
Flow Algebra: Towards an Efficient, Unifying
Framework for Network Management Tasks

Paper #1707 (1570668823)

Christopher Leet
Yale University

christopher.leet@aya.yale.edu

Robert Soulé
Yale University

robert.soule@yale.edu

Yang Richard Yang
Yale University

yry@cs.yale.edu

Ying Zhang
Facebook

zhangying@fb.com

Abstract—A modern network needs to conduct a diverse set of
tasks, and the existing approaches focus on developing specific
tools for specific tasks, resulting in increasing complexity and
lacking reusability. In this paper, we propose Flow Algebra
as a unifying, easy-to-use framework to accomplish a large
set of network management tasks. Based on the observation
that relational databases based on relational algebra are well
understood and widely used as a unifying framework for data
management, we develop flow algebra based on relational alge-
bra. On the other hand, flow tables, which are the fundamental
data specifying the state of a network, cannot be stored in
traditional relations, because of fundamental features such as
wildcard and priorities. We define flow algebra based on novel,
generalized relational operations that use equivalency to achieve
efficient, unifying data store, query, and manipulation of both
flow tables and traditional relations. We realize flow algebra
with FlowDB and demonstrate its ease of use on diverse tasks.
We further demonstrate that generality and ease-of-use do not
need to come with a performance penalty. For example, for the
well-studied network verification task, our system outperforms
two state-of-the-art network verification engines, NoD and HSA,
in their targeted domain, by 55x.

Index Terms—SDN, Network Management

I. INTRODUCTION

Modern network management involves a diverse range of
tasks such as policy management (e.g., to ensure network
performance meets the operator’s SLAs), routing cost com-
putation (e.g., during traffic optimization), switch data plane
optimization (e.g., to improve switch performance), debugging
(e.g., to diagnose an underperforming service) and dataplane
composition (e.g., when managing multiple virtual networks).

Despite these use cases’ diversity each primarily (and often
solely) involves manipulating tables of data: flow tables stored
in the network dataplane, tables of network configuration data
stored by configuration management tools (e.g., FBNet [1]),
and network policy, network traffic, geospatial, etc. data stored
by the network operator in traditional databases.

Given this common thread, it might seem natural to accom-
plish each network management task by placing the preceding
tables in a database and then analyzing and manipulating
these tables using SQL queries. Unfortunately, flow tables are
not traditional relations and contain features such as actions,
priority and wildcard expressions which make it difficult to

manipulate them with the relational algebra or to combine
them with data in traditional relations.

In response to this challenge, we introduce the flow algebra,
an extension of the relational algebra to flow tables. The
flow algebra provides a novel formal algebraic framework for
the composition and decomposition of flow tables permitting
operators, for the first time ever, to accomplish a wide range of
network management tasks using a single, unified framework.
Each flow algebra expression is closed over flow tables,
allowing the flow algebra to perform flow table manipulation
tasks such as database refactoring and composition. The flow
algebra, views a traditional relation as a type of flow table,
allowing it to query relations from traditional databases during
tasks such as policy management or network debugging.

While the flow algebra alone provides a complete frame-
work for many network management tasks, some tasks, such
as network debugging, often require the generation of one or
more packet histories [2]: the sequence of packet states (a
packet’s physical location, its header fields, and potentially its
logical location within a switch datapath and any metadata
currently associated with it) a packet passes through as it
travels from one network endpoint to another. Generating a
history involves recursively combining datapath flow tables.
Rather than burdening the programmer with building network
histories using a generic, hard-to-optimize recursion operator,
we introduce a novel virtual table called the history table,
which conceptually contains every packet history in a network.
The history table is treated by a normal table by the flow
algebra but is materialized lazily for performance.

We implement the flow algebra in a novel system termed
FlowDB, a novel relational database which can store, query
and manipulate both flow tables and traditional relations.
FlowDB is queriable using an augmented dialect of SQL,
FlowSQL, which contains additional keywords that allow the
programmer to search the history table for complex patterns.
It employs two key optimizations taken from prior work. First,
each table taken from the data plane is indexed using atomic
predicates [3]–[5] to improve join performance. Second, a
FlowDB query can be incrementally updated if its underlying
tables change using a similar mechanism to CoVisor [6].

FlowDB is evaluated on two real, large scale networks:
Stanford’s backbone network [7] and a datacenter switching



fabric operated by a large internet company containing over
10K+ switches and 100 million+ flow table rules. Our evalua-
tions show that FlowDB can perform a wide range of network
management tasks, including cost map generation, dataplane
refactoring and network debugging in 50 - 70 seconds. We
extended two network verification engines, Header Space
Analysis [8] and Network Optimized Datalog [9] to perform
network debugging and cost map generation and found that
FlowDB outperformed these tools by 50 - 300×.
Benefits. The flow algebra provides several key benefits:
(1) A Formal Algebraic Framework. The flow algebra pro-

vides a formal algebraic framework for flow table manip-
ulation. Just as the relational algebra allows programmers
to reason about SQL queries, the flow algebra allows
operators to reason about flow table operations.

(2) Flow Table Closure. The output of any flow algebra
expression is a flow table, allowing operators to refactor
and optimize the data plane using the flow algebra.

(3) Expressiveness. A broad range of network management
tasks (e.g., routing cost computation, network debugging)
are naturally expressable in flow algebra.

(4) Inheriting Relation Algebra’s Properties. The flow alge-
bra inherits the relational algebra’s algebraic properties,
allowing FlowDB to leverage existing query planner
optimizers to optimize query execution.

(5) Data Compatibility. Many internet companies (e.g.,
Google [10], Facebook [1]) store configuration/policy
data in relations which flow algebra directly can act on.

(6) Ease of use. The overwhelming popularity of SQL
databases among developers attests to its ease of use.
Stack Overflow [11] found that the most used DBs were
MySQL, PostgreSQL, Microsoft SQL server and SQLite,
used by 54.0%, 34.3%, 32.8% and 31.6% of respondents.

Novel Contributions. This paper’s novel contributions are:
(1) Flow Algebra. (§IV, §V) The flow algebra is a formal

algebraic framework created by extending the relational
algebra to flow tables. Whilst its natural join and union
operators were anticipated in [6], its theta join, selection,
projection and set difference operators are novel, as is its
development of their algebraic properties.

(2) History Table. (§VI) The Flow Algebra is augmented with
the history table, a virtual table which allows program-
mers to directly query network histories.

(3) FlowDB and FlowSQL. (§VII, §VIII) FlowDB is the
first ever SQL-based database which can store, query
and manipulate both flow tables and traditional relations.
It is programmable with FlowSQL, a dialect of SQL
augmented with keywords to search the history table.
Together, they allow common network management tasks
to be succinctly expressed.

