They can be totally ordered in case the user
chooses an atomic consistency model. In near future, we plan to
provide language level constructs for supporting locks, which can
then be used for coordinating updates across multiple shared vari-
ables.

4.2 CAPSULE Objects

The CAPSULE code generator relies on a set of objects, that
it composes together, to generate the shared variable servers and
the shared variable stubs. Our design for these generated artifacts,
shown in Figure 4, segregates the functionality into four main ob-
jects - the data object, the protocol object, the transport object and
the cache object, and a carefully defined interaction interface - the

invoke interface that enables the composition of these objects.
For instance, the code generator, using our design, can generate
a shared variable server for an int 32 data type that is encapsu-
lated in a data object, with a protocol object that enforces atomic
consistency between the replicas of this data object and using a
CORBA [10] based transport object. The design provides us the
capability to choose an implementation of the object that is suit-
able for a specified usage scenario. Another interesting aspect of
our design is the fact that a shared variable server can also act as
a server-side data object. This allows us to compose shared vari-
ables servers that may use a set of other shared variables servers
as data objects. This composition capability exploited using the
shared variable description language (described in Section 4.3.3) is
critical to the scalability, performance and fault-tolerance provided
by the CAPSULE framework. We start by describing a simple
invoke interface that is implemented as a composition mecha-
nism by multiple CAPSULE objects and then provide details about
the four CAPSULE objects.

4.2.1 invoke Interface

The invoke interface consists of a single method that can be
used for invoking any operation on the shared data structure. This
interface is internal to CAPSULE but is central to the composability
of the CAPSULE objects, and allows us to efficiently invoke oper-
ations on user-defined shared nested data structures. The interface
method takes the following form - void invoke (int methodIndex,

Buffer inParams, Buffer outParams);

4.2.2 Data Object

The CAPSULE data object comes in two flavors - one for the
server side and the other for the stub side. The server-side data
object encapsulates the data structure that the user wants to share
and implements the invoke interface for allowing the invocation
of operations on the shared data-structure. We also define a server-
side data object reference stub, which is a remote interface to the
server-side data object. The server-side data object translates and
invoke call to operations on the shared data-structure, while the
reference stub forwards the invoke call to a remote server-side
data object. Both, the server-side data object and the data ob-
ject reference stub, also expose a set of three helper methods for
the protocol object, these include - (1) get InvocationScope
method, which is used by the protocol object to determine whether
an invoke call identified by methodIndex should be invoked
on all data objects participating in the protocol, or should be in-
voked on only one such data object, (2) splitParams method,
which is applied to inParams when an invoke call is deter-
mined to be an invoke-on-all call; it returns the inParams to be
forwarded with the resulting invoke calls, and (3) mergeParams
method, which is applied to outParams returned by each indi-
vidual invoke call, after an incoming invoke call is determined
to be an invoke-on-all call. Since the shared variable server also
implements the invoke interface, therefore when used with the
server-side data object reference, it can be treated like a server-side
data object.

The stub-side data object exposes the interface that is visible to
the end user and it is the same interface that a user would use when
accessing a regular SPADE data-type. The stub-side data object
translates the shared variable data access to an invoke call on the
stub-side protocol object.

4.2.3 Protocol Object

The protocol objects at the server-side and the stub-side together
implement a specific mechanism for calling the invoke method

on the participant, which in this case are the server-side data objects
or the server-side data object reference stubs.

The server-side protocol object exposes the invoke interface to
the server-side transport object. The protocol object essentially ac-
cepts and invoke call and determines how and to which of the par-
ticipating server-side data objects or data object reference stub the
call should be forwarded to. On receiving an invoke call, the pro-
tocol object, uses the methodIndex and the server-side data ob-
ject’s or the data object reference stub’s get InvocationScope
method to determine if the invoke method should be invoked
on all the participating data objects, or should be invoked on only
one of the participating data objects. For instance, consider a case
where an Integer shared variable that is replicated three times
for fault-tolerance, and the replicas have to be atomically updated.
In this case an invoke method that corresponds to getting the value
needs to be invoked on just one of the replicas, while the set call
will have to be invoked on all the replicas. Now, if the invoke
method needs to be invoked on all the replicas then the protocol
object uses the splitParams and mergeParams methods pro-
vided by the data object to split the input parameters for invoke
calls, and merge the return values from all the invoke calls, re-
spectively. The splitParams and mergeParams are typically
useful when using a partitioned shared 11 st, for instance.

