
Trading Latency for Compute in the Network
Pietro Bressana

Università della Svizzera italiana
pietro.bressana@usi.ch

Noa Zilberman
University of Oxford

noa.zilberman@eng.ox.ac.uk

Dejan Vucinic
Western Digital Research
dejan.vucinic@wdc.com

Robert Soulé
Yale University

robert.soule@yale.edu

ABSTRACT
This paper proposes a new heterogeneous approach to pro-
grammable architecture that extends the capabilities of pro-
grammable switch ASICs with FPGAs. It identifies the key chal-
lenges in building a heterogeneous network architecture, and
presents a concrete design and implementation based around a
proof-of-concept data deduplication application. Our prototype
demonstrates the use of a programmable network switch and FP-
GAs to accelerate storage fingerprinting, running at 10G and 100G
at line rate. Our approach is modular, scalable and generalizes to a
wide range of applications.

CCS CONCEPTS
• Networks → Network architectures; • Computer systems
organization→ Heterogeneous (hybrid) systems.

ACM Reference Format:
Pietro Bressana, Noa Zilberman, Dejan Vucinic, and Robert Soulé. 2020.
Trading Latency for Compute in the Network. In Workshop on Network
Application Integration/CoDesign (NAI’20), August 14, 2020, Virtual Event, NY,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3405672.
3405807

1 INTRODUCTION
The end of Moore’s law and the limits of Dennard scaling have
increased interest in the use of domain-specific processors as an
alternative to general purpose compute devices. Domain-specific
processors offer advantages not just because of the particular capa-
bilities of the hardware, but also by virtue of where the hardware
is placed. For example, computations might be performed in the
network on data in-flight.

This has led to a blurring of the traditional division of labor
between network and applications, as researchers have explored
in-network computing (INC) [8, 11, 12] as a way to accelerate ap-
plications and services. Although in-network computing is still

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NAI’20, August 14, 2020, Virtual Event, NY, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8044-7/20/08. . . $15.00
https://doi.org/10.1145/3405672.3405807

in its infancy, early research results are promising, often provid-
ing an order-of-magnitude (or more) increase in throughput and
significant reductions in latency.

However, these performance improvements involve a trade-off.
On the one hand, link speeds are fundamentally different between
software, FPGA, and ASIC, with a gain of about 10× at each step.
But, on the other hand, the expressiveness and flexibility of the
hardware decreases inversely to the performance, strictly limiting
the classes of applications that can be accelerated. So, while load-
balancing [16] or consensus [8, 12] might be reasonable candidates
for acceleration, in-network computing would unlikely be able to
accelerate, for example, a Monte Carlo simulation.

It is therefore natural to ask: is the exchange between performance
and expressivity a characteristic attribute of in-network computing,
or is there a way to navigate the trade-off? We argue for the latter, by
proposing a “compute hierarchy” for in-network computing. Con-
cretely, we present a new heterogeneous approach to programmable
architecture that extends the capabilities of programmable switch
ASICs with FPGAs, thereby providing a path for accelerating a
greater diversity of applications in the network.

Designing such an heterogeneous architecture is hard, due to
the mismatch between different technologies. The mismatch is not
only in expressiveness and flexibility, but also in performance and
resources. Consequently, it is required not only that switch ASIC
and an FPGA will interoperate, but also that they will compensate
for the difference in performance, and orchestrate it in a manner
that guarantees mandatory networking functionality remains unaf-
fected.

There is likely no one-size-fits-all architecture that will work
for all applications. It is therefore important that system designers
understand the key design decisions that follow these challenges.
In this paper, we identify and elaborate these choices in depth.
Moreover, we implement and evaluate one approach that we think
will be broadly applicable.

As a proof-of-concept, we have implemented a fingerprint
computation—i.e., mapping a large data item to a smaller bit string—
on our architecture, realized with a Barefoot Tofino [17] ASIC
and a NetFPGA SUME [22] FPGA. Our evaluation shows that the
prototype runs at line-rate with a minimal impact on resources.
Moreover, we demonstrate that using more recent FPGA technol-
ogy and 100GE ports would scale up in throughput, while providing
a reduction in latency.

In summary, this paper makes the following contributions:

• It identifies benefits and limitations of programmable net-
work ASICs and FPGA-based network devices (§2).

https://doi.org/10.1145/3405672.3405807
https://doi.org/10.1145/3405672.3405807
https://doi.org/10.1145/3405672.3405807

NAI’20, August 14, 2020, Virtual Event, NY, USA P. Bressana et al.