(4) Evaluation. (§IX) We evaluate FlowDB, and find that
it can execute a wide range of network management
tasks on real networks at reasonable speeds. We show
that FlowDB outperforms two state of the art network
verification engines by 50× or more.

II. RELATED WORK

Network Optimized Datalog. FlowDB’s closest comparison is
Network Optimized Datalog (NoD) [9]. NoD is a verification
engine which places a network’s flow tables in a Datalog
database and then performs verification with Datalog queries.
Datalog is a superset of the relational algebra, and while
NoD’s authors do not do so one could imagine writing Datalog
queries to perform a broad range of tasks.

NoD, however, does not emit flow tables and cannot be used
for datapath manipulation. Further, whilst NoD introduces new
table manipulation operators, it does not provide a formal
algebraic framework. Practically, many network operators,
(e.g., Google, Facebook [1]), store policy and network data
in MySQL, not Datalog, making FlowDB less disruptive
to their software ecosystems. Moreover, despite Datalog’s
venerability [12] and expressiveness, empirically developers
prefer to build systems on SQL-based databases [11].

Flow Table Manipulation Tools. CoVisor [6], a compositional
hypervisor for software define networks, defines operators for
flow table composition in serial (parallel) which anticipate
Flow Algebra’s natural join (union) operator. CoVisor, how-
ever, does not place these operators in a theoretical framework,
establish their algebraic properties, or allow decomposition.

Computing Network Properties. A wide range of tools com-
pute network properties. In particular, network verification is a
well researched field. A wide range of tools compute network
properties. In particular, network verification is a well re-
searched field. Plankton [13], Minesweeper [14], Batfish [15],
ERA [16] and ARC [17] perform network verification by
analyzing the control plane. HSA [8], Veriflow [18] and
APKeep [3]–[5] do the same by analyze the data plane.
Vera [19], p4v [20] and P4-assert [21] target P4 programs,
whilst Buzz [22], SymNet [23], NetSMC [24] and [25] target
stateful networks. Beyond verification, tools such as P4P [26],
ALTO [27], and FlowDirector [28] measure (and publish) the
cost of routing packets between two network end points.

None of these tools, however, emits flow tables, and thus
none of them can manipulate the data plane. Moreover, these
tools cannot easily perform analysis spanning network and
non-network data. The results of a database query could be
injected into many of these tools, but this lacks the ease of
use of working in a single framework. Finally, these tools are
often non-trivial to generalize out of their targeted domain.
One can conceive of an extension to Plankton, for example,
that measures routing costs, but the average developer would
likely find implementing it difficult.

Other Database-Based Network Systems. Ravel [29], ND-
Log [30] and SeNDLog [31] provide a declarative query inter-
face for describing and instantiating networks. SONATA [32],
Gigascope [33] and NetQRE [34] analyze streams of traffic
data. None of these systems, however, analyzes flow tables,
and thus all are orthogonal to FlowDB.

2



1
9.0.0.255

...9.0.0.1swA
9.0.0.0 2 3 4

 r2

 TB
 r1

1

actions

{fwd(4)}
9.0.0.0
dstippri

2
9.0.0.x

{fwd(3)}
 s2

 TA
 s1

1

actions

{fwd(2)}
9.0.0.0
dstippri

2
9.0.0.x

{fwd(1)}

swB

Fig. 1. The network myNet.

III. PROBLEM FORMULATION

Many common network management tasks fall into three
general categories: (i) computing network properties (e.g. cost
map generation, network verification), (ii) manipulating the
dataplane (e.g. dataplane refactoring, dataplane composition)
and (iii) computation spanning network and non-network data
(e.g. network debugging, policy management.) A concrete
example from each category is given below.

Cost Map Generation. Flow Director [28] (among other sys-
tems [26], [27]) allows ISPs to provide Content Delivery
Networks (CDNs) with “cost maps”, listing the cost of routing
traffic between end points. To generate a cost map, the ISP
computes each route a packet takes through the network by
combining the network’s routing tables with its topology (often
also stored in a database). A distance metric (e.g., the number
of long haul links traversed) is then computed for each route.

Datapath Refactoring. Consider an flow table that reads a
packet’s destination MAC address and VLAN tag, modifies
its VLAN tag, and assigns it an output port: T : dmac,
vlan→ mod_vlan, out. Suppose that T has the functional
dependency mod_vlan → out (i.e., out can be determined
from mod_vlan). Németh et al. [35] suggest that T should
be refactored into two smaller, redundancy free tables T0 :
dmac, vlan → mod_vlan and T1 : mod_vlan → out to
minimize datapath churn and improve switch performance.

Network Debugging. Suppose a data center operator is in-
formed that a service hosted in her data center is failing
intermittently. To diagnose the problem, she might:
(1) Query a database to determine which servers the service

is running on and which IP addresses it is using.
(2) Compute the routes the service’s traffic is forwarded

along (from the network’s flow tables and topology.)
(3) Check the logs of each device on each route for abnor-

malities (e.g. packet errors, CPU spikes)
Despite the diversity of these tasks, each one only involves

manipulating tables of data. As a result, each one is simple
to implement (as our evaluations show) if all relevant data
is placed in a single relational database. Unfortunately, flow
tables are not traditional relations and contain features which
are difficult for the relational algebra to manipulate.

Consider the network, myNet (Fig. 1.). This network con-
tains two switches swA and swB, programmed with the tables
TA and TB. Switch swA is connected to the host at 9.0.0.0,
while switch swB is connected to the 254 hosts 9.0.0.1 to
9.0.0.255. Suppose myNet’s operator asks:

Which packets can travel from the host on swA to the hosts
9.0.0.0 to 9.0.0.3 on swB?

Intuitively, the operator can answer this question by: (i)
checking which packets with dstip between 9.0.0.0 and
9.0.0.3 are forwarded by TA out port 2, and then (ii)
checking which of these packets are forwarded by TB out port
4. If TA and TB were traditional relations, the operator could
accomplish this task by applying a selection to each relation
and then joining the results as follows:

TB’← σfwd(4)∈actions(TB).

TA’← σfwd(2)∈actions∧9.0.0.0≤dstip≤9.0.0.3(TA).

out← TA’ ./TA’.dstip=TB’.dstip TB’.

Unfortunately, the relational algebra cannot be applied to
flow tables like TA and TB because of their actions, priority
and wildcard expressions.

Problem (i): Actions. Constructing TB’ (line 1) requires
extending selection to handle actions. Naı̈vely, one could view
an action set as a set of strings to be searched for a desired
string (here fwd(4)). This approach works for TB, but fails
when an action’s parameter takes a variable or expression
instead of a constant. Naı̈ve string matching as above would
reject a rule with the action fwd(defaultPort) (found,
e.g., in [36]), even when defaultPort = 4!