The stub-side protocol object is a component that doesn’t occur
in many realizations of the shared variable stub. In certain cases,
having a stub-side protocol object can optimize the performance
of the shared variable. For example, consider the partitioned ver-
sion of the shared 1ist that was described earlier in this section.
A user invoking an operation to retrieve a particular element from
the 1ist might contact a partition that may not have the element
available. The contacted partition then forwards the invocation to
the appropriate partition and the element is delivered to the user.
When using a stub-side protocol object, the task of resolving the
partition can be done by the stub-side protocol object and can re-
sult in avoiding an additional network round-trip. The stub-side
protocol exposes the same invoke interface to the stub-side data
object, maintains information about the server-side data object and
uses the invoke method exposed by the stub-side transport object.

The protocol objects contain certain members and/or properties
that have to be initialized at deployment time. These members in-
clude the references for any participating remote objects, and pro-
tocol specific initialization like designating a master for a master
slave protocol, etc. This initialization is carried our by the CAP-
SULE daemon by remotely invoking (using CORBA) methods on
the newly created protocol object.

4.2.4 Transport Object

The transport object serves the purpose of hiding and encapsu-
lating the details of transport mechanism used for propagating the
invoke call from the stub to the server. The transport objects
provide the CAPSULE architecture the capability to adopt and use
possibly any mechanism that can invoke operations on a remote ob-
ject, as long as the implementation conforms to the invoke inter-
face specification. A developer can easily implement this interface
for the server and the stub sides and start using a new transport for
the CAPSULE shared variables.

The server-side transport object implements an additional inter-
face method that is used by the CAPSULE daemon to retrieve a
stringified reference to the transport object. This reference is used
by the stub-side transport object to establish connection with the
server-side transport object.

The stub-side transport object exposes a connect method which
accepts a stringified reference and establishes connection with the

From Shared
Variable Clients

Stub-Side

____________________ O,
Stub-Side Cache !] Stub-Side :
Data Object Object | Server-Side Data i Transport Object]

Object Reference

: Stub-Side :< \

! Protocol Object |

E & 1 From CAPSULE
daemon

Invoke call

N TTT—————F

To Server-Side Data Object

Server-Side
Data Object

Server-Side
Protocol Object

N Server-Side

Transport Object

(a) Shared Variable Stub

Remote Call

V] Transport Object

(b) Shared Variable Server and
Server-Side Data Object

Figure 4: Architecture of the Shared Variable Stub and the Shared Variable Server

server-side. This method is used by the stub-side data object and
by server-side data object reference stubs.

4.2.5 Cache Object

The cache object is an optional component that can exist along-
side the stub-side data object. If present, it intercepts the invoke
call and returns the value contained in the cache. The cache con-
tents can be updated using a pull or a push based method. For the
pull based methods, the implemented CAPSULE cache object sup-
ports fetching of data from a shared variable server using a time or
count based policy. When using the time based policy the cache is
updated every t time units. For a count based policy the cache
is updated after every n number of invocations of the invoke
method. For the push based method the cache object exposes a re-
motely accessible update interface, which is used by the shared
variable server to push the updates. The decision to have or not
have a cache object is not directly exposed to the user but is deter-
mined by the CAPSULE code generator. For instance, a scenario
with a high read to write ratio might be a good candidate for using
a cache object.

