
A Universal Calculus for
Stream Processing Languages

Robert Soulé1, Martin Hirzel2, Robert Grimm1, Buğra Gedik2,
Henrique Andrade2, Vibhore Kumar2, and Kun-Lung Wu2

1 New York University. soule,rgrimm@cs.nyu.edu
2 IBM Research. hirzel,bgedik,hcma,vibhorek,klwu@us.ibm.com

Abstract. Stream processing applications such as algorithmic trading,
MPEG processing, and web content analysis are ubiquitous and essen-
tial to business and entertainment. Language designers have developed
numerous domain-specific languages that are both tailored to the needs
of their applications, and optimized for performance on their particular
target platforms. Unfortunately, the goals of generality and performance
are frequently at odds, and prior work on the formal semantics of stream
processing languages does not capture the details necessary for reasoning
about implementations. This paper presents Brooklet, a core calculus for
stream processing that allows us to reason about how to map languages
to platforms and how to optimize stream programs. We translate from
three representative languages, CQL, StreamIt, and Sawzall, to Brooklet,
and show that the translations are correct. We formalize three popular
and vital optimizations, data-parallel computation, operator fusion, and
operator re-ordering, and show under which conditions they are correct.
Language designers can use Brooklet to specify exactly how new features
or languages behave. Language implementors can use Brooklet to show
exactly under which circumstances new optimizations are correct. In on-
going work, we are developing an intermediate language for streaming
that is based on Brooklet. We are implementing our intermediate lan-
guage on System S, IBM’s high-performance streaming middleware.

1 Introduction

Stream processing applications are everywhere. In finance, algorithmic trading
programs federate live data feeds from independent exchanges to execute trade
orders. Media players decode fixed-rate, MPEG-formatted byte streams, when
viewers watch video streamed over the internet and digital television networks,
or from DVD and Blu-ray discs. Search engines use large compute clusters to
analyze snapshots of the web streamed from disk to construct the indices that
enable fast information retrieval.

Informally, all such streaming applications are similar in that they require
moving large amounts of data through several computational steps. These three
examples illustrate the diversity of requirements for stream processing with re-
spect to, among other things, program topology, data rate, and distributed ex-
ecution. This diversity has led language designers to develop numerous domain-
specific languages [1, 3, 4, 9, 18, 20, 24, 26, 28] that are both tailored to the needs

2 Robert Soulé et al.

of their particular applications, and optimized for performance on their particu-
lar target runtimes. Three prominent examples are CQL, StreamIt, and Sawzall:

– CQL [1] and other StreamSQL dialects [24] are popularly used for algorith-
mic trading. CQL extends SQL’s well studied relational operators with a
notion of windows over infinite streams of data, and relies on classic query
optimizations [1], such as moving a selection before a join.

– StreamIt [26], a synchronous data-flow language with stream abstractions,
has been used for MPEG encoding and decoding [6]. The StreamIt compiler
enforces static data transfer rates between user-defined operators with fixed
topologies, and improves performance through operator fusion, fission, and
pipelining [26].

– Sawzall [20], a scripting language for Google’s MapReduce [5] platform, is
used for web-related analysis. The MapReduce framework streams data items
through multiple copies of user-defined map operators and then aggregates
the results through reduce operators on a cluster of workstations. We view
Sawzall as a streaming language in the broader sense, and address it in this
paper to showcase the generality of our work.

These three examples by no means comprise an exhaustive list of stream pro-
gramming languages, but they are representative of the design space. In each
case, language designers made difficult choices when considering the trade-offs
between performance, usability, and generality. For example, StreamIt sacrifices
generality for performance by restricting data transfer to fixed rates.

When considering these trade-offs, it is essential that language designers un-
derstand both how a language maps to its target platform, and how to optimize
stream programs with respect to that mapping. Unfortunately, while streaming
systems are well studied [2, 14–16], prior work on the formal semantics of stream
processing languages does not capture the details necessary for reasoning about
implementation techniques. This paper presents Brooklet, a core calculus for
stream programming languages that universally models any streaming language,
and facilitates reasoning about program implementation3.

The challenge in defining a calculus is deciding what parts of a language
constitute the core concepts that need to be modeled in the formal semantics,
and what details can be abstracted away. The two goals of understanding how
a language maps to a platform, and how to optimize stream programs with
respect to that mapping, dictate the requirements. First, to understand how
a language maps to an execution environment, we need to understand how the
state embodied in its operational building blocks is implemented on a distributed
platform. Therefore, Brooklet makes state explicit as a core concept. Second,
to understand how to optimize stream programs, we need to understand how
to enable language-level determinism on top of the inherent implementation-
level non-determinism of a distributed system. Therefore, Brooklet exposes non-
determinism as another core concept. Exposing non-determinism makes the ma-
chinery for achieving global determinism explicit, such as when implementing
3 Brooklet is so named because it is the essence of a stream, and is unrelated to the

Brook language [3].

A Universal Calculus for Stream Processing Languages 3

synchronous data flow. On the other hand, modeling local deterministic compu-
tations is well-understood, so our semantics treat local computations as opaque
functions. Since our semantics are small-step, this abstraction loses none of the
fine-grained interleaving effects of the distributed computation.

In this paper we make the following contributions:

– We define a core calculus for stream processing that is universal, and fa-
cilitates reasoning about program implementation by modeling state and
non-determinism as core concepts.

– We translate CQL, StreamIt, and Sawzall to Brooklet, demonstrating the
comprehensiveness of our calculus. This translation also defines the first
formal semantics for Sawzall.

– We use our calculus to show the conditions that enable three vital optimiza-
tions data-parallel computation, operator fusion, and operator re-ordering.

This sets a foundation for an implementation of Brooklet, which can serve as a
common intermediate language for stream processing with a rigorous formal se-
mantics. We are in the process of exploring this implementation on System S [9],
IBM’s high-performance streaming middleware.

2 Notation

Throughout the paper, an over-bar, as in q, denotes a finite sequence q1, . . . , qn,
and the i-th element in that sequence is written qi, where 1 ≤ i ≤ n. The lower-
case letter b is reserved for lists, and • is an empty list. A comma indicates cons or
append, depending on the context; for example d, b is a list consed from the first
item d and the remaining items b. A bag is a set with duplicates. The notation
{e : condition} denotes a bag comprehension: it specifies the bag of all e’s where
the condition is true. The symbol ∅ stands for both an empty set and an empty
bag. If E is a store, then the substitution [v 7→ d]E denotes the store that maps
name v to value d and is otherwise identical to E. Angle brackets identify a tuple.
For example, 〈σ, τ〉 is a tuple that contains the elements σ and τ . In inference
rules, an expression of the form d, b = b′ performs pattern matching; it succeeds
if the list b′ is non-empty, in which case it binds d to the first element of b′

and b to the remainder of b′. Pattern-matching also works on other meta-syntax,
such as tuple construction. An underscore character _ indicates a wildcard, and
matches anything. Semantics brackets such as [[Pb]]pz indicate translation. The
subscripts b,c,s,z stand for Brooklet, CQL, StreamIt, and Sawzall, respectively.

3 Brooklet

A stream processing language is a language that hides the mechanics of stream
processing; it notably has built-in support for moving data through computations
and for composing the computations with each other. Brooklet is a core calculus
for such stream processing languages. It is designed to model any streaming
language, and to facilitate reasoning about language implementation. To achieve
these goals, Brooklet models state and non-determinism as core concepts, and
abstracts away local deterministic computations.