• It argues for creating a compute hierarchy for INC (§3).
• It identifies key challenges in building a heterogeneous net-
work architecture (§4).

• It provides a concrete implementation and proof-of-concept
data deduplication application (§5).

• It validates the proposed approach in terms of performance,
resource utilization, and power consumption (§6).

2 BACKGROUND
Programmable Switch ASICs. Programmable switch ASICs are
optimized for packet processing at very high rate. To program
these devices, developers use high-level, domain-specific program-
ming languages, in a way that is similar to software development.
Compared to other hardware, ASICs provide the best performance
and power efficiency, measured as number of network operations
computed per watt [20]. On the other hand, meeting such strict per-
formance requirements limits the flexibility of these devices and the
amount of resources they offer. Programmable ASICs usually offer
a small number of stages in their pipeline (i.e., tens of stages [17]),
limited amount of memory per stage (in the form of network tables
and SRAM banks), and simple functional blocks supporting a very
limited instruction set.

Stateful operations and off-chip memory are limited in most
programmable switches. Due to the fixed, vendor-specific architec-
ture implemented by programmable network ASICs, developers
cannot implement custom functions on a switch. However, they
can leverage existing functions, as long as the silicon vendor has
built those into the switch in advance.
FPGA-based Network Devices. FPGAs offer significant flexibil-
ity, and allow the implementation of any application that can fit
within the available chip resources. FPGAs today are equipped with
various types of resources, including microcontrollers, micropro-
cessors, DSPs and on-board memory. The I/O on the FPGA can
support different interconnects and protocols. FPGAs are suitable
for accelerating highly parallelized tasks, potentially implementing
many different computing cores within the same design. enable net-
work programmability on FPGA hardware (e.g., [9]). The flexibility
of FPGA comes at the cost of performance; device frequency is sig-
nificantly lower than switch ASIC, and resource usage is not as well
optimized. Furthermore, FPGAs offer much lower performance-per-
watt compared to ASICs.

3 BUILDING COMPUTING HIERARCHIES
Although several research prototypes have demonstrated the po-
tential for in-network computing [8, 11, 12], we have yet to see
wide spread adoption of switches as computing platforms. One
reason is that in-network computing depends on platform-specific
function modules (externs), meaning that a program can not be
easily (or at all) ported between different types of devices. Another
reason is that in-network computing consumes resources required
for native networking functionality, meaning that a switch can not
act as both a networking-device and an accelerator at the same
time. Last, and possibly most importantly, switches do not have the
right computing resources to run certain applications.
Benefits of Compute Hierarchy. To overcome the computation
limitations of switches, we adopt a hierarchical approach, similar to

Figure 1: CPU hierarchy vs. network hierarchy.

CPU architecture. In CPUs, memory hierarchy allows one to trade
memory space for latency. This means that access to registers is
immediate, access to first level cache has a few clock cycles latency,
and every additional level in the hierarchy provides more memory,
for the price of higher access time. Our approach trades computation
for latency; computation within the programmable switch-ASIC is
almost immediate but limited in capabilities, computation within
an FPGA provides more opportunities, but takes more time and so
on. Figure 1 shows the equivalences between the two approaches.

In-network computing has been successfully adopted for caching
use cases, but switches can cache only in the order of 64k [12]-128k
entries, while applications such as memcached require millions to
billions of unique keys [3]. Applications that require complex math-
ematical operations, ranging from multiplication to exponents and
logarithms, are also divorced from switches. While look up tables
can be used as an alternative to some operations [21], the resources
required may be too extensive. For example, the multiplication of
two 16bit operands will require a table of 232 entries.

Using FPGAs as a second level of computation behind switches
attends to many of these concerns. FPGAs have been extensively
used as accelerators for scientific applications [4], meaning that
their computations capabilities are not only more extensive than
switches, but also more mature. Furthermore, FPGA’s interfaces
are configurable, allowing the FPGA to serve as a control and man-
agement layer between a switch and a memory or a storage device,
providing access to additional resources. Moreover, many switch-
boxes already include an FPGA, serving as a management device
or, for example, for co-processing statistics.