4.3 CAPSULE Code Generator

The SPADE compiler generates a model called the Shared Vari-
able Configuration Model (SVCM) corresponding to each shared
variable declared in the SPADE program. This model and the in-
formation about the runtime system as determined by the CAP-
SULE daemons is then used by the code generator to generate the
Shared Variable Servers, the Shared Variable Stubs, and the Shared
Variable Description Language (SVDL) file. The CAPSULE code
generator makes extensive use of the template meta-programming
capabilities provided by the C++ language. We now provide a de-
tailed description of the generated artifacts and the configuration
driven customized code generation framework.

4.3.1 Shared Variable Server

The shared variable server, as shown in Figure 4, contains a
server-side transport object, a server-side protocol object and may
contain a server-side data object or a set of server-side data object
reference stubs or both. An interesting architectural feature of the
shared variable server is the fact that it can also be a server-side data
object. This feature allows for the composition capabilities, where
a shared variable server can refer to multiple underlying shared
variable servers (possibly at remote locations). The composabil-

ity provided by the shared variable server plays an important role
in achieving scalability and fault-tolerance for the shared variables.
The code generator is capable of generating two distinct versions
of the shared variable server. In one case the server-side data object
is embedded inside the code, while in the other case it is not. The
latter is used in cases when the shared variable server has only ref-
erences to the server-side data objects, and is called a blank shared
variable server. These references are populated by the CAPSULE
daemon at deployment time. To create a shared variable server or
a blank shared variable server the code generator uses the simple
templatized objects provided by the CAPSULE framework:

CapsuleServer<Transport,Protocol,DataObject>

CapsuleBlankServer<Transport,Protocol,DataObject>

4.3.2 Shared Variable Stub

The shared variable stub is the component that is used by the
System S entities like operators, daemons, etc. to gain access to the
shared variable. Shown in Figure 4, the shared variable stub con-
sists primarily of a stub-side data object and a stub-side transport
object. In certain cases, which may benefit from the knowledge of
the underlying shared variable servers (e.g. in case of partitioning
protocol), the generated shared variable stub may also contain the
stub-side protocol object and a set of server-side object reference
stubs to resolve the appropriate shared variable server. Occasion-
ally the shared variable stub may also contain a cache object to
exploit the scenarios which exhibit a high read-to-write ratio, or
scenarios which can tolerate stale data. The following templatized
objects are used as a way to generate custom shared variable stub:

CapsuleStub<Transport,DataObject, Cache>
CapsuleProtocolStub<Transport,Protocol,DataObject, Cache>

4.3.3 Shared Variable Description Language

The shared variable description language or the SVDL is an XML-
based representation that is used for specifying the composition of
a single shared variable in terms of shared variable servers. This
capability to compose shared variable servers can be used to fine-
tune the performance, scalability and fault-tolerance attributes as-
sociated with a shared variable. For instance, using SVDL one can
fine-tune the number of replicas of a shared variable server that will
be deployed to achieve desired level of fault-tolerance. Consider
another scenario, where a user would like to have performance and

<sharedvariable>
<name>A</name>
<variableGroup blankD1l="/staks/libCausalServera.so">
<protocol>Causal</protocol>
<variableGroup>
<protocol>Atomic<protocol >
<baseVariable>
<location>host-1</location>
<d11>/staks/1libAtomicServerDA.so</dll>
<properties>
<property>
<name>IsMaster</name>
<valuestrue</values

Shared Variable: A = [Reference (Member 1), Reference (Member 2)]

:

</property>
</properties>
</basevariable>

<baseVariables
<location>host-2</location>
<dl1>/staks/libAtomicServerDA.so</d1l>
</baseVariables
</variableGroup>
<variableGroup>

Atomic Group (libAtomicServerDA.so)

Atomic Group (libAtomicServerDA.so)
(b) Realization of the SVDL file shown on the left

<protocol>Atomic<protocols

<baseVariable>
<location>host-3</location>
<dll>/staks/libAtomicServerDA.so</dll>