As a further complication, an action’s parameter may be
non-constant over the range of packets its rule matches on. For
example, a data center switch might balance traffic between
two ports using the action fwd(dstip%2 + 3). If rule r2
used this action, should it be included in TB’? This action
evaluates to fwd(4) for packets with dstip = 9.0.0.1
but fwd(3) for packets with dstip = 9.0.0.2.

Problem (ii): Priority. Constructing TB’ also requires se-
lection to handle priority. Naı̈vely performing selection by
selecting each rule in TB whose action set contains fwd(4)
yields a flow table containing the single rule:

(1, 9.0.0.x, fwd(2))

This result incorrectly implies that TB forwards packets with
dstip = 9.0.0.0 out port 2. Unlike a tuple in a relation,
a rule in a flow table’s semantic meaning can be affected by
other rules. Selection can not ignore a rule that doesn’t satisfy
its predicate if that rule overrides a rule that does.

Problem (iii): Wildcard Expressions. Constructing TA’ (line
2) further requires selection to handle wildcard expressions.
Promisingly, existing databases do implement certain wildcard
expressions. PostgreSQL’s INET datatype, for instance, can
represent an IP address with a wildcard suffix (e.g. 9.0.0.x).
Unfortunately, FlowDB cannot exploit these implementations
because they treat wildcard expressions as atomic values.
PostgreSQL, for instance, compares two INET values on the
smallest address each represents. Executing line 2 in Post-
greSQL therefore yields rule r2 when it should yield the rules
(2,9.0.0.0,fwd(1)) to (1,9.0.0.3,fwd(1)). Selec-
tion must split a rule if some values it represents satisfy its
predicate but not others.

3



2
2

1
port

9.0.0.1
9.0.0.255r256

r2
9.0.0.0

[TA]
r1

dstip

... ... r2
r1
TAS

2
1
port

9.0.0.x1
9.0.0.0

pri
2

dstip

Fig. 2. TA’s canonical relation, [TA], (left), TA simplifed, TAS (right).

IV. OVERVIEW

A. Applying the Relational Algebra to Flow Tables

Despite these problems, the expressiveness of relational
algebra, its rich array of optimizations, its familiarity to
programmers and its potential as a common query language
for both flow tables and regular database relations make it a
potentially attractive platform for network analytics.

FlowDB observes that a flow table, T, can be viewed as a
map from a set of input header fields to (i) a set of output
ports (if T contains forwarding actions), (ii) some other flow
table (if T contains jump actions) and (iii) a set of output
header fields (if T contains write actions). This map can be
represented in a database relation. We term this relation T’s
canonical relation and denote it [T]. TA’s canonical relation,
[TA], is shown in Fig. 2. (left).

A flow table can be converted into its canonical relation
by: (i) expanding each rule with a wildcard expression match
field into a set of single valued rules that collectively match
each packet the original rule matched, (ii) evaluating each
expression a rule’s action contains on these match field values1

and then (iii) removing any overridden rule.
One could therefore apply the relational algebra to a flow

table by converting it into its canonical relation and then
placing this relation in a database. Unfortunately, since a
wildcard expression with k wildcards over a n-letter alphabet
represents nk atomic values, expanding wildcard expressions
can result in an exponential increase in the size of a flow table.
Even though TA has 2 rules, [TA] has 255 tuples: one for each
IP addresses between 9.0.0.0 and 9.0.0.255.

B. The Flow Algebra

To avoid generating and manipulating such large quantities
of data, we take a second, related approach. As before, we
conceptually view a flow table, T , as a compressed represen-
tation of a canonical relation, [T ]. However, when we want
(for example) to apply the unary relational algebra operator
op to T , instead of decompressing T and then applying op
to [T ], we define a new version of op which can act directly
on T ’s compressed (flow table) representation. This operator
maps T to a new flow table, T ′, whose canonical relation [T ′]
is the relation op([T ]). We term this operator the flow table
equivalent of op or the flow op, and denote it op. Collectively,
these flow operators make up the flow algebra.

We formalize the preceding ideas by introducing the nota-
tion of relational algebra (RA) equivalence.

1adding new match fields as necessary to fix the expression’s operands

Definition IV.1. An unary (binary) flow algebra operator op
is relational algebra (RA) consistent to a relational algebra
operator op iff for any flow table T (flow tables, T1 and T2):

[op(T )] = op([T ])

([T1 op T2] = [T1] op [T2])

With RA-equivalence, we can formally define each flow
algebra operator.

Definition IV.2. The flow algebra operator op is defined as
an operator which is RA-consistent to the relational algebra
operator op and closed over flow tables.

From definition IV.2, it follows that the flow algebra inherits
the relational algebra’s algebraic properties. For instance:

Lemma IV.1. Iff the relational algebra operator op is commu-
tative (associative), the corresponding flow algebra operator
op is commutative (associative).

Proof (Commutativity). Let T1 and T2 be arbitrary flow tables.

[T1 op T2] = [T1] op [T2] (RA-equiv.)

= [T2] op [T1] (op commutes)
= [T2 op T1] (RA-equiv.)

Proof (Associativity). Let T3 be an arbitrary flow table.

[T1 op (T2 op T3)] = [T1] op [T2 op T3] (RA-equiv.)

= [T1] op ([T2] op [T3]) (RA-equiv.)
= ([T1] op [T2]) op [T3] (op associates)
= [T1 op T2] op [T3] (RA-equiv.)

= [(T1 op T2) op T3]. (RA-equiv.)

Similar theorems exist for the inheritance of distributivity,
cascade, and idempotence. These inherited properties allow
Flow Algebra expressions to be rewritten using the same
equivalence rules as relational algebra expressions, allowing
an existing relational algebra query planners (with a modified
cost function) to optimize Flow Algebra queries.

C. Implementing the Flow Algebra

A valid implementation of flow algebra operator, op, is a
function which satisfies Definition IV.2. There are thus multi-
ple valid implementations of each operator. Our objective is to
find an implementation with acceptable space/time complexity.
We implement our flow algebra by exploiting this idea.

Definition IV.3. Two flow tables, T1 and T2, are equivalent,
T1 ∼ T2, if they have the same canonical representation.

T1 ∼ T2 := [T1] = [T2].

Lemma IV.2. If flow tables T1 and T1’ and T2 and T2’ are
equivalent, flow tables T1 op T2 and T ′1 op T2’ are equivalent
if op is RA-consistent.

T1 ∼ T ′1 ∧ T2 ∼ T ′2 ⇒ T1 op T2 ∼ T ′1 op T ′2.

4



We therefore instantiate the flow algebra by: (1) replacing
each flow table with a simpler, equivalent table and then (2)
instantiating each operator on the simplified tables.

