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ABSTRACT
Achieving zero-copy I/O has long been an important goal
in the networking community. However, data serialization
obviates the benefits of zero-copy I/O, because it requires the
CPU to read, transform, and write message data, resulting in
additional memory copies between the real object instances
and the contiguous socket buffer. Therefore, we argue for
offloading serialization logic to the DMA path via specialized
hardware. We propose an initial hardware design for such an
accelerator, and give preliminary evidence of its feasibility
and expected benefits.

CCS CONCEPTS
• Networks → Data path algorithms; Application layer
protocols; • Hardware → Communication hardware, in-
terfaces and storage.
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Figure 1: Memory copies in a traditional network stack.

1 INTRODUCTION
Achieving zero-copy I/O has long been an important goal in
the networking community. Today, some operating systems
and NICs have been able to achieve this goal with a variety of
techniques [34], including direct memory access (DMA) and
memory-mapping through an memory management unit. 1

However, application-level serialization creates a challenge
for zero copy I/O. By application-level serialization, we mean
the process by which the in-memory representation of data
structures is converted into architecture and language inde-
pendent formats that are transmitted across the network. Dis-
tributed applications commonly rely on serialization libraries,
such as Google’s Protocol Buffers (Protobuf) [29] or Apache
Thrift [2], when sending data from one machine to another.

The problem is that application-level serialization encod-
ing requires the CPU to read, transform, and write message
data, resulting in additional memory copies between the real
object instances and a contiguous buffer. Figure 1 illustrates
the numerous memory copies required for application-level
serialization, starting from in-memory RPC objects ( A ), to
encoded RPC messages ( B ), to kernel socket buffers ( C ),
and to NIC queues ( D ).

1These techniques—and this proposal—do not truly ensure zero copy. At
minimum, they require one memory copy to access main memory, read the
object instances, and copy them to the NIC memory. Our use of the term zero
copy is purely from the CPU’s perspective: CPU cores are not involved any
memory copy operations.

https://doi.org/10.1145/3458336.3465283
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These additional memory copies are a huge source of over-
head, and consequently, application-level serialization is one
of the most widely recognized bottlenecks to system perfor-
mance. As a prime example, Kanev et al. [16] report that at
Google, serialization and RPCs are responsible for 12% of all
fleet cycles across all applications. Indeed, they are referred
to as the “data center tax”, i.e., the cycles that an application
must pay simply for running in a data center.

This bottleneck is not just due to inefficient operations
(although we will argue in § 2 that implementing serializa-
tion on a CPU is inefficient), but also due to the frequency
of invocation. The emerging trend in software engineering
towards microservices and serverless/functionless comput-
ing, which advocates for the fine-grained decomposition of
software modules, has exacerbated the problem. Invoking
an innocuous-sounding method, getX, may result in hun-
dreds or even thousands of RPC calls, each requiring data
serialization. The result is the proverbial death by a thousand
cuts.

To truly achieve high-performance message transfer, we
must address this bottleneck, and eliminate the extra mem-
ory copies. Standard DMA techniques are not sufficient, as
serialization requires not just memory copies, but also data
transformation. We therefore argue that application-layer mes-
sage processing logic should be added to the DMA path.

Of course, adding a serialization accelerator to NIC hard-
ware assumes that the network transport protocol is also of-
floaded. Transport protocol offload itself has been the subject
of a long-standing debate [24]. The question is whether the
potential performance benefits of offloading to a NIC out-
weigh the costs of the added hardware complexity. However,
the combination of the end of Moore’s law, the increase in
network speeds, and the wide-spread adoption of RDMA has
recently led to revived support for transport protocol offload.
There are several contemporary proposals for offloading net-
work stacks and basic network functions [3, 8, 21].

We argue that these first steps towards offload do not go
far enough, and advocate for the inclusion of hardware for
application-layer message processing in a SmartNIC (§2). We
have developed an initial hardware design for such an accel-
erator, which uses hard-coded building blocks for performing
data transformations, and a programmable configuration that
allows them to support application specific message formats
(§3). We refer to our design as Zerializer, which allows for
zero-copy I/O augmented with serialization in the DMA path,
or what we call zero-copy serialization directly between A
and D .