<properties>
<property>
<name>IsMaster</name>
<valuestrue</value>
</property>

</basevariable>

</properties>
<baseVariable>

<location>host-4</location>
<dl1>/staks/libAtomicServerDA.so</dll>

</baseVariable>
</variableGroup>

= ==
tf]
Stub-Side Stub-Side
CORBA Transport Object CORBA Transport Object
______ i]_____j
Server-Side Reference !
Data Object A Member2 |
Server-Side Server-Side
Atomic Protocol Object Causal Protocol Object
Server-Side erver-Side
CORBA Transport Object = CORBA Transport Object

</variableGroup>

</sharedvariable>

(a) An example SVDL file

Shared Variable Server (Master)

Shared Variable Server (Member 1)
(c) Composition of the Shared Variable Servers

Figure 5: Shared Variable Description Language

fault-tolerance, but is ready to sacrifice atomic consistency; here the
SVDL can be used to specify the deployment configuration shown
in Figure 5, which specifies a shared variable with two causally re-
lated shared variable servers (for performance), and each causally
related shared variable server in turn contains two atomically re-
lated shared variable servers (for fault-tolerance).

The SVDL defines three important entities: (1) a base variable,
which is represented as baseVariable in the SVDL identifies a
shared variable server that has a server-side data object embedded
into it. The deployment of a base variable results in a single re-
mote reference being returned, (2) a variable group represented as
variableGroup corresponds to a protocol, which is enforced on
the members of the variable group. A variable group can consist of
any number of base variables, variable groups or shared variables
and its deployment results in a set of references being returned, and
finally (3) a shared variable represented using sharedvVariable
in the SVDL can consist of a single variable group or a single base
variable and has a name associated with it. The user can retrieve
a reference to this object by querying the CAPSULE daemon for
the specified name. Each group can have properties associated
with them, which are used by the CAPSULE daemon to initial-
ize the shared variable server. An example of this property is the
IsMaster property associated with a variable group that uses an
atomic master-slave protocol.

4.3.4 Configuration-Driven Code Generation

There are two levels of customization that are possible with the
CAPSULE framework. The first one relates to the generation of
code for the shared variable servers and the shared variable stubs,
while the second one focuses on the customizations that could be
done via the SVDL associated with a shared variable.

For specification of user preferences, the currently supported
configuration parameters at the language level include sizeHint,
consistency, faultTolerance, readsPerSecond and
writesPerSecond. The values for these parameters, if spec-
ified, are available to the code generator via the SVCM. For run-
time information, we utilize the CAPSULE daemons to gather data
about the performance of each protocol on the target deployment
system. This performance data for each protocol is a table contain-

ing information about maximum updates per second achieved for
different discrete values of the following parameters: number of
replicas, number of clients and read-write ratio.

To determine the protocol, transport and inclusion or exclusion
of cache, and to generate the SVDL, the current implementation of
CAPSULE makes use of a rule-based approach for the purpose of
generating code, and is still under development.

4.4 CAPSULE Daemon

The CAPSULE daemon is the runtime component that assists in
deployment of the shared variables. The daemon is assumed to be
running on the nodes which host a System S instance. Any CAP-
SULE daemon is capable of accepting a SVDL file for deployment
of a shared variable. Once a shared variable has been deployed, the
responsibility of maintaining a reference to the deployed shared
variable is assigned to a CAPSULE daemon using a CHORD [20]
like lookup mechanism, where the name of the variable is treated as
the key. The shared variable servers run in the context of these dae-
mons. System S provides the capability to monitor and restart the
CAPSULE daemons. However, we have not yet implemented any
functionality that attempts to save the state maintained by the CAP-
SULE daemons. A proposal that we are working on for stateful
recovery includes using shared variables for maintaining the state
of the CAPSULE daemons.