Cost of Compute Hierarchy. There are, however, two prices to
pay when using FPGA. First, the FPGA uses one (or more) of the
switch ports. These ports achieve much higher data transfer rate
than a PCI-express interface between the switch and a local CPU,
but decrease the overall available port count. We argue that this is
a better choice than dedicating switch I/O to memory or storage
interfaces, as the number of pins required is smaller (per transfer
rate), and the same switch-silicon flexibility supports a large number
of configurations without design or manufacturing changes.

The second price, which can not be redeemed, is latency. While
the latency through a switch is sub-microsecond, going through an
FPGA and back, doubles or more the latency within a switch-box.
A packet goes not only through the switch pipeline, but also to the
FPGA and back, and potentially through part or all of the switch
pipeline again, before going out to the user. We argue, however,
that this trade-off of latency for computation is beneficial.

Trading Latency for Compute in the Network NAI’20, August 14, 2020, Virtual Event, NY, USA

Performance. Applications are offloaded to the network only
when there is a potential performance benefit. For example, if a
caching application can serve 100× requests per second running
within the network. While unlikely, it may be, in certain designs,
that going through the FPGA will end up with the same request-
reply latency as sending the request to a host. We assert, however,
that if for the same overall latency, the throughput gain is 100×,
then there is a benefit.
Network Latency. Having an FPGA attached to a switch provides
the lowest bound on the latency of a network-attached accelerator.
Using a remote smartNIC or FPGA means that any computation is
further delayed by the latency of the connecting link or switches
along the way. While this may be negligible in a ToR-to-NIC con-
figuration, it is not if the processing ToR is located next to the user
(e.g., edge termination), while the smartNIC is located next to the
server, on the other side of the network. Furthermore, our scheme
means that packets from the switch to the FPGA are not delayed
by congestion within the network.
NetworkLoad.Any computation sourced at a switch and offloaded
to a remote FPGA or smartNIC increases the load on the network.
Consider the case where a switch capable of processing ten billion
requests a second has 1% cache miss ratio, and that this 1% is looked
up remotely. That means a hundred million extra packets through
the network every second, in each direction (query and result),
potentially leading to congestion. Using an FPGA attached to the
switch means that the network does not experience the extra load.
Power Efficiency. Tokusashi et al. [20] demonstrated that running
an application on an FPGA is more power efficient than running on
a host, and running on a switch is more power efficient than running
on FPGA. Combining the switch and FPGA may increase the power
consumption of a single switch box, but increases the overall end-to-
end power efficiency of a data center, when considered holistically.

4 CHALLENGES AND OBSERVATIONS
Building a heterogeneous system with programmable network
ASICs and FPGAs introduces a number of challenges. In this section,
we discuss both primary challenges that must be addressed, and
secondary challenges that would be nice to address.

4.1 Primary Challenges
Maintaining Performance.With 1-2 orders of magnitude gap in
performance between switch-ASIC and FPGA, it must be guaran-
teed that switch throughput is not throttled by FPGA throughput.
This means, for example, that a design where all incoming packets
to the switch go through the FPGA is infeasible, even if there is
sufficient I/O on both devices. Two potential mitigation techniques
are i) compute on only a fraction of packets ii) send only a fraction
of the data to the FPGA (e.g. 64B for every 8KB of data).
BlockingArchitectures. Switch-ASICs achieve high performance
through pipelining, moving the data all the time without stalling.
In contrast, FPGA (often) achieve performance through parallelism,
operating on multiple data-units at the same time, while each unit
may be delayed. This conflict in approaches can lead both to per-
formance loss and to congestion indications from the FPGA to the
switch, which need to be avoided. An heterogeneous switch-FPGA

architecture needs to be non-blocking, allowing the switch side not
to stall on packets, while still allowing the FPGA to benefit from
parallelism.
Encoding Information. It is not straight forward to send and
receive packets between a switch and an FPGA. First, as it is de-
sired to increase FPGA throughput by minimizing the processing
required from it (e.g., header parsing) and as the interconnect be-
tween the switch and FPGA is a bottleneck. Second, as the switch
needs to be able to distinguish between new incoming traffic and
packets returning from the FPGA. Potential solutions include traffic
encapsulation, bus adaptation and revised switch-traffic routing.
Multiple Switch Pipelines.Many switch-ASIC today use multi-
ple pipelines to achieve target performance. This, however, creates
a challenge connecting to FPGA. Each switch pipeline can con-
nect independently, through a dedicated port, to the FPGA, thus
maintaining the context of a transaction1, but wasting ports. Al-
ternatively, all pipelines can connect to the FPGA through a single
egress port, assuming the required bandwidth is sufficient, but the
FPGA needs to differentiate between source pipelines, and mark
the reply for the right pipeline. None of these options is ideal.