2 WHY SERIALIZATION OFFLOAD?
Stagnating CPU performance has led inevitably to the adop-
tion of domain-specific processors. This trend raises a pair of

important questions. First, what functionality can and should
benefit from hardware acceleration or offload? Second, how
should this functionality be incorporated into the overall
architecture? We consider these questions from two perspec-
tives: the hardware designer and the software developer. From
the hardware perspective, we want to build custom hardware
for functionality or logic that is unlikely to change in the
near future, i.e., standards or other components upon which
a community has converged. From the software perspective,
we want to accelerate functionality that is a bottleneck. But,
somewhat more subtly, we want to focus on offloading com-
putation where the freed-up CPU cycles could be productively
used on something else.

From both the hardware and software perspective, serializa-
tion is a natural candidate for hardware acceleration. Serial-
ization formats are standardized and do not change frequently.
They are also a performance bottleneck. And, just as with
zero-copy I/O, if serialization were offloaded, the CPU could
focus exclusively on application logic. Importantly, though,
we argue not only should serialization be offloaded, but it
should be on the DMA path.

What is serialization? Serialization is the process that trans-
lates the in-memory representation of data structures into
architecture and language independent formats that are sent
across the network or stored to disk. There are a wide range
of serialization formats, differing along several dimensions:
self-describing vs. schema based, text-based vs. binary encod-
ing, and support for collections or other types. In this paper,
we focus on serialization libraries like Protocol Buffers [29]
and Thrift [2], because they are widely adopted. When us-
ing such libraries, developers define the data structures they
will use for messages using a domain-specific language. A
compiler translates the message specification into sender and
receiver code that can be invoked from the application. Both
of these serialization formats are schema based, binary en-
codings with support for various complex data types, such
as lists and maps. These structures may be nested, and the
in-memory representations may contain pointers to different
memory locations. The serialization process must convert the
pointers to references based on name or position.

Why is serialization a bottleneck? When an application
uses serialization, it is typically accessing fresh data recently
received over the network. This takes a number of steps. First,
accessing encoded data for the first time results in cold misses
through memory hierarchy—either to main memory, or to
the last level cache in the event the network interface places
incoming data in the last level cache. Second, the CPU must
perform the computations to encode/decode the data. Third,
the native data has to be written back to memory.
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Figure 2: The makeup of Protobuf serialization for a mes-
sage of three, 64-bit unsigned integers.

Of course, the cost of each of these operations is work-
load and message dependent. However, to give a basic un-
derstanding of the cost of these first and third steps, reading
and writing, relative to the second step, encoding, we pro-
filed the serialization method, SerializeToOStream, of
Protobuf’s Message class (v3.14.0) for a simple message con-
taining three, 64-bit unsigned integers. This message could
represent a point in 3D space or a small set of numerical
IDs. To perform the measurement, we used the Performance
Application Programming Interface [25].

Figure 2 shows the results, in terms of instructions and
cycles, averaged over 1000 runs. We see that memory accesses
dominate the overhead. So, simply accelerating or offloading
the data transformation alone [28] will not sufficiently address
the bottleneck. However, because some computation must be
performed to do the data encoding, DMA alone is also not a
viable solution.

Could we just make software changes? A great variety of
serialization libraries and formats have been proposed over
the years, making different sets of trade-offs (e.g., human read-
ability vs. space efficiency, performance vs. expressiveness,
etc.). Some implementations are known to have poor perfor-
mance. For example, Java Serialization [13] due to its depen-
dence on reflection. Some performance improvements could
be made through careful design decisions. Flatbuffers [9] is a
less expressive, more efficient version of Protobuf. However,
there is a limit to what software-only changes can achieve.
They do not address the fundamental problem of the extra
memory copy.

Why not just use another CPU? Standard microprocessors
are not optimized for the bit-level operations that are needed
for encoding/decoding [28]. Additionally, data encodings also
tend to be sequential. As an example, consider the varint
encoding used in Google Protobuf. The encoding uses the
most-significant bit in each byte to indicate if the next byte is
part of the same integer. This creates sequential dependency

chains with conditional branches, which are challenging to ex-
ecute efficiently on a CPU. Hence, a standard CPU instruction
set is not well-matched for serialization.
Why not add extra instructions or a CPU accelerator/co-
processor? Instead of a complex CPU, we could instead
augment an existing one with special instructions that are
tailored to serialization to reduce the computational overhead.
In an extreme case, the CPU could be augmented with a
dedicated accelerator/co-processor tailored to serialization
tasks. While this addresses the computational needs, we are
still left with the significant memory system performance
issues. The transformation must be on the DMA path.
How does this interact with DMA? Consider an incoming
data message where the NIC can directly transfer the arriving
data into buffers accessible in user space. The NIC can use a
DMA engine to transfer the data directly to the main memory,
and/or the last level cache.