We simplify a flow table by reducing each of its actions to
a (1) jump to a second flow table, (2) forwarding action to a
set of ports or (3) constant valued write to a header/metadata
field. This is done by evaluating any expressions a rule’s action
contains on the values in its match field (adding new match
fields if required, and splitting the rule if an expression is re-
solved ambiguously.) In theory, modern network programming
languages such as P4 permit a rule’s action to contain complex
logic which cannot be easily resolved. Such actions were
absent in the major internet provider’s network we evaluated
on. We view extending the flow algebra to flow tables with
very complicated actions as a direction for future work.

After simplification, a flow table can be represented as a
traditional relation by adding an attribute for each priority
and header field the table writes. If the table contains jump
or forwarding actions, the attributes jump and out are also
added. We term these attributes “action attributes” and the
original match fields “match attributes”. If a rule does not
write to an action attribute attr, attr is also added as a
match attribute and the rule takes the special value =attr,
indicating a nop. Fig. 2. (right) shows TA simplified, TAS.

V. THE FLOW ALGEBRA

A. A Formal Flow Table Model

We instantiate RA-consistent flow algebra operators for:
Cartesian product, selection, projection, union, set difference,
natural join, theta join and group by.2 In this section, we
present flow Cartesian product and flow selection: the other
operators can be found in the expanded technical report [37].

Before we can instantiate our operators, we need a formal
model of a simplified flow table T . Let x be a vector of values
in the domain of T ’s match attributes. Let y be a vector of
values in the domain of T ’s action attributes. For instance, if
T was TA, x might be (9.0.0.2) and y might be (2).

We say that T represents the tuple xy if xy ∈ [T ], denoted
x A T . We now define how T achieves this representation.

A simplified flow table T is a set of flow table rules. A
flow table rule, s, is a a tuple (pri,m, a), where pri is the
flow rule’s priority, m is a vector of match attribute values
and a is a vector of action attribute values.

Definition V.1. A flow table rule s := (pri,m, a) represents
the tuple xy, denoted xy A s iff each field in m matches the
corresponding value in x and likewise for y and a.

For example, rule s2 in TAS matches (9.0.0.0, 2).

Definition V.2. The match set of a tuple of values xy in a flow
table T , denoted T (xy) is the set of flow table rules whose
match fields m match on the tuple’s match fields x.

T (xy) = {(pri,m, a) : m matches x ∧ (pri,m, a) ∈ T}.
2Each operator except for projection, set difference and group by, in certain

cases, runs in O(n2) time, where n is the number of rules in the largest
operand table.

For example TAS((9.0.0.0, 2)) = {s1, s2}.
Observe that, since a flow table may not have two equal

priority rules that match on the same packet, each rule in a
match set must have a different priority, Let the highest priority
rule in a match set, T (xy), be denoted max(T (xy)).

Definition V.3. A flow table T represents the tuple xy if the
highest priority rule in xy’s match set T (xy) represents xy.

xy A T := T (xy) 6= ∅ ∧ xy A max(T (xy)).

For example, TAS does not represent (9.0.0.0, 2) since
s1, the highest priority rule in TAS(xy) does not represent it.

B. Efficient RA-Consistent Cartesian Product

Theorem V.1. An operator, op, which takes two flow tables,
A and B, and outputs a flow table, A op B, is RA-consistent
with Cartesian product iff:

xy A A ∧ uv A B ⇔ xuyv A A op B.

Proof. Theorem V.1, V.4 and V.5 follow from Definition IV.1

Theorem V.2. An operation, ×, which takes each pair of rules
in two flow tables, A and B, and outputs a rule with the sum
of their priorities, the union of their match fields and union
of their action fields is RA-consistent with Cartesian Product.

A×B := {(pA+pB ,mAmB, aAaB) :

(pA,mA, aA) ∈ A ∧ (pB ,mB, aB) ∈ B}.

Our proof of Theorem V.2 uses two key Lemmas.

Lemma V.1. The rule (pA,mA, aA) is in A(xy) and the rule
(pB ,mB, aB) is in B(uv) iff the rule (pA + pB ,mAmB, aAaB)
is in (A×B)(xuyv).

Proof. We write:
(pA,mA, aA) ∈ A(xy) ∧ (pB ,mB, aB) ∈ B(uv)

⇔ x matches mA ∧ u matches mB

⇔ xu matches mAmB

⇔ (pA + pB ,mAmB, aAaB) ∈ (A×B)(xuyv).

Lemma V.2. The rule (pA,mA, aA) = max(A(xy)) and
the rule (pB ,mB, aB) = max(B(uv)) iff the rule (pA +
pB ,mAmB, aAaB) = max((A×B)(xuyv)).

Proof (⇐). Suppose, for the sake of contradiction,
that max((A×B)(xuyv))=(pA+pB ,mAmB, aAaB) but that
max(A(xy))6=(pA,mA, aA). Let max(A(xy))=(p′A,m′A, a′A).
By Lemma V.1, (p′A+pB ,m′AmB, a′AaB) is in (A×B)(xuyv)
and, since p′A>pA, this rule has higher priority than the
original rule which was max(A(xy)). ⇒⇐. A symmetric
argument exists for max(B(uv)).
Proof (⇒). Suppose, again for the sake of contradiction, that
max(A(xy))=(pA,mA, aA) and max(B(uv))=(pB ,mB, aB)
but max((A×B)(xuyv)) 6= (pA+pB ,mAmB, aAaB). Let
max((A×B)(xuyv)) = (p′A+p

′
B ,m′Am′B, a′Aa′B).

By Lemma V.1, (p′A,m′A, a′A) ∈ A(xy). Thus p′A≤pA. By
Observation V.2, if p′A=pA then (p′A,m′A, a′A)=(pA,mA, aA).
A similar argument exists for p′B and pB . Thus if:

5



• p′A<pA and p′B≤pB , p′A+p
′
B < pA+pB . ⇒⇐.

• p′A≤pA and p′B<pB , p′A+p
′
B < pA+pB . ⇒⇐.

• p′A=pA and p′B=pB , then (p′A+p
′
B ,m′Am′B, a′Aa′B) =

(pA+pB ,mAmB, aAaB) = max((A×B)(xuyv)). ⇒⇐.
Theorem V.1 follows directly from Lemma V.2.

C. Efficient RA-Consistent Selection.

Theorem V.3. An operator, op, that takes a flow table T and a
predicate p and outputs a flow table op(T, p) is RA-consistent
iff:

x A A ∧ px ⇔ x A op(T, p).

Our efficient RA-consistent flow selection operator is built
on top of our efficient RA-consistent intersection operator:

Theorem V.4. An operator, op, which takes two flow tables,
A and B, and outputs a flow table, A op B, is RA-consistent
with set intersection iff:

xy A A ∧ xy A B ⇔ xy A A op B.

Let ∧ be an RA-consistent set intersection operator. Further,
let Tp be a flow table such that x A Tp ⇔ p(x). Then:

Theorem V.5. An operator, σp(T ), which takes a flow table T
and a predicate p, synthesizes the table Tp, and then takes the
flow intersection of T and Tp is RA-consistent with selection.