4 Robert Soulé et al.

Brooklet syntax:
Pb ::= out in op Brooklet program
out ::= output q ; Output declaration
in ::= input q ; Input declaration
op ::= (q, v) ← f (q, v); Operator
q ::= id Queue identifier
v ::= $ id Variable identifier
f ::= id Function identifier

Brooklet example: IBM market maker.
output result;
input bids, asks;
(ibmBids) ← SelectIBM(bids);
(ibmAsks) ← SelectIBM(asks);
($lastAsk)← Window(ibmAsks);
(ibmSales)← SaleJoin(ibmBids,$lastAsk);
(result,$cnt) ← Count(ibmSales,$cnt);

Brooklet semantics: Fb ` 〈V, Q〉 −→ 〈V ′, Q′〉
d, b = Q(qi)

op = (_, _)← f(q, v);

(b
′
, d

′
) = Fb(f)(d, i, V (v))

V ′ = updateV (op, V, d
′
)

Q′ = updateQ(op, Q, qi, b
′
)

Fb ` 〈V, Q〉 −→ 〈V ′, Q′〉
(E-FireQueue)

op = (_, v)← f(_, _);

updateV (op, V, d) = [v 7→ d]V
(E-UpdateV)

op = (q, _)← f(_, _);
df , bf = Q(qf)

Q′ = [qf 7→ bf]Q
Q′′ = [∀qi∈q : qi 7→ Q(qi), bi]Q

′

updateQ(op, Q, qf , b) = Q′′ (E-UpdateQ)

Fig. 1. Brooklet syntax and semantics.

3.1 Brooklet Program Example: IBM Market Maker
As an example of a streaming program, we consider a hypothetical application
that trades IBM stock. Data arrives on two input streams, bids(symbol,price)
and asks(symbol,price), and leaves on the result(cnt,symbol,price) output
stream. Since the application is only interested in trading IBM stock, it filters
out all other stock symbols from the input. The application then matches bid
and ask prices from the filtered streams to make trades. To keep the example
simple, we assume that each sale is for exactly one share. The Brooklet program
in the bottom left corner of Fig. 1 produces a stream of trades of IBM stock,
along with a count of the number of trades.

3.2 Brooklet Syntax
A Brooklet program defines a directed, possibly cyclic, graph of operators con-
taining pure functions connected by FIFO queues. It uses variables to explicitly
thread state through operators. Data items on a queue model network packets
in transit. Data items in variables model stored state; since data items may be
lists, a variable may store arbitrary amounts of historical data. The following
line from the market maker application defines an operator:

(ibmSales) ← SaleJoin(ibmBids, $lastAsk);

The operator reads data from input queue ibmBids and variable $lastAsk. It
passes that data as parameters to the pure function SaleJoin, and writes the
result to the output queue ibmSales. Brooklet does not define the semantics of
SaleJoin. Modeling local deterministic computations is well-understood [17, 19],
so Brooklet abstracts them away by encapsulating them in opaque functions.
On the other hand, a Brooklet program does define explicit uses of state. In the
example, the following line defines a window over the stream ibmAsks:

($lastAsk) ← Window(ibmAsks);

The window contains a single tuple corresponding to the most recent ask for an
IBM stock, and the tuple is stored in the variable $lastAsk. Both the Window and
SaleJoin operators access $lastAsk.

The Window operator writes data to $lastAsk, but does not use the data stored
in the variable in its internal computations. Operators that incrementally update
state must both read and write the same variable, such as in the Count operator:

A Universal Calculus for Stream Processing Languages 5

(result, $cnt) ← Count(ibmSales, $cnt);

Queues that appear only as operator input, such as bids and asks, are program
inputs, and queues that appear only as operator output, such as result, are pro-
gram outputs. Brooklet’s syntax uses the keywords input and output to declare
a program’s input and output queues. We say that a queue is defined if it is an
operator output or a program input. We say that a queue is used if it is an op-
erator input or a program output. Variables may be defined and used in several
clauses, since they are intended to thread state through a streaming application.
In contrast, each queue must be defined once and used once. This restriction fa-
cilitates using our semantics for proofs and optimizations. The complete Brooklet
grammar appears in Fig. 1.

3.3 Brooklet Semantics
A program operates on data items from a domain D, where a data item is a
general term for anything that can be stored in queues or variables, including
tuples, bags of tuples, lists, or entire relations from persistent storage. Queue
contents are represented by lists of data items. We assume that the transport
network is lossless and order-preserving but may have arbitrary delays, so queues
support only push-to-back and pop-from-front operations.

3.3.1 Brooklet Execution Configuration. The function environment Fb

maps function names to function implementations. This environment allows us
to treat operator functions as opaque. For example, Fb(SelectIBM) would return
a function that filters out data items whose stock symbol differs from IBM.

At any given time during program execution, the configuration of the Brooklet
program is defined as a pair 〈V,Q〉, where V is a store that maps variable names
to data items (in the market maker example, $cnt is initialized to zero and
$lastAsk is initialized to the tuple 〈‘IBM’,∞〉), and Q is a store that maps
queue names to lists of data items (initially, all queues except the input queues
are empty).

3.3.2 Brooklet Execution Semantics. Computation proceeds in small steps.
Each step fires Rule E-FireQueue from Fig. 1. To explain this rule, we illustrate
each line rule one by one, starting with the following intermediate configuration
of the market maker example:

V =
h
$lastAsk 7→ 〈‘IBM’, 119〉, $cnt 7→ 0

i
Q =

 bids 7→ •, ibmBids 7→
“
〈‘IBM’, 119〉, 〈‘IBM’, 124〉

”
,

asks 7→ •, ibmAsks 7→ •,
ibmSales 7→ •, result 7→ •


d, b = Q(qi) : Non-deterministically select a firing queue qi. For a queue to be

eligible as a firing queue, it must satisfy two conditions: it must be non-
empty (because we are binding d, b to its head and tail), and it must appear
as an input to some operator (because we are executing that operator’s firing
function). This step can select any queue satisfying these two conditions.
E.g., qi = ibmBids, d = 〈‘IBM’, 119〉, b =

(
〈‘IBM’, 124〉

)
.

6 Robert Soulé et al.

op = (_, _)← f(q, v); : Because of the single-use restriction, qi uniquely iden-
tifies an operator.
E.g., op = (ibmSales) ← SaleJoin(ibmBids, $lastAsk);.

(b
′
, d
′
) = Fb(f)(d, i, V (v)) : Use the function name to look up the corresponding

function from the environment. The function parameters are the data item
popped from qi; the index i relative to the operator’s input list; and the
current values of the variables in the operator’s input list. For each output
queue, the function returns a list b′j of data items to append, and for each
output variable, the function returns a single data item d′j to store.

E.g., b
′
=

((
〈‘IBM’, 119, 119〉

))
, d
′
= •,

d = 〈‘IBM’, 119〉, i = 1, V (v) = 〈‘IBM’,119〉.
V ′ = updateV (op, V, d

′
) : Update the variables using the output d

′
.

E.g., in this example, d
′
= •, so V ′ = V .

Q′ = updateQ(op, Q, qi, b
′
) : Update the queues: remove the popped data item

from the firing queue, and for each output queue, push the corresponding list
of output data items. The example has only one output queue and datum.