Serialization effectively creates a second copy of incom-
ing data. The encoded data travels up the memory hierarchy,
is processed, and then travels back down in decoded form—
the second copy. This uses the cache inefficiently, especially
since the data is only touched once for it to be decoded. Hence,
having an application-driven CPU/co-processor approach ef-
fectively undoes all the engineering effort that went into elim-
inating extra copies and achieving “zero copy” network inter-
faces.
Why now? As network speeds reach or exceed 100 Gbps, and
common operations complete in microsecond-scale, serial-
ization is a big source of overhead. Given that the plateauing
performance of general-purpose processors has led to renewed
interest in transport protocol offload on to NICs, there is an op-
portunity to significantly reduce this overhead by additionally
offloading serialization/deserialization into the NIC, where it
sits on the DMA path. This is feasible because serialization
is a stable, straightforward transformation, not much more
complicated than typical packet processing. Moreover, if we
focus on intra-data-center RPCs, serialization offload would
not require excessive NIC memory, as the NIC need fetch
only a bandwidth-delay product (BDP)-full of data from the
main memory in a streaming fashion. The BDP of a modern
data center is only about a few hundred KBs (e.g. 100Gbps ×
10𝜇sec = 125KB).

3 PROPOSED DESIGN
Figure 3 depicts how we propose to integrate Zerializer on the
NIC. At a high level, the interface exposed to software is very
similar to the one provided by modern DMA-based NICs.
However, rather than passing packet descriptors, applications
directly pass RPC message descriptors. RPC messages are
automatically serialized on transmission as they are DMA’ed
from host memory, and they are automatically deserialized on
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Figure 3: A diagram of the Zerializer architecture and how it is integrated into the NIC.

reception as they are DMA’ed into host memory. This section
explains our proposed software interface and the Zerializer
architecture in more detail.

Initialization. Prior to sending and receiving RPC messages,
an application must perform several initialization operations.
First, it must allocate both TX/RX descriptor rings as well as
TX/RX arenas and register them with Zerializer by configur-
ing the appropriate control registers with MMIO operations.
The TX and RX arenas are used to store all RPC message
objects that are sent and received, respectively. In order to
ensure that Zerializer is able to quickly access these mes-
sage objects, the host must populate the IO-TLB with the
necessary virtual-to-physical address translations. Note that
modern systems which use traditional NICs perform a similar
step to ensure that the DMA engine is able to quickly access
all the necessary packet buffers. The descriptor rings store
pointers to RPC message objects, which are allocated within
the TX and RX arenas. Each application uses a separate pair
of descriptor rings and arenas.

Next, the application describes the format of the RPC mes-
sages it wishes to use in a domain specific language (DSL)
such as Protobuf [29]. The DSL definition of the message
format is then compiled into what we call a message schema,
which must be loaded into the Zerializer module. This schema
is used to properly serialize and deserialize RPC messages.

Message Transmission (Serialization). Before an RPC mes-
sage can be transmitted, it must be constructed in memory.
The application will first allocate a message object from the
TX arena and initialize its fields. To transmit, the application
creates a TX descriptor, adds it to the TX descriptor ring, and

notifies Zerializer using an MMIO write operation. The de-
scriptor includes a pointer to the message object, the message
type, as well as a status bit.

Upon receiving the transmission request, the memory reader
first fetches the descriptor from the TX descriptor ring. Then,
using knowledge of the message schema, it fetches each field
of the message. After every field is acquired, Zerializer marks
the message as complete by updating the status bit in the
message descriptor. This signal indicates to the application
that it is now allowed to reclaim the message buffer space.

Each field is transformed independently in the encoder. The
data transformation logic to use for each field is dictated by
the field type, which is specified in the message schema. The
encoder contains dedicated hardware to transform each field
type; and it contains a sufficient amount of parallel hardware
resources to ensure that the encoding logic is not a throughput
bottleneck of the system. The merge module at the end of the
serialization pipeline accumulates the transformed fields and
combines them into the final encoded message. The encoded
message is then passed to the NIC’s transport layer so that it
can be delivered over the network to the destination.