S. IMPLEMENTATION STATUS

CAPSULE is being implemented in C++, and currently we have
a codebase of around 6000 lines of code. The basic flow that leads
from SVCM to SVDL is in place and we currently support prim-
itive data types and collections of primitive types (maps, lists and
hashes) as shared variables. The support for arbitrary user-defined
types as shared variables is still under development, but we do not
foresee any significant challenges in achieving the same. The CAP-
SULE daemon is almost fully functional, except for the task of
stateful recovery from a failure. We currently support CORBA as
the transport for implementing the transport object. As for the pro-
tocol objects, we have three different implementations for protocols
that enforce consistency, and a fourth protocol which enables par-

titioning for large data collections. We provide a brief description
of the implemented protocol objects:

e Atomic Master-Slave Protocol (AMS) - AMS is a protocol that
enforces atomic consistency on the participating server-side data
objects. It optimistically returns from the bottleneck set calls,
and is therefore able to receive another invoke call while the
master is still updating the slaves. It performs well for small
number of clients

e Atomic Master-Slave Buffer Protocol (AMSB) - AMSB, again,
is a protocol that enforces atomic consistency on the participat-
ing server-side data objects. The protocol keeps buffering and
blocking any calls that it may receive while the master is updat-
ing the slaves in response to a set call. On returning from the
call, the master returns all get calls immediately with the cur-
rent value of the variable and then applies and propagates only
the final set call. The protocol is not suited for small number
of clients due to overheads caused by buffering, but performs
well for large number of clients.

e Causal Protocol - The causal protocol is implemented using
vector clocks and maintains causal consistency between the par-
ticipating shared variable servers. Here, each client can interact
only with one designated replica and causality is established by
exchanging messages between the participants on a best effort
basis or at configurable time intervals. The causal protocols net
throughput for invoke calls increases as the number of repli-
cas are increased, as opposed to the decrease encountered by
atomic protocols mentioned above.

e Partitioning Protocol - The partitioning protocol doesn’t en-
force any consistency model on the participating server-side
data objects, but rather provides a way to load-balance and pro-
vide scalability for large data collections like 1ist.

We also have an implementation of the cache object, which in
case of push based caching provides us the capability to subscribe
to updates from a shared variable server. In case of pull based
caching, the cache object can be configured to fetch updates from
a shared variable server at regular time intervals, to fetch updates
from a shared variable server in response to every nth invoke
call. The cache object doesn’t still support the caching of large
collections of data.

6. EVALUATION

In this section we report on the experimental evaluation of the
CAPSULE framework at achieving its goal of providing efficient
access to shared state. To establish the baseline, we start by evalu-
ating the performance of a shared variable implemented as a single
barebones CORBA server for a varying number of remote clients.
Thereafter, we evaluate the performance of shared variables using
four protocol objects that have been implemented, so far, for the
CAPSULE framework. In particular, we evaluate the performance
of primitive shared variables (32 bit integer) with AMS, AMSB and
the Causal protocol for varying number of clients and server repli-
cas. We also evaluate the effect of number of partitions and clients
on our partitioning protocol when using a 1ist data type. The
following experiments were conducted on nodes with 2 x dual core
Intel 3.0 Ghz CPUs with 8§ GB RAM and 2 x 73.4 GB hard disks.

6.1 Establishing Baseline

We implemented a CORBA server encapsulating a 32 bit integer,
to which several clients connect and send their updates. The server
maintains a copy of the shared data guarded by a lock. All updates
are processed in a total order by this central server. This evaluation

100

80 - -

60 [~ -

40 [-

Updates at server (in 1000/sec)

20 - -

0 I I I I I
0 10 20 30 40 50
Number of clients

Figure 6: Variation of update rate with number of clients using
a CORBA based single server implementation

provides us an idea about the performance to be expected from the
CAPSULE shared variable implementation, and establishes a base-
line for performance comparison. The results shown in Figure 6
show that the net throughput achieved with a single CORBA server
steeply increases from 8000 updates/sec for 1 client to /80,000
updates/sec for 20 clients. This increase, in part, is due to the I/O
intensive nature of the update process and can also be attributed to
the quad-core machine hosting the CORBA server.

Figure 7 shows the average throughput observed at the client
end. As expected, the throughput decreases with an increase in
the number of clients updating the CORBA server. The client side
throughput decreases from 8000 updates/sec for 1 client to 1600
updates/sec for 50 clients.