E.g., Q′ =

2664
bids 7→ •, ibmBids 7→

“
〈‘IBM’, 124〉

”
,

asks 7→ •, ibmAsks 7→ •,
ibmSales 7→

“
〈‘IBM’, 119, 119〉

”
, result 7→ •

3775
3.4 Brooklet Execution Function

We denote a program’s input 〈V,Q〉 as Ib and an output 〈V ′, Q′〉 as Ob. Given a
function environment Fb, program Pb, and input Ib, the function →∗b (Fb, Pb, Ib)
yields the set of all final outputs. An execution yields a final output when no
queue is eligible to fire. Due to non-determinism, the set may have more than
one element. One possible output Ob of our running example is:

V =
h
$lastAsk 7→ 〈‘IBM’, 119〉, $cnt 7→ 1

i
Q =

[
bids 7→ •, asks 7→ •, ibmSales 7→ •,

ibmBids 7→ •, ibmAsks 7→ •, result 7→
“
〈1, ‘IBM’, 119〉

”]
The example illustrates the finite case. But in some application domains, streams
are conceptually infinite. To use our semantics in that case, we use a theoretical
result from prior work: if a stream program is computable, then one can gen-
eralize from all finite prefixes of an infinite stream to the infinite case [11]. If
→∗b yields the same result for all finite inputs to two programs, then we consider
these two programs equivalent even on infinite inputs.

3.5 Brooklet Summary

Brooklet is a core calculus for stream processing. We designed it to universally
model any streaming language, and to facilitate reasoning about program imple-
mentation. Brooklet models state through explicit variables, thus making it clear
where an implementation needs to store data. Brooklet captures inherent non-
determinism by not specifying which queue to fire for each step, thus permitting
all interleavings possible in a distributed implementation.

A Universal Calculus for Stream Processing Languages 7

4 Language Mappings

We demonstrate Brooklet’s generality by mapping three streaming languages
CQL, StreamIt, and Sawzall to it. Each translation exposes implicit uses of state
as explicit variables; exposes a mechanism for implementing global determinism
on top of an inherently non-deterministic runtime; and abstracts away local
deterministic computations with higher-order wrappers that statically bind the
original function and dynamically adapt the runtime arguments (thus preserving
small step semantics).

4.1 CQL and Stream-Relational Algebra
CQL syntax:

Pc ::= Pcr | Pcs CQL program
Pcr ::= (Relation query)

RName Relation name
| S2R(Pcs) Stream to relation

| R2R(Pcr) Relation to relation
Pcs ::= (Stream query)

SName Stream name
| R2S(Pcr) Relation to stream

RName | SName ::= id Input name
S2R | R2R | R2S ::= id Operator name

CQL example: Bargain finder.
IStream(BargainJoin(Now(quotes), history))

CQL program translation: [[Fc, Pc]]pc = 〈Fb, Pb〉
[[Fc, SName]]pc = ∅, outputSName;inputSName;•

(Tp
c -SName)

[[Fc, RName]]pc = ∅, outputRName;inputRName;•
(Tp

c -RName)

Fb, output qo; input q; op = [[Fc, Pcs]]pc
q′o = freshId() v = freshId()

F ′
b = [S2R 7→ wrapS2R(Fc(S2R))]Fb

op′ = op, (q′o, v)← S2R(qo, v);

[[Fc, S2R(Pcs)]]pc = F ′
b, output q′o; input q; op′

(Tp
c -S2R)

Fb, output qo; input q; op = [[Fc, Pcr]]pc
q′o = freshId() v = freshId()

F ′
b = [R2S 7→ wrapR2S(Fc(R2S))]Fb

op′ = op, (q′o, v)← R2S(qo, v);

[[Fc, R2S(Pcr)]]pc = F ′
b, output q′o; input q; op′

(Tp
c -R2S)

Fb, output qo; input q; op = [[Fc, Pcr]]pc
n = |Pcr| q′o = freshId() q′ = q1, . . . , qn

∀i ∈ 1 . . . n : vi = freshId() op′ = op1, . . . , opn

F ′
b = [R2R 7→ wrapR2R(Fc(R2R))](∪Fb)

op′′ = op′, (q′o, v)← R2R(qo, v);

[[Fc, R2R(Pcr)]]pc = F ′
b, output q′o;input q′;op′′

(Tp
c -R2R)

CQL domains:

τ∈T Time
e∈T P Tuple
σ∈Σ = bag(T P) Instantaneous relation
r∈R = T → Σ Time-varying relation
s∈S = bag(T P×T) Time-varying stream

. .
CQL operator signatures:

S2R : S × T → Σ
R2S : Σ ×Σ → Σ
R2R : Σn → Σ

. .
CQL operator wrapper signatures:

S2R : (Σ × T)× {1} × S → (Σ × T)× S
R2S : (Σ × T)× {1} ×Σ → (Σ × T)×Σ

R2R : (Σ × T)× {1 . . . n} × (2Σ×T)n

→ (Σ × T)× (2Σ×T)n

CQL operator wrappers:
σ, τ = dq s = dv

s′ = s ∪ {〈e, τ〉 : e ∈ σ} σ′ = f(s′, τ)

wrapS2R(f)(dq, _, dv) = 〈σ′, τ〉, s′

(Wc-S2R)

σ, τ = dq σ′ = dv σ′′ = f(σ, σ′)

wrapR2S(f)(dq, _, dv) = 〈σ′′, τ〉, σ
(Wc-R2S)

σ, τ = dq d′i = di ∪ {〈σ, τ〉}
∀j 6= i ∈ 1 . . . n : d′j = dj

∃j ∈ 1 . . . n : @σ : 〈σ, τ〉 ∈ dj

wrapR2R(f)(dq, i, d) = •, d
′

(Wc-R2R-Wait)

σ, τ = dq d′i = di ∪ {〈σ, τ〉}
∀j 6= i ∈ 1 . . . n : d′j = dj

∀j ∈ 1 . . . n : σj = aux(dj , τ)

wrapR2R(f)(dq, i, d) = 〈f(σ), τ〉, d
′

(Wc-R2R-Ready)

〈σ, τ〉 ∈ d

aux(d, τ) = σ
(Wc-R2R-Aux)

Fig. 2. CQL semantics on Brooklet.

CQL, the Continuous Query Language, is a member of the StreamSQL family
of languages. StreamSQL gives developers who are familiar with SQL’s select-
from-where syntax an incremental learning path to stream programming. This
paper uses CQL to represent the entire StreamSQL family, because it has a clean
design, has made significant impact [1], and has a formal semantics [2].