σp(T ) := T∧TP

Proof. We write:

x A T∧TP ⇔ x A T ∧ x A Tp (Theorem V.4)
⇔ x A T ∧ p(x) (by the construction of Tp.)

Tp can be constructed for arbitrary boolean expression p
whose terms are conditionals by: (1) placing p in disjunctive
normal form, (2) building a flow table to represent each con-
ditional, (3) joining each conjunct’s tables by set intersection
and then (4) joining each disjunct’s tables by union.

VI. THE HISTORY TABLE

Many common network management tasks require the gen-
eration of one or more packet histories (see §IV). Rather
than requiring the programmer to manually synthesize packet
histories, FlowDB provides a virtual table termed the history
table, which conceptually lists every history in the network.

The history table is built on the concept of packet state. A
packet’s state consists of four components:
• Physical Location. The last port the packet traversed.
• Logical Location. The processing element the packet is

about to enter. This can be a flow table or the network links.
• Header fields. The packet’s header field values.
• Metadata fields. A packet in a switch is often assigned

metadata fields to store intermediate processing results.
These fields are stripped on exiting a switch.
A packet’s state is thus the tuple ps := (ele,port,hi, . . .)

where ele is a logical location, port is a physical location,
and each hi is a header or metadata field. If a metadata field
is not written, it is set to null. E.g., a packet in myNet with

dstip=9.0.0.1 entering port swA.1 (Fig. 5) has state
ps1 := (ele : TA,port : 1,dstip : 9.0.0.1).
History. A history is a sequence of packet states ps1 ps2 . . .
psn describing the sequence of states a packet with initial
state ps1 is routed through. If a network has multiple histories
starting with ps1, ps1 is multicast by the network. If a network
has no histories starting with ps1, ps1 is an invalid initial state.
History Table. The history table lists the network’s histories.
If a network has packet state ps := (ele,port,hi, . . .), the
history table has attributes ele(1), port(1), hi(1), . . .
which store each history’s initial state, ele(2), port(2),
hi(2), . . . which store each history’s second state, etc. The
history table conceptually unbounded number of attributes
makes it differ from a standard flow table. The history table’s
match attributes are its initial state. The table myHistory
(Fig. 3.) shows the first four packet states in myNet’s history
table. Tuple s2 contains Fig. 5’s packet history.

If a history has fewer than k states, each value in its kth
state and onwards is null. The history relation also lists each
history’s last non-null state’s number in the attribute last.
Materializing the History Table. The history table is materi-
alized using the Flow Algebra. Since a programmer is rarely
interested in the entire history relation, materialization is post-
poned to query execution when it is combined the user’s query
to minimize computation. Before describing materialization,
however, we must describe the network view it acts on.
Logical Network. A network can be viewed as a directed graph
of logical elements. Each element is a dataplane flow table or
the network links. Each edge (elei, elej) indicates that elei can
transmit a packet to elej for further processing. For example,
myNet’s logical network (Fig. 6) contains three elements, TA,
TB and links. Its four edges (TA,links), (TB,links),
(links,TA), and (links,TB) indicate that TA and TB can
transmit to links and vice versa.

A logical network’s ingress element is an element that a
packet entering the network can arrive at first. In myNet,
TA and TB are logical elements. In a logical network, each
element’s flow table’s map is viewed as a multifunction
mapping a packet state to a set of packet states. For example,
TA maps the packet state (TA,1,9.0.0.1) to the set of states
{(links,2,9.0.0.1)}.
Flow Table Normalization. A flow table is normalized if it
explicitly represents a map from one packet state to another.
If an network has state (ele,port,hi, ...), a normalized flow
table has schema: T : ele(1), port(1), hi (1), . . . →
ele(2), port(2), hi(2). To materialize the history table,
each flow table in the logical network must be normalized.
Datapath Flow Table Normalization. A flow table T is not
normalized if some packet state variable is missing from either
its match attributes or action attributes. To normalize T, any
missing match/action attribute is added to it and that attributes
fields populated as shown in Fig. 7. Figure 8 (top) shows the
relation FA after normalization.
Representing the network’s links. History table materialization
also requires the network’s links topology to be represented

6



Ordering
s1 > s2
s3 > s4

dstip(4)

=dstip(1)
=dstip(1)

null

null

FB
x 9.0.0.x

4
x

=dstip(1)
ele(3)

2FA4

FB

links

 s4 null
linksx s3

=dstip(1)
 s1

port(2)

links
FAlinks9.0.0.0

port(4)
nullnull

3 s2
x 1

=dstip(1)
FA

1

last ele(1)

null
=dstip(1)

links

4 =dstip(1)

dstip(2)port(1)

2
=dstip(1)3

null
4

null

null
ele(4)dstip(3)

2
null

null
port(3)dstip(1)

null

null
FB

9.0.0.0

links

ele(2)

9.0.0.x

2

Fig. 3. The history table myHistory, summarizing myNet’s behavior.

FA FB…
Ingress rel.

FX FY

Network rel. (i) History relation initialization
H := FA ∪ FB ∪ … 

(ii) Network relation generation
N := FA ∪ FB ∪ … ∪ FX ∪ …   

H := H ⋈H.ps(i-1)=S.ps(i-1) S 
S := ρps(i-1)/ps(in),ps(i-1)/ps(out)(N)

(v) All rows complete? σps(i)!={null,…}(N)={}? (vi) Compute lastattribute

(iii) History-network relation join

N

(iv) Terminate Infinite Loops
∀ s ∈ σps(1)=ps(i)∧…∧ps(i-1)=ps(i)(N), 

sps(i) ={null, …}Y
…

Fig. 4. The history table materialization workflow. The expressions under steps (iii)-(v) generate each history’s ith step.

ps1

1
9.0.0.255

...9.0.0.1swA
9.0.0.0 2 3 4

swB

ps2 ps3 ps4
dstip=
9.0.0.1

Fig. 5. A packet travelling through myNet.

FA links FB
Fig. 6. The graph of myNet’s logical network.

in a normalized flow table, links. This flow table can be
constructed as follows. First, for each pair of ports p and q in
the network connected by a link, the rule (links, p, xxxx,
. . ., elek, q, =hi(1), . . .) is added to links (where elek
is the first logical element a packet entering port q encounters.)

Next, the rule (links,p,xxxx, . . . ,null,null, . . .) is
added for each port p connected to a link leaving the network.
For example, Fig. 8 (bottom) shows myNet’s links relation.

History Table Materialization. Once the logical network’s flow
relations have been normalized, they can be transformed into
the history relation following the workflow shown in Fig. 4.