6.2 Comparison between AMS and AMSB

The next experiment was conducted to evaluate and compare the
performance of AMS and AMSB protocols. The experiment was
conducted with the protocols configured for 2 replicas and the
writes/(reads+writes) fraction was set to 0.5. Results are shown in
Figure 8. First, as expected the throughput delivered by the two
approaches is lower than the throughput achieved in our baseline
experiment. Second, the throughput delivered by the AMS proto-
col is better than the AMSB protocol for lesser number of clients,
while its the other way around when the number of clients is in-
creased. This behavior of the two protocols can be attributed to
their implementations. The AMSB protocol makes use of a buffer
to hold and block updates until the previous operation is complete.
The maximum size of this buffer is equal to the number of clients,
and the efficiency of this protocol is directly related to this buffer
size, causing the protocol to achieve a much better throughput for a
higher number of clients. For a lower number of clients, the over-
heads caused by the buffer mechanism of the AMSB protocol result
in a reduced throughput as compared to the AMS protocol.

6.3 Comparison between AMSB and Causal

In Figure 9, we show a comparison between the performance
of AMSB and the Causal protocol. The number of replicas was
again set to 2, and the writes/(reads+writes) fraction was set to 0.5.
The results clearly indicate that a better scalability can be achieved
by using the causal protocol. While the AMSB protocol seems to
have saturated after achieving a throughout of around 40,000 up-
dates/sec for 25 clients, the throughput for Causal protocol was
around 115,000 updates/sec and steadily increasing for the same
number of clients. This behavior is caused by the fact that the
clients can only contact the master server for the AMSB protocol,
while for the Causal protocol either of the replicas can be used.

6.4 Performance of the Partitioning protocol

In this experiment, reported in Figure 10, we made use of the
partitioning protocol to partition a large list into 3 and 6 partitions
for two different experiments. We measured the average time taken

Avg. updates at client (in 1000/sec)

Time (in secs) taken for 100K updates

Atomic Mast

T
Ator
te

T T
mic Master Slave —+—

\(
er Slave with Buffer —<—

Updates (x 1000) per second

e r 1 1. 11 1.1

20 30
Number of clients

Figure 7: Variation of update rate as seen
by a single client when using a CORBA
based single server implementation and AMSB protoc

0.14 20

Number of cl

ol

10 15

lients Number of clients

Figure 8: Variation of time taken for 100K Figure 9: Variation of update rate with
updates with number of clients using AMS number of clients using AMSB and Causal

protocol

20

T T T T
3 Partitions ——

0.12 6 Partitions —— —

0.1 -
0.08
0.06
0.04

0.02

Time (in secs) taken for 100K updates

T
Atomic

Atomic Master Slave with Buffer ——

T T T
Atomic Master Slave (10) xXx3

)

T T T
Master Slave ——

Atomic Master Slave with Buffer (10) &
Atomic Master Slave with Buffer (80)
Causal (10)
Causal (80) mw——

Causal ——

Time (in secs) taken for 100K updates

Time taken (in milliseconds) per update

0.2

Number of clients

Figure 10: Affect of the number of parti-
tions for a shared List when using a Parti-

tioning protocol of writes

for each update to the list for varying number of clients. We observe
that as the number of clients increases the difference in time-taken
for each update increases. Clearly, a higher number of partitions
leads to better performance when the number of clients is high.

6.5 Effect of fraction of writes on throughput

This experiment was conducted to study the effect of increasing
the fraction of writes, i.e. Number of Writes / (Number of Writes
+ Number of Reads) on the performance of various protocols. As
shown in Figure 11, the throughput achieved by the Causal pro-
tocol has almost no impact because of the increasing fraction of
writes. This is because under the causal protocol the replicas syn-
chronize with each other at a constant frequency and therefore only
the most recent write is propagated to other replicas. The number of
writes is essentially determined by the synchronization frequency.
The AMSB protocol is also able to reduce the impact of increasing
fraction of writes because of the buffer that it utilizes. Finally, the
impact of increasing fraction of writes is very evident for the AMS
protocol. The AMS protocol does nothing to stop the propagation
of writes to the replicas, and this contributes to the steep decrease
in throughput.