8 Robert Soulé et al.

4.1.1 CQL Program Example: Bargain Finder. A CQL program Pc is a
query that computes a stream or relation from other streams or relations. The
following hypothetical example uses CQL for algorithmic trading:
select IStream(*) from quotes[Now], history

where quotes.ask <= history.low and quotes.ticker == history.ticker

This program finds bargain quotes, whose ask price is lower than the historic
low. The program has two inputs, a stream quotes and a time-varying re-
lation history. A stream in CQL is a bag of time-tagged tuples. The same
information can be more conveniently represented as a mapping from time
stamps to bags of tuples. CQL calls such a mapping a time-varying relation,
and each individual bag of tuples an instantaneous relation. In the example,
input history(ticker,low) is the time-varying relation rh:

rh =
»
1 7→

n
〈‘IBM’, 119〉, 〈‘XYZ’, 38〉

o
, 2 7→

n
〈‘IBM’, 119〉, 〈‘XYZ’, 35〉

o–
The instantaneous relation rh(1) is {〈‘IBM’, 119〉, 〈‘XYZ’, 38〉}. The CQL stream
sq represents the input quotes(ticker,ask):

sq =

〈〈‘IBM’, 119〉, 1〉, 〈〈‘IBM’, 124〉, 1〉, 〈〈‘XYZ’, 35〉, 2〉, 〈〈‘IBM’, 119〉, 2〉

ff
The subquery quotes[Now] uses the window [Now] to turn the quotes stream into
a time-varying relation rq:

rq =
»
1 7→

n
〈‘IBM’, 119〉, 〈‘IBM’, 124〉

o
, 2 7→

n
〈‘XYZ’, 35〉, 〈‘IBM’, 119〉

o–
The next step of the query joins the quote relation rq with the history relation
rh into a bargains relation rb:

rb =
»
1 7→

n
〈‘IBM’, 119, 119〉

o
, 2 7→ {〈‘XYZ’, 35, 35〉, 〈‘IBM’, 119, 119〉

o–
Finally, the IStream operator monitors insertions into relation rb and emits them
as output stream so of time-tagged tuples:

so =

〈〈‘IBM’, 119, 119〉, 1〉, 〈〈‘XYZ’, 35, 35〉, 2〉

ff
While CQL uses select-from-where syntax, the CQL semantics use an equivalent
stream-relational algebra syntax (similar to relational algebra in databases):

IStream(BargainJoin(Now(quotes), history))

This algebraic notation makes the operator tree clearer. The leaves are stream
name quotes and relation name history. CQL has three categories of opera-
tors. S2R operators turn a stream into a relation; e.g., Now(quotes) turns stream
quotes into relation rq. R2R operators turn one or more relations into a new
relation; e.g., BargainJoin(rq, rh) turns relations rq and rh into the bargain re-
lation rb. Finally, R2S operators turn a relation into a stream; e.g., IStream(rb)

turns relation rb into the stream of its insertions. CQL has no S2S operators, be-
cause they would be redundant. CQL’s R2R operators coincide with traditional
database relational algebra.

The CQL grammar is in Fig. 2. A CQL program Pc can be either a relation
query Pcr or a stream query Pcs, and queries are either simple identifiers RName
or SName, or composed using operators from the categories S2R, R2R, or R2S.

A Universal Calculus for Stream Processing Languages 9

4.1.2 CQL Implementation Issues. Before we translate CQL to Brooklet,
let us discuss the two issues of state and non-determinism in CQL.
CQL state. CQL represents global state explicitly as named relations, such as
the history relation from our running example. But in addition, all three kinds of
CQL operators implicitly maintain local state, referred to as “synopses” in [1].
An S2R operator maintains the state of a window on a stream to produce a
relation. An R2S operator stores the previous state of the relation to compute
the stream of differences. Finally, an R2R operator uses state to buffer data from
whichever relation is available first, so it can be retrieved later to compute an
output when data with matching time stamps is available for all relations.
CQL non-determinism. CQL is deterministic in the sense that the output of a
program is fully determined by the times and values of its inputs [2]. Although
a program can have independent inputs, for example, from a customer and from
a stock exchange, any timing ambiguities outside the language are resolved by
adding unambiguous time stamps. A CQL implementation might either assign
time stamps upon receiving data, or use time stamps that are an inherent part
of the input data, such as trading times. However, CQL implementations can
permit non-determinism to exploit parallelism. For example, the implementation
need not fully determine the order in which operators Now and BargainJoin pro-
cess their data in BargainJoin(Now(quotes), history). They can run in parallel
as long as BargainJoin always waits for its two inputs to have the same time
stamp.

Translation to Brooklet will make all state explicit, and will clarify how the
implementation enforces determinism.

4.1.3 CQL Translation Example. Given the CQL example program from
Fig. 2, the translation to Brooklet is the program Pb:
output qo;

input quotes, history;

(qq, $vn) ← wrapNow(quotes, $vn);

(qb, $vq, $vh) ← wrapBargainJoin(qq, history, $vq, $vh);

(qo, $vo) ← wrapIStream(qb, $vo)

The leaves of the query tree serve as input queues; each subquery produces
an intermediate queue, which the enclosing operator consumes; and the outer-
most query operator produces the program output queue. The translation to
Brooklet makes the state of the operators explicit. The most interesting state is
that of the wrapBargainJoin operator. Like each R2R operator, it has a function
Fc(BargainJoin) that transforms one or more input instantaneous relations of
the same time stamp to one output instantaneous relation. Brooklet models the
choice of interleavings by allowing either queue qq or history to fire indepen-
dently. Hence, the Brooklet operator processes one data item each time either
queue fires. Assume a data item arrives on the first queue qq. If there is already
a data item with the same time stamp in the variable vh associated with the
second queue, Brooklet performs the join, which may yield data items for the
output queue qb. Otherwise, it simply stores the data item in vq for later.

10 Robert Soulé et al.

4.1.4 CQL Translation. Fig. 2 shows the translation from CQL to Brooklet
by recursion over the input program. Besides building up a program, the trans-
lation also builds up a function environment, which it populates with wrappers
for the original functions. The translation introduces state, which the Brooklet
wrappers maintain and consult to hand the right input to the wrapped CQL
functions. Working in concert, the rules enforce a global convention: the ex-
ecution sends exactly one instantaneous relation on every queue at every time
stamp. Operators retain historical data in variables, e.g., to implement windows.

4.1.5 CQL Discussion. CQL is an SQL dialect for streaming [1]. Arasu
and Widom specify big-step denotational semantics for CQL [2]. We show how
to translate CQL to Brooklet, thus giving an alternative semantics. As we will
show below, both semantics define equivalent input/output behavior for CQL
programs. Translations from other languages can use similar techniques, i.e.,
make state explicit as variables; wrap computation in small-step firing functions;
and define a global convention for how to achieve determinism.

4.2 StreamIt and Synchronous Data Flow

StreamIt [27, 26] is a streaming language tailored for parallel implementations of
applications such as MPEG decoding [6]. At its core, StreamIt is a synchronous
data flow (SDF) language [16], which means that each time an operator fires,
it consumes a fixed number of data items and produces a fixed number of data
items. In the MPEG example, data items are pictures. StreamIt distinguishes be-
tween primitive and composite operators. A primitive operator (filter in StreamIt
terminology) has optional local state. A composite operator is either a pipeline,
a split-join, or a feedback loop. A pipeline puts operators in sequence, a split-join
puts them in parallel, and a feedback loop puts them in a cycle. The topology
of a StreamIt program is restricted to well-nested compositions of these. All
StreamIt operators and programs have exactly one input and one output. We
only focus on StreamIt’s SDF core here, and encapsulate the local deterministic
part of the computation in opaque pure functions, while keeping the parts of the
computation that are relevant to streaming. We omit non-core features such as
teleport messaging [6], which delivers control messages between operators and
which could be modeled in Brooklet through shared variables.