(1) History Table Initialization. The history table, H , is
initialized as a list of each history’s first two steps by taking
the union of each ingress element. For example, myHistory
is initialized to FA ∪ FB.

(2) Network Table Initialization. The network table, N , con-
tains a tuple (psin, psout) for each packet state, psin, that
can enter a network element and each packet state, psout,
that this element maps psin to. It is initialized by taking
the union of each element’s relation and then adding an
all null tuple. For example, myNet’s network relation is
FA ∪ FB ∪ links ∪ {(null,null,null, . . .)}.
(3) Joining the History and Network Tables . The join:

H ./H.ps2=N.ps2 ρps2/psin,ps3/psout
(N)

computes the history table’s third step by joining each his-
tory (ps1, ps2) in the history table with each tuple (ps2, ps3)
in the network table listing the packet state that the network
maps ps2 to. Note that if a packet in state ps2 is forwarded
out of the network by the links relation, ps3 is set to null.

(4) Terminate Infinite Loops. The selection:
σps1=ps2(H)

finds each history with an infinite loop whose second cycle
starts at ps2 (loops whose second cycle starts at ps3 will be
discovered in a subsequent step.) Each such history has its
value for ps3 set to the null state.

(5) Check for incomplete histories. The selection:
σps3!=null(H)

h1(1) h2(2)
F links

port(1) port(2)ele(1) ele(2)
=h1(1)x =port(1)x

Fig. 7. The values a flow table T’s missing match/action attribute’s fields are
populated with during normalization.

s1
ele(2)

2

ele(1)
x

FTA

port(1)
links

s2
1

dstip(1)

=dstip(1)

dstip(2)FTA

x
FTA

9.0.0.x links
9.0.0.0 =dstip(1)

port(2)

s4 nulllinks x.x.x.x null4 null
linkss3 x.x.x.x FTA3 2 =dstip(1)

s1
ele(2)

3

ele(1)
1

links

port(1)
null

s2
null

dstip(1)

=dstip(1)

dstip(2)links

2
links

x.x.x.x FTB
x.x.x.x null

port(2)

Fig. 8. The normalized flow relations FTA and links.
lists every history whose final step is not the null tuple.

These are the histories that have yet to exit the network, i.e.,
the incomplete histories. If there is an incomplete history,
construction returns to step (3), which computes each history’s
fourth step, ps4. Infinite loops which repeat at ps3 are termi-
nated in step (4), etc. Since the network relation contains a
tuple mapping the null state to the null state, each history
terminating at state psi will have each subsequent state psi+1,
psi+2, etc. set to the null state.
(6) The last attribute. Each history is scanned and its last
non-null state’s number is added to it as the attribute last.

VII. FLOWSQL
FlowSQL is a dialect of SQL built on top of the Flow Alge-

bra. FlowSQL provides FlowDB with a declarative, familiar
programming interface by implementing the subset of SQL
listed in Fig. 9. FlowSQL augments this subset with indexed
attributes and the ANY, ALL and TALLY clauses to allow the
programmer to search the history table for histories matching
complex patterns and compute these histories’ properties.
Indexed Attributes. An indexed attribute, attr(n), refer-
ences the packet state variable attr belonging to the nth
step of the history table. For example, the index attribute
dstip(2) references the dstip of the history table’s second
step. An index’s value can be an integer or the special
keyword, last, which references the last non-nil step in a
history. In myHistory, for example, port(last) refer-
ences port(2) in r1 but port(3) in r2.

FlowSQL also provides a special indexed attribute,
step(n), which references each attribute in the nth step
of the history table. For example,SELECT step(3) FROM
myHistory and SELECT port(3), dstip(3) FROM
myHistory are equivalent.

The reachability task, “which packets are routed from port
s to port d?”, can be expressed using indexed attributes:
SELECT step(1) FROM history
WHERE port(1) = s AND port(last) = d

7



CREATE TABLE, AS, VALUEMisc.
AVG, COUNT, SUMAggregate
NOT, AND, OR, ANY, IN, IS NULL, EXISTSConditional
EXCEPT, INTERSECT, UNIONSet operation
SELECT, FROM, WHERE, HAVING, GROUP BYSELECT command
KeywordsKeyword Category

Fig. 9. FlowSQL Keywords.

Q
ue

ry
 E

xe
cu

ti
on

Rewriter System

Query Preprocessor
Parser

Planner/Optimizer
Executor

3
4
5
6
7 P4 OpenFlow Robotron SQL NoSQL

Dataplane Config. External DBs

Cost Map Gen. Verification Refactoring
SDN Applications

Storage
FlowSQL Queries2

18

Fig. 10. FlowDB system diagram.

ANY/ALL Clauses. A programmer may want to identify
whether the history table contains a history whose steps match
a particular pattern. For example, the waypoint verification
task, “does any packet traveling from port s to port d not
pass through port w?”, requires identifying each history where
port(1) = s, port(last) = d, and no port(i) is
equal to w. Such queries are expressed using ANY/ALL clauses.

An ANY/ALL clause takes a set of index variables {i,j,
. . .} and a predicate whose indexed attributes use those vari-
ables as indices p(i,j . . .). An ANY clause evaluates to true
if any binding of index variables to integers satisfies p.

ANY(i,j, . . .)(p(i,j, . . .)) :=

∃ i ∈ N,∃ j ∈ N, . . . : p(i,j, . . .).

An ALL clause evaluates to true if each binding of index
variables to integers satisfies p.

ALL(i,j, . . .)(p(i,j, . . .)) :=

∀ i ∈ N,∀ j ∈ N, . . . : p(i,j, . . .).

For example, the waypointing task above can be expressed:
SELECT step(1) FROM history
WHERE port(1) = s AND port(last) = d
AND ALL(i)(port(i) != w)

TALLY Clauses. A programmer may also want to know
how many times a particular pattern occurs in a history.
For example, verifying that no packet routed from port s
to port d makes more than k hops requires counting the
number of times each history passes through the network links.
Such queries are expressed using TALLY clauses. A TALLY
clause TALLY(i,j, . . .)(p(i,j . . .)) returns the number
of bindings to the indices i, j,. . . that satisfy p.

TALLY(i,j . . .)(p(i,j . . .)) :=

∞∑
i=1

∞∑
j=1

p(i,j . . .)

VIII. IMPLEMENTATION

The flow algebra’s implementation, termed FlowDB, is
shown in Fig. 10. FlowDB was prototyped as an extension
to the PostgreSQL database. Upon initialization, FlowDB is
populated 1 by extracting routing tables from each switch’s

dataplane (e.g., Openflow [38]/P4 [39] tables), network topol-
ogy/configuration information from the network managment
system (e.g. Robotron [1]) and traditional relations from
external databases, converting each table into a simplified flow
table (§IV, §V) and storing it. An atomic predicate [3], [4]
based index is created for each flow table to accelerate joins.