6.6 Effect of replicas on throughput

In this experiments we study the effect of the number of replicas
on the throughput achieved by various protocols. The results are
shown in Figure 12, and the numbers in parentheses indicate the
number clients used for that experiment. As expected, the through-
put achieved by atomic protocol implementations decreases with
an increase in the degree of replication. The AMS protocol suffers
the worst degradation in performance because it does nothing to re-
duce the number of writes that are propagated to the replicas. The
Causal protocol on the other hand witnesses an increase in through-
put with an increase in the number of replicas. This is because the
clients can connect to any replica in case of the Causal protocol.

0.4

Write / (Read + Write)

0.6 0.8

Number of replicas

Figure 11: Variation of time taken for Figure 12: Variation of time taken for
100K updates with changing the fraction 100K updates with the number of replicas

for various protocols

7. RELATED WORK

Message Passing Programming Model. Message passing pro-
gramming model provides developers a way to harness the col-
lective computational capability of a cluster of workstations that
do not share physical memory. Message passing is pre-dominant
programming model for parallel computing on a cluster of work-
stations. MPI or the Message Passing Interface [16] is a message
passing standard that has been developed to standardize the mes-
sage passing programming model. Amongst the well known li-
braries for message passing programming model, PVM or the Par-
allel Virtual Machine [18] library and the TCGMSG [21] library
are the more widely used ones. Message passing fully exposes the
distributed nature of the memory system to the developer, provid-
ing only the primitives to transport data from one node to another.
The developer needs to know about the source and the destination
of the data, and when a transfer needs to initiated between the two
entities. It is generally considered harder to write parallel programs
using the message passing model, but because of the application-
level semantics that can be exploited by the developer they often
times turn out to be more efficient. CAPSULE provides a much
higher and user-friendly abstraction for enabling state sharing be-
tween System S entities that run on a cluster of workstations. To
achieve efficiency CAPSULE makes use of code generation tech-
niques to tailor the generated code to suit the usage scenario pro-
vided by the developer and the target runtime.

Software Distributed Shared Memory. Software distributed shared
memory systems or DSMs use native message passing facilities to
implement and provide a shared memory abstraction over a clus-
ter of workstations. The shared memory abstraction makes this
programming model easier to use, but because it hides a lot of de-
tails from the developer it is unable to exploit any application-level
knowledge and is therefore less efficient than the message passing
model. TreadMarks [4] is one of the better known realizations of
this programming model. Munin [5] is a DSM that implements

several schemes of memory coherence, which are dependent on the
object type declared by the programmer. Midway [6] is another
DSM that supports for multiple consistency models to be used in
the same program, but the model needs to be explicitly attached
with the shared object. CAPSULE makes use of code generation
to embed custom protocols into the shared object, and this is done
automatically based on the user inputs and the runtime information.
CAPSULE is also distinguished by its use of SVDL to specity the
deployment time composition of the shared variables.

More recently, Sinfonia [2] proposes a new paradigm for build-

ing scalable distributed systems. It provides efficient and consistent
access to shared memory. The memory is exposed as a linear ad-
dress space and makes use of a novel mini-transaction primitive.
CAPSULE and Sinfonia are targeted at different usage scenarios;
while Sinfonia focuses on providing a consistent view of the data,
CAPSULE focuses on providing a range of consistency models that
may fit the needs of different applications.
Distributed Objects, Object Stores and Services. Distributed ob-
jects, like the ones proposed in [17] provide an easy to use interface
to distributed shared state, and provide ways to use multiple con-
sistency models. However, such frameworks do not make use of
code-generation and therefore lack the performance, and lack the
customizations that are possible using SVDL.

Modern day web-applications pose problems that are associated
with the management of large amounts of data. To get access
data at this scale researchers have proposed large distributed ob-
ject stores [12, 8]. These object stores offer rapid access to generic
stored objects, reliability and handle large number of objects. In
comparison, CAPSULE offers access to a small number of special-
ized shared data objects, here the objects are specialized to offer
high-performance and scalable access to shared data.