4.2.1 StreamIt Program Example: MPEG Decoder. The following ex-
ample StreamIt program Ps is based on a similar example by Drake et al. [6].

pipeline {

splitjoin {

split roundrobin;

filter { work { tf ← FrequencyDecode(peek(1)); push(tf); pop(); }}

filter { work { tm ← MotionVecDecode(peek(1)); push(tm); pop(); }}

join roundrobin;

}

filter { s; work { s,tc ← MotionComp(s,peek(1)); push(tc); pop(); }}

}

A Universal Calculus for Stream Processing Languages 11

It illustrates how the StreamIt language can be used to decode MPEG video. The
example uses a pipeline and a split-join to compose three filters. Each filter has
a work function, which peeks and pops from its predecessor stream, computes a
temporary value, and pushes to its successor stream. In addition, the MotionComp

filter also has an explicit state variable s for storing a reference picture between
iterations. We omit the full syntax of Streamit for space reasons; the interested
reader can find it in Appendix B of the extended technical report[22].

4.2.2 StreamIt Implementation Issues. As before, we first discuss the
intuition for the implementation before giving the details of the translation.

StreamIt state. Filters can have explicit state, such as s in the example. Fur-
thermore, since Brooklet queues support only push and pop but not peek, the
translation of StreamIt will have to buffer data items in a state variable un-
til enough are available to satisfy the maximum peek() argument in the work
function. Round-robin splitters also need a state variable with a cursor that
determines where to send the next data item. A cursor is simply an index rela-
tive to the splitter. It keeps track of which queue is next in round-robin order.
Round-robin joiners also need a cursor, plus a buffer for any data items that
arrive out of turn.

StreamIt non-determinism. StreamIt, at the language level, is deterministic. Fur-
thermore, since it is an SDF language, the number of data items peeked, popped,
and pushed by each operator is constant. At the same time, StreamIt permits
pipeline-, task-, and data-parallelism. This gives an implementation different
scheduling choices, which Brooklet models by non-deterministically selecting a
firing queue. Despite these non-deterministic choices, an implementation must
ensure deterministic end-to-end behavior, which our translation makes explicit
with buffering and synchronization.

4.2.3 StreamIt Translation Example. StreamIt program translation turns
the StreamIt MPEG decoder Ps from earlier into a Brooklet program Pb:

output qout;

input qin;

(qf, qm, $sc) ← wrapRRSplit-2(qin, $sc);

(qfd, $f) ← wrapFilter-FrequencyDecode(qf, $f);

(qmd, $m) ← wrapFilter-MotionVecDecode(qm, $m);

(qd, $fd, $md, $jc) ← wrapRRJoin-2(qfd, qmd, $fd, $md, $jc);

(qout, $s, $mc) ← wrapFilter-MotionComp(qd, $s, $mc);

Each StreamIt filter becomes a Brooklet operator. StreamIt composite operators
are reflected in Brooklet’s operator topology. StreamIt’s SplitJoin yields separate
Brooklet split and join operators. The stateful filter MotionComp has two variables:
$s models its explicit state s, and $mc models its implicit buffer.

4.2.4 StreamIt Translation. For space reasons, we give only a high-level
overview of the StreamIt translation here (the details are in Appendix B of the
extended technical report[22]). Similarly to CQL, there are recursive translation
rules, one for each language construct. The base case is the translation of filters,

12 Robert Soulé et al.

StreamIt program xlation excerpt:

f = freshId()
v = freshId()

Fb = [f 7→ wrapRRSplit(|q|)]
op = (q, v)← f(qa, v);

[[Fs, split roundrobin;, q, qa]]ps = Fb, op
(Tp

s -RR-Split)

f = freshId()
∀i ∈ 0 . . . |q′| : vi = freshId()
Fb = [f 7→ wrapRRJoin(|q′|)]

op = (qz, v)← f(q′, v);

[[Fs, join roundrobin;, qz, q′]]ps = Fb, op
(Tp

s -RR-Join)

StreamIt operator wrappers excerpt:

c′ = c + 1 mod N bv = din

∀i ∈ 1 . . . N, i 6= c : bi = •
wrapRRSplit(N)(din, _, c) = b, c′

(Ws-RR-Split)

d′i = din, di ∀j 6= i ∈ 1 . . . N : d′j = dj

d′′c , dout = d′c ∀j 6= c ∈ 1 . . . N : d′′j = d′j
bout , c′, d

′′′
= wrapRRJoin(N)(•, i, c + 1 mod N, d

′′
)

wrapRRJoin(N)(din , i, c, d) = (bout , dout), c′, d
′′′

(Ws-RR-Join-Ready)

∀j 6= i ∈ 1 . . . N : d′j = dj d′i = din, di dc = •

wrapRRJoin(N)(din , i, c, d) = •, c, d
′

(Ws-RR-Join-Wait)

Fig. 3. StreamIt round-robin split and join semantics on Brooklet.

and the recursive cases compose larger topologies for pipelines, split-joins, and
feedback loops. Feedback loops turn into cyclic Brooklet topologies. The most
interesting aspect are the helper rules for split and join, because they use explicit
Brooklet state to achieve StreamIt determinism. Fig. 3 shows the rules. The input
to the splitter is a queue qa, and the output is a list of queues q; conversely, the
input to the joiner is a list of queues q′, and the output is a single queue qz. Both
the splitter and the joiner maintain a cursor to keep track of the next queue in
round-robin order. The joiner also stores one variable for each queue, to buffer
data that arrives out-of-turn.

4.2.5 StreamIt Discussion. Our translation from StreamIt to Brooklet yields
a program with maximum scheduling flexibility, allowing any interleavings as
long as the end-to-end behavior matches the language semantics. This makes
it amenable to distributed implementation. In contrast, StreamIt compilers [26]
statically fix one schedule, which also determines where intermediate results are
buffered. The buffering is implicit state, and StreamIt also has explicit state in
filters. As we will see in Section 5, state affects the applicability of optimizations.
Prior work on formal semantics for StreamIt does not model state [27]. By mod-
eling state, our Brooklet translation facilitates reasoning about optimizations.

4.3 Sawzall and MapReduce
Sawzall [20] is a scripting language for MapReduce [5], which exploits cluster of
workstations to analyze a massive but finite sequence of key/value pairs streamed
from disk. In Sawzall, a stateless map operator transforms data one key/value
pair at a time, feeding into a stateful reduce operator. The reduce operator
works on separate keys separately, incrementally aggregating all values for a
key into a single value. Although Sawzall programs are batch jobs, they use
incremental operators to process large quantities of data in a single pass, and
we therefore consider it a streaming language. Our translation provides the first
formal semantics for Sawzall.

4.3.1 Sawzall Program Example: Query Log Analyzer. The example
Sawzall program in Fig. 4 is based on a similar example in [20]. The program
analyzes a query log to count queries per latitude and longitude, which can then
be plotted on a world map. This program specifies one invocation of the map

A Universal Calculus for Stream Processing Languages 13

Sawzall syntax:

Pz ::= out in emit Sawzall program
out ::= t : table f; Output aggregator
in ::= q : input; Input declaration
emit ::= emit t[f(q)] ← f(q); Emit statement
q ::= id Queue name
f ::= id Function name
t ::= id Table name

Sawzall example: Query log analyzer.
queryOrigins : table sum;
queryTargets : table sum;
logRecord : input;
emit queryOrigins[getOrigin(logRecord)]←1;
emit queryTargets[getTarget(logRecord)]←1;

Sawzall program xlation: [[Fz, Pz, R]]pz =〈Fb, Pb〉

out, qin: input;, emit = Pz

∀i ∈ 1 . . . R : qi = freshId()
∀i ∈ 1 . . . R : vi = freshId()

fMap = wrapMap(Fz, emit, R)
fReduce = wrapReduce(Fz, out)