4.2 Secondary Challenges
Matching Traffic Rates.Matching traffic rates is more than just
ensuring that no performance is lost. The aim is to find the maxi-
mum amount of traffic that can be processed by the FPGA without
leading to congestion. While in some cases this rate may be fixed,
in others it may be workload dependent (e.g., with packet size distri-
bution), and the switch needs to adapt to such dynamic conditions.
Merging Traffic. Consider a scenario where some packets are
processed in the switch, and some in the FPGA. A combined design
needs to ensure that the division of work is transparent to the
user. This means, for example, that reordering of packets, where
reordering is harmful, should not happen. This challenge becomes
harder if there are also latency constraints, or if one tries to avoid
buffering packets in the switch (e.g., due to memory limitations).
Processing Results. Processing computations’ results by the
switch is not trivial. First, as the switch may need to associate
the results with previous requests. Second, as we would like to
avoid processing the same packet twice. Not only to save resources
and maintain throughput, but also to correctly process data and
avoid running the same computation over and over again.
Design and Engineering. A heterogeneous architecture also
brings engineering challenges, such as the need to integrate two
parts of a program running on different types of devices. This means,
for one, finding the optimal division of processing between switch
and FPGA. It may also slow down the design cycles, as different
languages and design tools are used by each component in the
system.

5 FINGERPRINT APPLICATION
AND PROTOTYPE IMPLEMENTATION

The previous section identified a number of design challenges for
building a heterogeneous architecture. Choosing the best design

1I.e.,“which pipeline requested this computation?”

NAI’20, August 14, 2020, Virtual Event, NY, USA P. Bressana et al.

Figure 2: Prototype Implementation.

for navigating these challenges will depend on the specific require-
ments of the accelerated application. Below we describe a sample
application, data deduplication, that benefits from a heterogeneous
system. We also describe the concrete implementation motivated
by the requirements of data deduplication.
Test Application: Data Deduplication. Data deduplication is
used to reduce storage overhead by identifying and eliminating
duplicate copies of data. A common approach for data deduplication,
called “similarity-based deduplication” [2], consists of three phases.
The first phase computes a hash, called the “fingerprint”, for each
block in the data stream. The fingerprints are then compared to a
set of reference fingerprints in order to identify similarities between
the new blocks and the ones already stored, through a process called
“index searching”. Finally, if a match is found, only a pointer to the
reference block is stored. Otherwise, the new block is stored.

Data deduplication is typically computed at the storage node,
just before the data is written to the storage devices. This approach,
known as “target-based deduplication” is inefficient in two ways.
First, it requires computing resources at the storage node to be
reserved for data deduplication. Second, it increases the overall stor-
age latency, by introducing an additional processing phase before
accessing the storage medium. Leveraging network programmabil-
ity, similarity-based deduplication can be improved by computing
data deduplication while the data moves through the network, thus
saving computing resources at the storage node and reducing the
overall latency of the system.

Our proof-of-concept implementation only accelerates the first
phase of similarity-based deduplication–the fingerprint compu-
tation. However, we believe that both the second and the third
phases of similarity-based deduplication could be easily accelerated,
without making substantial changes to the underlying prototype
architecture.
Implementation. Figure 2 illustrates our prototype implementa-
tion, which uses a 32 ports Barefoot Networks’ Tofino switch, and
two Xilinx NetFPGA SUME cards. The network interfaces of the

switch are configured for running at 40Gbps, by aggregating four
10Gbps network channels. Each FPGA is connected via two 10Gpbs
interfaces to two switch pipelines. One pipeline processes packets
before the FPGA, and one processes packets after the FPGA. Each
FPGA includes two accelerator modules (AM), for a total of four.
Each accelerator module is based on an implementation of a Ra-
bin_16 hash function for computing fingerprints. The switch data
plane logic is written in P4 [5].

Although out prototype is focused on the fingerprint compu-
tation, the design is flexible enough to accelerate generic compu-
tations. Both the network connections and the topology of the
accelerators can be changed, based on the workload; the switch
provides tens of network channels, that would allow us to connect
many more accelerators of different types. The functionality im-
plemented by each of the accelerator modules can be programmed
independently through either hardware description languages, or
high-level synthesis flows. Similarly, the pipelines of the switch can
be reprogrammed in P4.