More recently, institutions have been developing services to help
build large distributed systems. These, amongst others, include ser-
vices like PNUTS [9], GFS [14], MapReduce [11] and Chubby [7].
These systems attempt to offer difficult to implement functionali-
ties as a service and multiple applications can rely on such a ser-
vice. CAPSULE can be considered as a service for enabling state
sharing, but is targeted at a very different domain as compared to
the above-mentioned related work.

Some systems make use of databases and filesystems to enable
state sharing. However, such mechanisms fail to exploit the weaker
consistency guarantees, and offer customizations and performance
that are expected by the streaming applications. Memcached [15]
is distributed memory object caching mechanism that is intended to
be used with databases to speed up the web-application by caching
the results from recent queries. Again, CAPSULE offers special-
ized objects that offer efficient access to shared data, the focus is
on the optimizing the shared object implementation to speed-up the
access to data that resides in the behind the shared object facade.

8. CONCLUSIONS & FUTURE WORK

In this paper we described CAPSULE which is a code-generation
and runtime framework for enabling state sharing between System
S entities. Enabling state sharing in a distributed stream processing
system like System S poses a very distinct set of challenges, and
there are opportunities that can be exploited to meet the challenges.
CAPSULE by making use of its code-generation and runtime ca-
pabilities is able to customize a shared variable to suit the needs of
the usage scenario and the capabilities of the target runtime. CAP-
SULE is still under development and even coming up with a full-
fledged set of configuration parameters for a shared variable and

using them to arrive at the shared variable customization is going

to be an interesting challenge in the future. We are also explor-
ing the idea of pre-customized shared variable for certain scenarios

which are encountered very often by the users of System S. We
would also like to explore the possibility of using shared variables
as a way of parallelizing certain stream processing operators.

9. REFERENCES

[1] D.J. Abadi et al. The Design of the Borealis Stream
Processing Engine. In CIDR, 2005.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In SOSP, 2007.

[3] L. Amini et al. SPC: a distributed, scalable platform for data
mining. In Proceedings of the 4th international workshop on
Data mining standards, services and platforms, 2006.

[4] C. Amza et al. Treadmarks: Shared memory computing on
networks of workstations. IEEE Computer, 29, 1996.

[5] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin:
distributed shared memory based on type-specific memory
coherence. SIGPLAN Not., 25(3), 1990.

[6] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The
midway distributed shared memory system. Technical report,
Pittsburgh, PA, USA, 1993.

[7] M. Burrows. The chubby lock service for loosely-coupled
distributed systems. In OSDI, 2006.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for structured
data. ACM Trans. Comput. Syst., 26(2), 2008.

[9] B.F. Cooper et al. Pnuts: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2), 2008.

[10] The official CORBA standard from the OMG group. http:
//www.omg.org/docs/formal/04-03-12.pdf.

[11] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In OSDI, 2004.

[12] G. DeCandia et al. Dynamo: amazon’s highly available
key-value store. SIGOPS Oper: Syst. Rev., 41(6), 2007.

[13] B. Gedik et al. SPADE: the System S declarative stream
processing engine. In SIGMOD, 2008.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. SIGOPS Oper. Syst. Rev., 37(5).

[15] memcached journal =
http://www.danga.com/memcached/,.

[16] MPL http:
//www.mcs.anl.gov/research/projects/mpi/.

[17] K. Ostrowski, K. Birman, D. Dolev, and J. H. Ahnn.
Programming with live distributed objects. In ECOOP, 2008.

[18] PVM: Parallel virtual machine.
http://www.csm.ornl.gov/pvm/.

[19] R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade,
V. Kumar, and K.-L. Wu. A universal calculus for stream
processing languages. In European Symposium on
Programming (ESOP), pages 507-528, 2010.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, 2001.

[21] TCGMSG message passing library. http://www.ems1.
pnl.gov/docs/parsoft/tcgmsg/tcgmsg. html.