Network applications can view, analyze and manipulate
these tables using FlowSQL (§VII) queries 2 . Upon receiving
a FlowSQL query, FlowDB’s query preprocessor 3 scans
it and, where necessary, converts its WHERE and HAVING
clauses into joins (§V). The rewritten query is converted into
a parse tree by the PostgreSQL parser 4 , which is provided
with the additional keywords FlowSQL introduces. The rewrite
system 5 identifies any part of the query tree referencing
a view and alters it to reference the tables in the view’s
definition. Care is taken when building the history table (§VI).

The planner/optimizer 6 then takes the query tree and
generates a query plan. The planner/optimizer is augmented
with the definitions of FlowDB’s flow table operators and
functions which estimate their execution cost. Finally, the
executor 7 executes this query plan. The results may be
written back 8 to a switch’s dataplane.

IX. EVALUATION

FlowDB’s evaluation answers the following three questions:

(1) Can FlowDB run a range of network management tasks?
(2) Do these tasks run reasonably quickly on real networks?
(3) How does FlowDB’s performance compare to other tools?

We find that: (1) FlowDB can run a wide range of network
management tasks, (2) that these tasks run in a reasonable
time frame on two large real-world networks, and (3) FlowDB
outperforms two state-of-the-art verification engines, Header
Space Analysis [8] and NoD [9] on network debugging and
verification tasks by mode than 55× and 100×.

Benchmark Tasks. FlowDB was run on five classes of tasks:
(1) Cost Map Generation. Generating ALTO [27], Flow Direc-

tor [28] and simple hop count cost maps.
(2) Verification. Reachability, finite/infinite loop detection, black

hole detection, waypoint verification, multipath consistency,
equal cost multipath, isolation.

(3) Dataplane refactoring. Decomposing a flow table into 2NF
and 3NF forms [35].

(4) Dataplane Composition. Composing two tables sequentially,
in parallel and with one table overriding the other [6].

(5) Network Policy Managment. Certifying that a network main-
tains policies practiced by a real large internet company.

Benchmark Networks. FlowDB is evaluated on a publicly
available snapshot of Stanford’s campus network [7] (Fig. 11.
(left)) and a parametrizable model of a large internet com-
pany’s data center switching fabric (Fig. 11. (right)). Stanford’s
campus network contains 757,000+ forwarding entries. The
switching fabric is built on a real three layer topology taken
from a Facebook data center and contains 10K+ switches,
100K+ links, and 150 million+ forwarding entries.

8



 +4 pairs
Operational Zone Switches

Backbone Switches

Rack Switches…

…

…

Fabric Switches

Spine Switches

Fig. 11. (left) Stanford’s network topology. (right) A segment of a large
internet company’s switching fabric topology.

Cost Map Generation
ALTO

40.8 

FlowDirector
Hop Count

Verification
Reachability
Finite Loop Detection
Infinite Loop Detection
Blackhole Detection
Waypoint Verification
Multipath Consistency
Equal Cost Multipath

3010

7.9

52.3
27.3
45.8
69.2
48.2

3870
1671

ALTO Update
FlowDirector Update

9.5
10.7

Management Task Time (s) Management Task Time (s)
Dataplane Refactoring
2NF Decomposition 0.3
3NF Decomposition 0.3
Dataplane Composition
Sequential Composition 1.8
Parallel Composition 1.4
Override Composition 1.4
Network Policy Checking
Policy 1
Policy 2
Policy 3

2333
3589
3150

Policy 1 Update
Policy 2 Update
Policy 3 Update

5.7
9.6

25.6
Isolation 1.2

Fig. 12. Runtimes of selected network managment tasks on a datacenter
switching fabric with FlowDB.

Benchmark Verification Engines. FlowDB is benchmarked
against two publicly available state-of-the-art verification en-
gines: HSA’s HasselC implementation [7] and NoD [9].

Hardware. All tests were run on an Intel Core i7, 2.20GHz
CPU running Ubuntu 18.04 LTS with with 8GB of RAM.

A. Running a Range of Network Management Tasks

Fig. 12 shows the wide range of network management tasks
FlowSQL can express. These tasks involve dataplane analysis,
manipulation, and query both dataplane and non-dataplane
data. Fig. 13 shows the maximum number of lines of code
required to express a task from each category of tasks (e.g.,
each of the verification tasks in Fig. 12 took ≤ 7 lines of
code to express.) While code length weakly correlates with
readability, it shows that FlowSQL expresses tasks succinctly.

B. Network Management Task Runtimes

Fig. 12 shows the median time FlowDB took to compute
each benchmark task on the Facebook data center switch
fabric over 10 runs. Unsurprisingly, each task’s runtime is
determined by the number of joins it requires. Each dataplane
refactoring (composition) task, which required no (one large)
join, completed just in 0.3s (1.4s to 1.8s). Reachability, which
finds a history between a pair of source and destination ports,
required ∼ 8 joins and took 7.9s, whilst queries like finite loop
detection, which generate every history starting at a given port,
required ∼ 50 joins and took 40 to 70s. Runtime does not
linearly increase with join number, since more joins provide
greater opportunity to optimize join ordering and reuse results.

Cost map generation and network-wide policy checking
compute a substantial fraction of the network’s histories and
took 30 to 60min. Fortunately, however, once a cost map is

Cost Map Generation
Verification
Dataplane Refactoring

12
Management Category Line # Managment Category Line #

Dataplane Composition
Network Policy Checking 197

2

2

Fig. 13. The maximum number of FlowSQL lines to express a task from
each category of benchmark tasks.

HSA (Hassel-C)
NoD (Batfish)
FlowDB

190.1
System Time (s)

421.3
3.7

FlowDB (no opt.)
18.3

System Time (s)

145.4
FlowDB (no index)

Fig. 14. Benchmarking FlowDB against state-of-the-art verification tools.

generated (network policy is certified), updating the policy
(certificate) against network churn is rapid (9.5-25.6s) since
network churn only affects a small number of rules. Each
verification query (other than isolation) referenced the history
table. Since the history table is lazily generated, however, only
a small part of it is built for each task, decreasing runtime.

C. Benchmarking FlowDB
Fig. 14 lists the median time that FlowDB, HSA and NoD

require to certify a real network policy (policy 1 in [37]) on
Stanford’s network over 20 trials. (Note that since HSA/HoD
cannot query non-network tables, a Python scaffolding was
set up to transform the policy certification task into a series of
HSA/NoD verification tasks. The runtime of this Python scaf-
folding is not included in Fig. 14.) FlowDB outperformed HSA
(NoD) by ∼ 55× (∼ 100×). We hypothesized that FlowDB’s
performance increase stemmed from its atomic predicate based
flow table index, which allowed it to join network tables when
computing packet histories more efficiently than HSA/NoD,
and its use of the PostgreSQL optimizer, which allowed it to
follow a more efficient join ordering than HSA/NoD.