Fb = [Map 7→ fMap, Reduce 7→ fReduce]
opm = (q)← Map(qin);

∀i ∈ 1 . . . R : opi = (vi)← Reduce(qi,vi);

op′ = opm, op

[[Fz, Pz, R]]pz = Fb, output • ;input qin;op
′ (Tp

z)

Sawzall domains:
k1 ∈K1 Input key k2 ∈K2 Output key
x1 ∈X1 Input value x2 ∈X2 Output value
t ∈T Aggregate name Oz ∈K2→X2 Output table

Sawzall operator signatures:

fk : K1 × X1 → K2 fx : K1 × X1 → X∗2
fa : X2 × X2 → X2

Sawzall operator wrapper signatures:

Map : (K1 × X1)× {1} → (T × K2 × X2)
∗

Reduce: (T × K2 × X2)× {1} ×Oz → Oz

Sawzall operator wrappers:

emit t[fk(_)]← fx(_); = emit

b = wrapMap(Fz, emit, R)(d, 1)
k1, x1 = d k2 = Fz(fk)(k1, x1)

x2 = Fz(fx)(k1, x1) i = hash(k2) mod R
b′i = bi, 〈t, k2, x21 〉, . . . , 〈t, k2, x2n 〉

∀j 6= i ∈ 1 . . . R : b′j = bj

wrapMap(Fz, (emit, emit), R)(d, _) = b
′

(Wz-Map)

∀i ∈ 1 . . . R : bi = •
wrapMap(Fz, •, R)(_, _) = b

(Wz-Map-•)

t, k2, x2 = dq t : table fa[]; ∈ out
k2 ∈ dv x′2 = Fz(fa)(x2, dv(k2))

d′v = [k2 7→ x′2]dv

wrapReduce(Fz, out)(dq, _, dv) = d′v
(Wz-Reduce)

t, k2, x2 = dq t : table fa[]; ∈ out
k2 6∈ dv d′v = [k2 7→ x2]dv

wrapReduce(Fz, out)(dq, _, dv) = d′v
(Wz-Reduce-∅)

Fig. 4. Sawzall semantics on Brooklet.

operator, and uses table clauses to specify sum as the reduce operator. The map
operator transforms its input logRecord into two key/value pairs:

〈k, x〉 = 〈getOrigin(logRecord), 1〉
〈k′, x′〉= 〈getTarget(logRecord), 1〉

Here, getOrigin and getTarget are pure functions that compute the latitude and
longitude of the host issuing the query and the host serving the result, respec-
tively. The latitude and longitude together serve as the key into the tables. Since
the number 1 serves as the value associated with the key, the sum aggregators
end up counting query log entries by key. Fig. 4 shows the Sawzall grammar.

4.3.2 Sawzall Implementation Issues. Sawzall has stateful and non-deter-
ministic implementations.

Sawzall state. The map operator is stateless, whereas the reduce operator is
stateful, using state to incrementalize its aggregation. The implementation in
Pike et al.’s paper [20] partitions the reducer key space into R parts, where R is
a command-line argument upon job submission. There are multiple instances of
the reduce operator, one per partition. Because reduction works independently
per key, each instance of the reduce operator can maintain the state for its
assigned part of the key space independently.

Sawzall non-determinism. At the language level, Sawzall is deterministic. Sawzall
is designed for MapReduce, and the strength of MapReduce is that at the im-
plementation level, it runs on a cluster of workstations for scalability. To exploit

14 Robert Soulé et al.

the parallelism of the cluster, at the implementation level, MapReduce makes
non-deterministic dynamic scheduling decisions. Reducers can start while map
is still in process, and different reducers can work in parallel with each other.
Different mappers can also work in parallel; we will use Brooklet to address this
optimization later in the paper, and describe a translation with a single map
operator for now.

4.3.3 Sawzall Translation Example. Given the Sawzall program Pz from
earlier, assuming R = 4 partitions, the Brooklet version Pb is:

output; /*no output queue, outputs are in variables*/

input qlog;

(q1, q2, q3, q4) ← Map(qlog); /*getOrigin/getTarget*/

($v1) ← Reduce(q1, $v1);

($v2) ← Reduce(q2, $v2);

($v3) ← Reduce(q3, $v3);

($v4) ← Reduce(q4, $v4);

There is one reduce operator for each of the R partitions. Each reducer performs
the work for both aggregators (queryOrigins and queryTargets) from the original
Sawzall program. The final reduction results are in variables $v1. . .$v4.

4.3.4 Sawzall Translation. Fig. 4 specifies the program translation, do-
mains, and operator wrappers. There is only one program translation rule Tp

z.
The translation [[Fz, Pz, R]]pz takes the Sawzall function environment, the Sawzall
program, and the number of reducer partitions as arguments. All the emit state-
ments become part of the single map operator. The map operator wrapper uses
a hash function to scatter its output over the reducer key space for load balanc-
ing. All the out declarations become part of each of the reduce operators. Each
reducer’s variable stores the mapping from each key in that reducer’s partition
to the latest reduction result for that key. If the key is new, rule Wz-Reduce-∅
fires and registers x2 as the initial value. At the end of the run, the results in
the variables are deterministic, because aggregators are associative and reducers
work on disjoint parts of the key space.

4.3.5 Sawzall Discussion. The Sawzall translation is simpler than that of
CQL or StreamIt, because each translated program uses the same simple topol-
ogy. The translation hard-codes the data parallelism for the reducers, but gener-
ates only one mapper, thus deferring data parallelism for mappers to a separate
optimization step. There was no prior formal semantics for Sawzall, but Lämmel
studies MapReduce and Sawzall by implementing an emulation in Haskell [15].
Now that we have seen how to translate three languages, it is clear that it is pos-
sible to model additional streaming languages or language features on Brooklet.
For example, Brooklet can serve as a basis for modeling teleport messaging [6].

4.4 Translation Correctness
We formulate correctness theorems for CQL and StreamIt with respect to their
formal semantics [2, 27]. The proofs are in an extended technical report [22]. We
do not formulate a theorem for Sawzall, because it lacks formal semantics; our
mapping to Brooklet provides the first formal semantics for Sawzall.

A Universal Calculus for Stream Processing Languages 15

Theorem 1 (CQL translation correctness). For all CQL function environ-
ments Fc, programs Pc, and inputs Ic, the results under CQL semantics are the
same as the results under Brooklet semantics after translation [[Fc, Pc]]pc .

Theorem 2 (StreamIt translation correctness). For all StreamIt function
environments Fs, programs Ps, and inputs Is, the results under StreamIt se-
mantics are the same as the results under Brooklet semantics after translation
[[Fs, Ps]]ps.