This architecture significantly improves serialization per-
formance because it explicitly reads and transforms each field
in parallel. In traditional software-based serialization, mes-
sage fields are only operated on in parallel if the CPU can
speculate far enough ahead in the instruction stream, which is
unlikely on modern processors [28].

Message Reception (Deserialization). The NIC transport
layer reassembles packets into wire-format messages and
passes them to Zerializer to be decoded. The parser module
identifies the message type and informs the message allocator.
A standard NIC will DMA packet data into one or more
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buffers that have been preallocated by host software. This
approach works well for packet data which is simply treated
as a sequence of raw bytes where multiple buffers can be
linked together to store the whole packet. However, RPC
message objects must be laid out in memory in a very specific
format in order to be useful to applications. Unless the host
knows exactly how many of each message type it will need to
process at any given time, using preallocated message objects
will likely lead to a very inefficient use of memory resources.
If the host software is required to allocate a message object
for each RPC as it arrives over the network, then the NIC
would be unable to immediately deliver decoded messages
into host memory. In order to avoid these issues, we choose
to let Zerializer manage message object allocation in the RX
arenas. Recent work has demonstrated that memory allocation
in hardware is fast and inexpensive [17].

As the parser extracts each field from the encoded message,
the decoder transforms them into the format expected by the
application. Similar to the encoder, the decoder contains dedi-
cated hardware to transform each field type. Using knowledge
of the message format from the schema, the memory writer
loads the decoded fields into the newly allocated message
object. Once the entire message has been loaded into memory,
Zerializer will create an RX descriptor and add it to the RX
descriptor ring. The application becomes aware of the new
message either by polling the RX descriptor ring, or Zerializer
can be configured to generate an interrupt upon completing
a RX operation. After the application finishes processing the
message, it updates the RX descriptor ring, which in turn
allows Zerializer to free the message object in the RX arena.

Towards RPC Offload. RPC performance optimization has
been widely studied [5] and has recently seen increased inter-
est due to the trend towards microservices [7, 15, 33]. Zerial-
izer also allows for offloading RPC. On the sender side, we
would simply augment the message format with an additional
tag for the function ID (i.e., the unique identifier for the ap-
plication function). On the receive side, the RPC mechanism
could be implemented as a function dispatch table to DMA.
Note that with this design, an application would register its
intent to receive a particular type of message, and pre-allocate
a buffer on which to receive that message (or a set of mes-
sages, if we wanted queuing). This is slightly different from
regular RPC interface. But, the results would be completely
offloaded RPC calls.

Discussion. The data transformation component of Zerializer
is similar to Optimus Prime [28]. However, Optimus Prime is
integrated into the host as a co-processor, whereas we propose
to offload this logic onto the NIC. We believe this approach
provides a number of benefits. First, by offloading to the NIC,
it means that the application does not need to waste cycles
moving network data between DMA buffers and the ser/des

accelerator. This is especially important for applications with
𝜇s-scale RPC service times, which are becoming increasingly
prevalent. Second, this approach prevents the cache hierar-
chy from being polluted by encoded message data, which is
useless to applications. This increases the cache hit rate for
application data leading to higher performance. And finally,
it makes applications easier to write. Separating the ser/des
logic from the network interface means that applications need
to manage them separately, which leads to more complicated
code.

4 BENEFITS AND FEASIBILITY
Evidence of Potential Benefits. To evaluate the potential
performance benefits of using Zerializer on real-world appli-
cations, we examined Intel’s Deep Insight Network Analytics
Software. The Deep Insight software collects network teleme-
try data from switches in the form of “reports” in the In-band
Network Telemetry (INT) specification, similar to the work
by Handigol et al. [11]. It then analyzes the data in those
reports looking for network anomalies, and publishes the
results of those analyses to a time-series database in Thrift-
formatted records via the Apache Kafka [1] message broker
using librdkafka [22].

To quantify the impact of serialization, we measured the
throughput of Deep Insight running with a single thread under
two configurations: one with Thrift serialization and publish-
ing to Kafka, and one with a “null” serializer, that just counts
incoming objects to be serialized and discards them. We be-
lieve it is reasonable to not measure the publishing time, since
Zerializer implicitly assumes the transport protocol offload to
the NIC. The experiment was run on a server with an Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz with 32 cores (non-
hyper-threaded), 128GB of memory, and a 40GbE 5th-gen
Mellanox NIC.