We note that each pipeline in the Tofino switch is independent
from the others and data cannot be shared among pipelines. Due to
this constraint, we were unable to share header data between input
packets and output packets. Therefore, we decided to populate the
headers of the output packets with some pre-defined, fixed data. A
workaround for this limitation needs to be found to make routing
flexible, until data sharing among pipelines will be available in
programmable network switches.

6 EVALUATION
Fingerprint-based data deduplication is a good example of an ap-
plication that benefits from global perspective that in-network
acceleration provides. It also realizes an application that would
be impossible to implement on programmable ASICs alone. Our
evaluation quantifies the cost of this additional computing power,
in terms of overhead of throughput, latency, resource utilization,
and power consumption.
Experimental Environment.Our evaluation uses a Barefoot Net-
work Tofino ASIC switch, which is connected to two NetFPGA
SUME boards, as described in Section 5. To generate the workload,
we used OSNT [1], running on top of a third NetFPGA board, hosted
within a server, and generating test packets through four 10Gbps
channels in parallel. To collect packets, the aggregated 40Gbps
packet stream is returned to a NIC on the same server.
Latency. Each Rabin_16 module introduces a latency of 512 clock
cycles. Considering that the clock frequency of the FPGA-based
accelerators is 200MHz, the latency introduced by each Rabin_16
module is 2.56µs. Assuming that the latency contribution of the
network interfaces is ~1µs (round-trip) and considering the sub-
microsecond latency added by the programmable switch, the total
latency of the system is ~5.5µs.
Baseline Comparison. To provide context for our results, we
refer to prior work by Li et al. [15], who report that the Rabin_16
cores achieve 5× performance improvement by running on FPGA
rather than on a host. Our implementation uses sixteen of the same
Rabin_16 cores, running on a newer FPGA.
Throughput.With traffic stimulus of 40Gbps, each Rabin_16 mod-
ule is able to generate a new fingerprint every 2.56µs, or 390.6K

Trading Latency for Compute in the Network NAI’20, August 14, 2020, Virtual Event, NY, USA

Resource NetFPGA SUME Xilinx VCU1525

Lookup Tables (LUTs) 16.5K (3.8%) 33K (2.7%)
Flip-Flops (FFs) 13.3K (1.5%) 26.7K (1.1%)

Block RAMs (BRAMs) 0 (0%) 0 (0%)

Table 1: FPGA Resource utilization on SUME and VCU1525
(one card, excluding the network interfaces).

fingerprints per second (Kfps). With four parallel Rabin_16 mod-
ules in each fingerprint module, the throughput is 1.56Mfps. In our
evaluation, we used two NetFPGA SUME cards, each running two
fingerprint modules in parallel, providing a total throughput of
6.25Mfps. The overall performance of the system is limited by the
number of available 10Gbps ports on the FPGA platforms.
Resource Utilization. As shown in Table 1, the impact on FPGA
resources is very limited. The fingerprint modules take less than
4% of the resources on each NetFPGA SUME card. If we include
the network interfaces, the impact on the FPGA resources is less
than 10% on average, thus leaving plenty of space for accelerating
additional functionalities in the hardware. Only a fraction of the
resources available on the switch is used in this implementation:
each of the two pipelines employs a table and two actions. All the
remaining resources are available for implementing more complex
functionalities on the switch.
Power Consumption. The power consumed by each of the two
FPGA-based accelerators is ~6.5W. Due to limitations in Barefoot’s
software, we were unable to measure the power consumption of
the Tofino chip alone. But, the overall power consumption of the
switch, measured at the plug, is ~100W.
Alternative FPGAs. We port our design to the Xilinx VCU1525
platform, based on Ultrascale+ FPGA and equipped with two
100Gbps ports. To match incoming data rates, we use eight Ra-
bin_16 modules (×2 increase), a data path width of 1024b and clock
frequency of 322MHz. This leads to latency decrease of 62.5% per
Rabin_16 module, to 1.6µs, and to end-to-end system latency of
~4.5µs. Each module’s throughput is increased by 60%, to 625Kfps.
As shown in Table 1, the impact on FPGA resources is negligible,
below 3%, thus leaving plenty of space for implementing additional
functionalities.