5 Optimizations
The previous section used our calculus to understand how a language maps to
an execution platform. This section uses our calculus to specify how to use three
vital optimizations: data-parallel computation, operator fusion, and operator re-
ordering. Each optimization comes with a correctness theorem; for space reasons,
we leave the proofs to an extended technical report [22].
5.1 Data Parallelism
If an operation is commutative across data items, then the order in which the
data items are processed is irrelevant. MapReduce uses this observation to ex-
ploit the collective computing power of a cluster for analyzing extremely large
data sets [5]. The input data set is partitioned, and copies of the map operator
process the partitions in parallel. In general, the challenge in exploiting such
data parallelism is determining if an operator commutes. Sawzall and StreamIt
solve this challenge by restricting the programming model. In Brooklet, commu-
tativity analysis can be performed with a simple code inspection. Since a pure
function always commutes4, and all state in Brooklet is explicit in an operator’s
signature, a sufficient condition for introducing data-parallelism is that an oper-
ator does not access variables. The transformation must ensure that the output
data is combined in the same order that the input data was partitioned. Brooklet
can use the round-robin splitter and joiner described in the StreamIt transla-
tion for this purpose. Thus, the operator (out)←wrapMap-LatLong(q); can be
parallelized with N = 3 copies like this:
(q1, q2, q3, $sc) ← Split(q, $sc);

(q4) ← wrapMap-LatLong(q1);

(q5) ← wrapMap-LatLong(q2);

(q6) ← wrapMap-LatLong(q3);

(out, $v4, $v5, $v6, $jc) ← Join(q4, q5, q6, $v4, $v5, $v6, $jc);

The following rule describes how to create the new program with N duplicates
of the parallelized operator.

op = (qout)← f(qin);

∀i ∈ 1 . . . n : qi = freshId() ∀i ∈ 1 . . . n : q′
i = freshId()

F ′
b, ops = [[∅, split roundrobin, q, qin]]ps
∀i ∈ 1 . . . n : opi = (q′

i)← f(qi);

F ′′
b , opj = [[∅, join roundrobin, qout , q

′]]ps

〈Fb, op〉 −→N
split 〈Fb ∪ F ′

b ∪ F ′′
b , ops op opj〉

(Ob-Split)

4 At least in the mathematical sense; in systems, floating point operations do not
always commute.

16 Robert Soulé et al.

The precondition is that op does not refer to any state variables. The data
parallelism optimization illustrates that Brooklet facilitates reasoning over shared
state. The rules for round-robin split and join are in Fig. 3.

Making multiplexers explicit and fixing the degree of parallelism are impor-
tant to faithfully model and reason about real-world systems. Possible imple-
mentation strategies for avoiding the limitation of a fixed degree of parallelism
include using just-in-time compilation to do splitting online, or putting code on
a larger number of machines and then in practice using only a subset as needed.

Theorem 3 (Correctness of Ob-Split). For all function environments Fb,
Brooklet programs Pb, and degrees of parallelism N , if rule Ob-Split yields
〈Fb, Pb〉 −→N

split 〈F ′b, P ′b〉, then →∗b (Fb, Pb, Ib) =→∗b (F ′b, P
′
b, Ib) for all Brooklet

inputs Ib.

5.2 Operator Fusion
In practice, transmitting data between two operators can incur significant over-
head. Data needs to be marshalled/unmarshalled, transferred over a network or
written to a mutually accessible location, and buffered by the receiver, not to
mention the expense of context switching. This overhead can be offset by fus-
ing two operators into one. StreamIt applies this optimization to operators in
a pipelined topology [26]. Operators may be fused if they meet two conditions.
First, they appear in a simple pipeline. Brooklet makes this topology easy to val-
idate because queues are defined and used exactly once. Second, the state used
by the operators must not be modifiable anywhere else in the program. Again,
because Brooklet requires an explicit declaration of all state, this condition can
be verified with a simple code inspection. The following Brooklet program shows
two steps in an MPEG decoder:

(q1,$v1) ← ZigZag(qin,$v1);

(qout,$v2) ← IQuantization(q1,$v2);

The fused equivalent of the program is:

(qout,$v1,$v2) ← Fused-ZigZag-IQuant(qin,$v1,$v2);

The following rule formalizes this optimization:

op1 = (q1, v1)←f1(qin, v1); (∃op′ = (_, v1)←f ′(_, _))⇒ op′ = op1

op2 = (qout , v2)←f2(q1, v2); (∃op′ = (_, v2)←f ′(_, _))⇒ op′ = op2

f = freshId() F ′
b = [f 7→ fusedOperator(Fb, f1, f2)]Fb

Fb, op1 op2 −→ F ′
b, (qout , v1, v2)← f(qin , v1, v2);

(Ob-Fuse)

The preconditions guard against other operators writing variables v1 or v2. The
following rule defines the new internal function:

(dtemp , d′
1) = Fb(f1)(din , 1, d1) (dout , d

′
2) = Fb(f2)(dtemp , 1, d2)

fusedOperator(Fb, f1, f2)(din , _, d1, d2) = (dout , d
′
1, d

′
2)

(Wb-Fuse)

In our example, this combines Fb(ZigZag) and Fb(IQuantization) into function
F ′b(Fused-ZigZag-IQuant). The fusion optimization illustrates that Brooklet facil-
itates reasoning over topologies.

A Universal Calculus for Stream Processing Languages 17

Theorem 4 (Correctness of Ob-Fuse). For all function environments Fb

and Brooklet programs Pb, if rule Ob-Fuse yields 〈Fb, Pb〉 −→Fuse 〈F ′b, P ′b〉, then
→∗b (Fb, Pb, Ib) =→∗b (F ′b, P

′
b, Ib) for all Brooklet inputs Ib.

5.3 Reordering of Operators
A general rule of thumb for database query optimizations is that it is better to
remove more tuples early in order to reduce downstream computations. The most
popular example for this is hoisting a select operator, because a select reduces
the tuple volume for operators it feeds into [1]. A select is said to commute with
another operator if their output result is the same regardless of their execution
order. The following program computes the commission on sales of IBM stock.
The input is sale(ticker, price) and the output is commission(ticker, cost).
The commission is 2%.
output commission;

input sale;

(qt) ← BrokerCommission(sale);

(commission) ← Select-IBM(qt);

The functions for the two operators are:
Fb(BrokerCommission)(d, _)= let 〈ticker, price〉 = d in 〈ticker, 0.02 · price〉

Fb(Select-IBM)(d, _)= let 〈ticker, cost〉 = d in if ticker=‘IBM’ then d else •
We can reorder the two operators for two reasons. First, the BrokerCommission

operator is stateless, and therefore operates on each data item independently, so
its semantics do not change when it sees a filtered stream of data item. Second,
the Select-IBM operator only reads the ticker, and BrokerCommission forwards
the ticker unmodified. In other words, Select-IBM does not rely on any data
modified by BrokerCommission and vice versa. The optimized program is:
output commission;

input sale;

(qt) ← Select-IBM(sale);

(commission) ← BrokerCommission(qt);

The following rule encodes the optimization:

op1 = (qt)← f1(q); op2 = (qout)← f2(qt);

Fb(f1)(d, i) = let 〈r, w〉 = d in 〈r, f1(w, i)〉
Fb(f2)(d, _) = let 〈r, _〉 = d in if f2(r) then d else •

∀i ∈ 1 . . . |q| : q′
i = freshId()

op′
1 = (qout)← f1(q′); ∀i ∈ 1 . . . |q| : opi = (q′

i)← f2(qi);

Fb, op1 op2 −→ Fb, op op′
1

(Ob-HoistSelect)

The first two preconditions restrict op1 and op2 to be stateless operators. The
third precondition specifies that f1 forwards a part r of the data item unmodi-
fied, and the fourth precondition specifies that f2 is a select that only reads r,
and forwards the entire data item unmodified. We have chosen in Brooklet to
abstract away local deterministic computations into opaque functions, because
their semantics are well-studied (e.g., [8, 10, 21]). We leverage this prior work by
assuming that a static program analysis can determine the restrictions on the
read and write sets of operator functions used for select hoisting.