In both cases, an identical server used tcpreplay to
replay a pcap file of telemetry reports, at a rate approxi-
mately 4x what the single-threaded Deep Insight can pro-
cess (∼200k/sec). With Thrift serialization and publishing en-
abled, a single worker thread saturates at processing 52,356 re-
ports/sec. With the null serializer, the thread reached 147,991
reports/sec, or roughly a 3× increase. This demonstrates that
Zerializer has the potential to tremendously improve applica-
tion performance.

Feasibility. In order to evaluate the feasibility of offloading
message serialization into NIC hardware, we designed and
implemented one of the key building blocks that would be
required. Specifically, we implemented a Verilog module for
Protobuf’s varint encoding logic [30]. The module consumes
8B unsigned integers and produces the corresponding variable
length encoded version. We synthesized the design to a Xilinx
Ultrascale+ FPGA. Table 1 shows the corresponding resource
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Utilization
Relative to

IceNIC
Relative to
Rocket core

LUTs 254 3.8% 4.8%

Regs 295 7.4% 14%

Table 1: Xilinx Ultrascale+ resource utilization of
our varint encoding module. Also includes the re-
source utilization relative to a simple DMA-based NIC
(IceNIC [18]) and simple 5-stage, in-order, RISC-V core
(Rocket core [4]).

utilization. To provide some context, the table also shows
the resource utilization relative to a simple DMA-based NIC,
called IceNIC [18] and a simple 5-stage, in-order, RISC-V
core called the Rocket core [4]. Adding our varint encoding
module to the NIC would only increase the size by a very
small fraction. Obviously, a varint encoder is only one of
Zerializer’s many building blocks, but this is a promising
start.

Zerializer could be deployed on an FPGA-based SmartNIC
or custom silicon could be added to the NIC ASIC. On an
FPGA running at 300MHz, our encoder module would be
able to process 300M unsigned integers / second, which cor-
responds to ∼19Gbps. This means that to saturate 100Gbps,
the design would require about 5 encoders in parallel. On
the other hand, an ASIC running at 2GHz would be able to
process 128Gbps with a single module.

5 RELATED WORK

Heterogeneous and Programmable NICs. There are sev-
eral proposals on heterogeneous architectures which do co-
processing between a NIC and CPU, including Gallium [35],
ClickNP [21], Floem [26], iPipe [23], and UNO [20]. A
Zerializer-approach to serialization could be compatible with
such designs. There has been an uptick in interest in pro-
grammable NICs in the past few years [10, 12, 19, 27, 32].
These systems have proposed using the programmability for
transport protocol offload and some basic network functions,
such as load-balancing of advanced congestion control. None
of them have proposed serialization offload.

Optimizing Serialization. A wide range of memory-copy re-
duction techniques have been proposed which hope to reduce
the overhead of sending data over the network. Varghese [34]
provides a good overview of techniques explored in various
end host stacks.

There have been several attempts to optimize serializa-
tion through software improvements, such as Flatbuffers [9]

and Cap’n proto [6]. A contemporaneous proposal by Ragha-
van et al. [31] attempts to use existing support for scatter-
gather memory operations in modern NICs, without mak-
ing any hardware modifications. In contrast to all of these
software-only approaches, Zerializer argues for the inclusion
of new hardware in the NIC to perform message field encod-
ing/decoding.

Serialization Accelerators. Recent work has proposed spe-
cialized hardware for serialization, including Optimus Prime [28],
Cereal [14], and HGum [36]. Of these, Optimus Prime is clos-
est in spirit to Zerializer, as the designs for data transformation
in the two systems are similar. Zerializer differs in that it ar-
gues for adding data transformation logic to the DMA path,
as opposed to a co-processor.

6 CONCLUSION
Data serialization is a significant bottleneck to application per-
formance, and is likely to become the dominant contributing
factor to end-to-end latency as applications increasingly rely
on RPC calls to fine-grained components. To reduce this over-
head, we argue that serialization offload will be essential and
inevitable. We have proposed a design for DMA augmented
with data transformation logic, allowing for zero-copy serial-
ization. This design would dramatically improve application
performance.
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