To test this hypothesis, we ran FlowDB on this task two
more times, once without using our efficient index-based
join and once without our index-based join and enforcing a
strict left-to-right join ordering. Fig. 14 shows that indexing
(efficient join ordering) provided a ∼ 6× (∼ 8×) speed up.
Without these two optimizations, FlowDB performed similarly
to HSA/NoD (the remaining performance improvement is
perhaps attributable to PostgreSQL’s efficient engineering.)

X. CONCLUSION

Flow Algebra provides a generic and rigorous formal frame-
work for a great diversity of network management tasks.
By inheriting the relational algebra’s algebraic properties,
the flow algebra allows network managers to leverage the
significant progress database researchers have made in query
optimization, allowing FlowDB to scale to very large net-
works. Moreover, by implementing cutting edge domain spe-
cific optimizations such as atomic predicate “under the hood”,
FlowDB allows operators to benefit from these optimizations
without having to understand their complexities.

ACKNOWLEDGEMENT

We would like to acknowledge Facebook for funding and
supporting this research, and Qiao Xiang, Shenshen Chen and
Kai Gao for their advice, support and kindness.

9



REFERENCES

[1] Y.-W. E. Sung, X. Tie, S. H. Wong, and H. Zeng, “Robotron: Top-down
network management at facebook scale,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. New York, NY,
USA: Association for Computing Machinery, 2016.

[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” 2014.

[3] H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” IEEE/ACM Transactions on Networking, 2015.

[4] ——, “Scalable verification of networks with packet transformers using
atomic predicates,” IEEE/ACM Transactions on Networking, 2017.

[5] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li, “Apkeep:
Realtime verification for real networks,” in 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). Santa
Clara, CA: USENIX Association, Feb. 2020. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/zhang-peng

[6] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks,” in NSDI15. Oakland, CA:
USENIX Association, May 2015.

[7] P. Kazemian, Hassel C, Accessed August 14, 2020. [Online]. Available:
https://bitbucket.org/peymank/hassel-public/wiki/Home

[8] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis.” in NSDI, 2013.

[9] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), 2015.

[10] S. Babeni, Most Popular Databases in 2020: Here’s How They Stack
Up, January 24, 2020 (Accessed August 14, 2020). [Online]. Available:
https://ormuco.com/blog/most-popular-databases

[11] S. Overflow, Developer Survey Results 2019, 2019 (Accessed June 12,
2020). [Online]. Available: https://insights.stackoverflow.com/survey/
2019

[12] D. Maier, K. T. Tekle, M. Kifer, and D. Warren, Datalog: concepts,
history, and outlook. ACM Books, 09 2018.

[13] S. Prabhu, K.-Y. Chou, A. Kheradmand, P. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” 2019.

[14] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’17. New York, NY, USA: Association for Computing
Machinery, 2017.

[15] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network configu-
ration analysis,” in 12th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 15), 2015.

[16] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and
G. Varghese, “Efficient network reachability analysis using a succinct
control plane representation,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’16, 2016.

[17] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast
control plane analysis using an abstract representation,” ser. SIGCOMM
’16. New York, NY, USA: Association for Computing Machinery,
2016.

[18] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Presented as part
of the 10th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 13), 2013.

[19] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu,
“Debugging p4 programs with vera,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: Association for Computing
Machinery, 2018.

[20] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,
H. Wang, C. Caşcaval, N. McKeown, and N. Foster, “P4v: Practical
verification for programmable data planes,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: Association for Computing
Machinery, 2018.

[21] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and
M. Barcellos, “Uncovering bugs in p4 programs with assertion-based
verification,” in Proceedings of the Symposium on SDN Research,
ser. SOSR ’18. New York, NY, USA: Association for Computing
Machinery, 2018.

[22] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “BUZZ: Testing
context-dependent policies in stateful networks,” in 13th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 16).
Santa Clara, CA: USENIX Association, Mar. 2016.

[23] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet:
Scalable symbolic execution for modern networks,” in Proceedings of
the 2016 ACM SIGCOMM Conference, 2016.

[24] Y. Yuan, S.-J. Moon, S. Uppal, L. Jia, and V. Sekar, “Netsmc: A custom
symbolic model checker for stateful network verification,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, Feb. 2020.

[25] F. Yousefi, A. Abhashkumar, K. Subramanian, K. Hans, S. Ghorbani, and
A. Akella, “Liveness verification of stateful network functions,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Feb. 2020.

[26] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz,
“P4p:provider portal for applications,” Acm Sigcomm Aug, 2008.

[27] R. Alimi, Y. Yang, and R. Penno, “Application-layer traffic optimization
(ALTO) protocol,” IETF RFC, 2014.

[28] E. Pujol, I. Poese, J. Zerwas, G. Smaragdakis, and A. Feldmann,
“Steering hyper-giants’ traffic at scale,” in Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies, ser. CoNEXT ’19. New York, NY, USA: Association
for Computing Machinery, 2019.

[29] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey, “Ravel: A
database-defined network,” in Proceedings of the Symposium on SDN
Research, ser. SOSR ’16. New York, NY, USA: Association for
Computing Machinery, 2016.

[30] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative
networking: Language, execution and optimization,” in Proceedings of
the 2006 ACM SIGMOD International Conference on Management of
Data, ser. SIGCOMM ’18. New York, NY, USA: Association for
Computing Machinery, 2006.

[31] M. Abadi and B. T. Loo, “Towards a declarative language and system
for secure networking,” in Proceedings of the 3rd USENIX International
Workshop on Networking Meets Databases, ser. NETB’07. USA:
USENIX Association, 2007.

[32] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’18. New York, NY, USA:
Association for Computing Machinery, 2018.

[33] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigascope:
A stream database for network applications,” in Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’03. New York, NY, USA: Association for Computing
Machinery, 2003.

[34] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B. T. Loo,
“Quantitative network monitoring with netqre,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17. New York, NY, USA: Association for Computing
Machinery, 2017.

[35] F. Németh, M. Chiesa, and G. Rétvári, “Normal forms for match-action
programs,” in Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies, ser. CoNEXT ’19.
New York, NY, USA: Association for Computing Machinery, 2019.

[36] switch.p4, 2016. [Online]. Available: https://github.com/p4lang/switch
[37] Flow Algebra Technical Report. [Online]. Available: https://drive.google.

com/drive/folders/15XS3ZEVZY5GM6Usbav0mFVJfPiOvc8Re?usp=
sharing

[38] OpenFlow Spec., 2014. [Online]. Available: https://opennetworking.org/
wp-content/uploads/2014/10/openflow-switch-v1.4.1.pdf

[39] P4-16 Language Specification, 2016. [Online]. Available: https:
//p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

10