18 Robert Soulé et al.

Theorem 5 (Correctness of Ob-HoistSelect). For all function environ-
ments Fb and Brooklet programs Pb, if 〈Fb, Pb〉 −→HoistSelect 〈F ′b, P ′b〉 by rule
Ob-HoistSelect, then→∗b (Fb, Pb, Ib) =→∗b (F ′b, P

′
b, Ib) for all Brooklet inputs Ib.

5.4 Optimizations Summary
We have used our calculus to understand how a language can apply three vital op-
timizations. The concise and straightforward formalization of the optimizations
validates the design of Brooklet. There are many other streaming optimizations,
including, to name just a few, sharing redundant subqueries in CQL [1]; pre-
aggregating data on the workers performing the map phase of MapReduce [5];
or eliminating spurious synchronization in StreamIt [26]. Furthermore, there are
stronger variants of the optimizations we sketched; for example, it is sometimes
possible to introduce data parallelism even for stateful operators. We believe
that the examples in this section are a useful first step towards formalizing op-
timizations for stream processing languages.

6 Related Work

Our approach to defining a core minimal language that allows us to reason about
correctness is inspired by Featherweight Java [13].

There has been extensive prior work in the semantics of stream processing.
Stephens [23] provides a comprehensive survey, but it does not address recent
language developments. Brooklet differs from prior work on streaming semantics
because it models state and non-determinism as explicit core concepts. Kahn
process networks [14], such as Unix pipes, assume deterministic execution. Syn-
chronous data flow [16] models, such as StreamIt, assume fixed buffer sizes and
static communication patterns. Hoare’s communicating sequential process [12]
assumes no buffering, and synchronous communication. Gurevich et al. [11] re-
cently studied streaming systems, but focused on their more theoretical aspects.

The database literature often refers to streaming applications as “continuous
queries” [4, 25]. Surprisingly, there is little work from the database community on
optimizations of queries with side effects. Two exceptions are a study of XQuery
with side effects [10] and a study of object-oriented databases [7].

This paper uses CQL, Sawzall, and StreamIt as representative examples of
streaming languages, but there are many more. Spade [9] is a streaming language
for composing parallel and distributed flow graphs for System S, IBM’s scalable
data processing middleware. Pig Latin [18] is one of the languages designed to
compose MapReduce or Hadoop jobs. DryadLinq [28] runs imperative code on
local machines and uses integrated SQL to generate distributed queries.

7 Conclusion and Outlook

This paper presents Brooklet, a core calculus for stream processing. It repre-
sents stream processing applications as a graph of operators. Operators con-
tain pure functions, thread all state through explicit variables, and trigger non-
deterministically. Explicit state and non-deterministic execution are central con-
cepts, capturing the reality of distributed implementations. We translate three

A Universal Calculus for Stream Processing Languages 19

representative languages, CQL, Sawzall, and StreamIt, to Brooklet, thus demon-
strating its generality for language designers. We formalize three vital optimiza-
tions, data parallelism, operator fusion, and operator reordering, in Brooklet,
thus demonstrating its usefulness for language implementors. Brooklet lays the
ground work for a variety of future work, including formalization of additional
languages, invention of new abstractions to expose and exploit parallelism, al-
ternative translations for the languages we formalized, reverse translations from
Brooklet back into source languages, type systems work, exploration of time or
space resource constraints, investigations of progress, fairness, and dead-lock,
static analyses for establishing optimization preconditions, and specifications of
additional optimizations. Brooklet also provides the foundation for a common
intermediate language for stream processing. In ongoing work, we are imple-
menting the translations from CQL, Sawzall, and StreamIt to Brooklet, the op-
timizations from Brooklet to Brooklet, and a translation from Brooklet to C++.
The implementation uses System S [9] as a high-performance streaming run-
time, which manages all processes across a cluster and their communications.
The long-term goal of our work is to establish Brooklet as both a formal and
practical foundation for stream processing.

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments and
suggestions. We would also like to thank John Field, Rodric Rabbah, and Martin
Vechev for their feedback on earlier versions of this paper, and Nagui Halim for
his support of this project. This material is based upon work supported by the
National Science Foundation under Grants No. CNS-0448349 and CNS-0615129.

References

1. A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic
foundations and query execution. VLDB Journal, pp. 121–142, 2006.

2. A. Arasu and J. Widom. A denotational semantics for continuous queries over
streams and relations. SIGMOD Record, pp. 6–11, 2004.

3. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-
rahan. Brook for GPUs: Stream computing on graphics hardware. TOG, pp.
777–786, 2004.

4. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous
query system for internet databases. In SIGMOD, pp. 379–390, 2000.

5. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clus-
ters. In OSDI, pp. 137–150, 2004.

6. M. Drake, H. Hoffmann, R. Rabbah, and S. Amarasinghe. MPEG-2 decoding in a
stream programming language. In IPDPS, pp. 86–95, 2006.

7. L. Fegaras. Optimizing queries with object updates. JIIS, pp. 219–242, 1999.
8. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph

and its use in optimization. TOPLAS, pp. 319–349, 1987.
9. B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade: The System S

declarative stream processing engine. In SIGMOD, pp. 1123–1134, 2008.
10. G. Ghelli, N. Onose, K. Rose, and J. Siméon. XML query optimization in the

presence of side effects. In SIGMOD, pp. 339–352, 2008.

20 Robert Soulé et al.

11. Y. Gurevich, D. Leinders, and J. V. den Bussche. A theory of stream queries. In
DBLP, pp. 153–168, 2007.

12. C. A. R. Hoare. Communicating sequential processes. CACM, pp. 666–677, 1978.
13. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java - a minimal core calculus

for Java and GJ. In TOPLAS, pp. 132–146, 1999.
14. G. Kahn. The semantics of a simple language for parallel programming. In IFIP,

pp. 471–475, 1974.
15. R. Lämmel. Google’s MapReduce Programming Model – Revisited. Science of

Computer Programming Journal, pp. 208–237, 2007.
16. E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proc. IEEE, pp.

1235–1245, 1987.
17. H. R. Nielson and F. Nielson. Semantics with applications: a formal introduction.

John Wiley & Sons, Inc., 1992.
18. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A

not-so-foreign language for data processing. In SIGMOD, pp. 1099–1110, 2008.
19. B. C. Pierce. Types and programming languages. MIT Press, 2002.
20. R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel

analysis with Sawzall. Scientific Programming, pp. 277–298, 2005.
21. M. C. Rinard and P. C. Diniz. Commutativity analysis: a new analysis framework

for parallelizing compilers. In PLDI, pp. 54–67, 1996.
22. R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade, V. Kumar, and K.-L. Wu.

A unified semantics for stream processing languages (extended). Technical Report
2010-924, New York University, 2010.

23. R. Stephens. A survey of stream processing. In Acta Inf., pp. 491–541, 1997.
24. The StreamBase dialect of StreamSQL. http://streamsql.org/.
25. D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over append-

only databases. In SIGMOD, pp. 321–330, 1992.
26. W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for

streaming applications. In CC, pp. 179–196, 2002.
27. W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Hoffman, M. Brown,

and S. Amarasinghe. StreamIt: A compiler for streaming applications. In MIT
Laboratory for Computer Science Technical Memo LCS-TM-622, 2001.

28. Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Cur-
rey. DryadLINQ: A system for general-purpose distributed data-parallel computing
using a high-level language. In OSDI, pp. 1–14, 2008.