7 DISCUSSION
Further Acceleration of Fingerprinting. In our prototype, the
entire computation is done in the FPGA. However, fingerprinting
can theoretically be further accelerated by breaking the process:
running the index searching phase in the switch, and the fingerprint
computation and encoding in the FPGA.
Bridging the Gap Between ASICs and FPGA. There are three
important advantages to ASICs over FPGA: more high speed I/O,
higher clock frequency and wider internal bus widths2. These lead
in turn to the higher ASIC throughput. However, for computation
purposes, the FPGA does not need to match those. It only needs
to match the computation throughput requirements of the data

2Limited by resources and timing constraints

arriving on a given port. With a tailored architecture, this is feasible
on FPGA. The requirement thus becomes being able in the switch
ASIC to partition and load balance computations across FPGA ports,
which is an addressable requirement.
Limitations. Not all the challenges described in Section 4 are ap-
plicable for all applications. In this paper we did not attend to
some of the challenges, including matching traffic rates, and design
and engineering. We leave these challenges to future work, using
different use cases. We also don’t discuss management aspects of
the system, such as master-slave relationship and bootstrapping.
Our experience shows these will be system specific, while broader
observations are beyond the scope of this paper.

8 RELATEDWORK
Switch ASICs with FPGAs. Switch boxes that encompass switch-
ASIC and FPGA have existed for a long time. In most cases, the
FPGA is used for board control and management, and in some
cases as a co-processor. The latter is used for offloading statistics
collection, e.g., when the FPGA can connect to off-chip memory and
help poll statics less often. However, these FPGA devices are used
as termination point, and not as part of the processing pipeline.
Switch ASICs with other ASICs. Switch-ASIC also sometimes
connects to other ASIC devices [6], used to extend on-chip tables.
These devices are the evolution of off-chip TCAM, and do not offer
the same level of flexibility as FPGA.
In-Network Computing with Switch ASICs. The last few years
we have witnessed the rise of in-network computing usage for
caching [12], query processing [14], consensus [8], storage [19],
and many other applications. However, all these examples were
limited by on-chip switch resources, or traded performance for
functionality (e.g., through recirculation). Kim et al. [13] combined
switch ASIC and remote memory on RDMA NIC as a means to
overcome switch memory limitation. Our solution attends also to
functionality limitations, and as there is no network traversal, offers
the prospect of lower latency and lower network load.
In-Network Computing with FPGAs. Using FPGA as the main
computing component for in-network computation has attracted
further research interest [7, 10, 18], but an FPGA device perfor-
mance is 1-2 orders of magnitude less than a switch ASIC [20].
FPGA-based Fingerprint Computation.Our work has been par-
tially inspired by Li et al. [15], that provided FPGA-based fingerprint
computation for high-throughput data storages. However, our con-
tribution focuses on the concept of network computing hierarchy,
and the challenges of integrating ASIC and FPGA.

9 CONCLUSION
We have presented a flexible and scalable network computing plat-
form that extends programmable switches with FPGA-based accel-
erators. We have built a prototype architecture and validated it by
accelerating fingerprint computation in the network. We believe
our pioneering effort in making new programmable networks het-
erogeneous will pave the way to many future research projects in
this field.
Acknowledgments. We acknowledge the support from the Swiss
National Science Foundation (SNF) (project 407540_167173).

NAI’20, August 14, 2020, Virtual Event, NY, USA P. Bressana et al.

REFERENCES
[1] Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa Zilberman, Adam Cov-

ington, Marc Bruyere, Nick Mckeown, Nick Feamster, Bob Felderman, Michaela
Blott, Andrew W. Moore, and Philippe Owezarski. 2014. OSNT: open source
network tester. IEEE Network 28, 5 (2014), 6–12.

[2] Lior Aronovich, Ron Asher, Eitan Bachmat, Haim Bitner, Michael Hirsch, and
Shmuel T. Klein. 2009. The Design of a Similarity Based Deduplication System.
In Proceedings of SYSTOR 2009: The Israeli Experimental Systems Conference (SYS-
TOR ’09). Association for Computing Machinery, New York, NY, USA, Article 6,
14 pages. https://doi.org/10.1145/1534530.1534539

[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-scale Key-value Store. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’12). ACM, New
York, NY, USA, 53–64. https://doi.org/10.1145/2254756.2254766

[4] Mariette Awad. 2009. FPGA supercomputing platforms: A survey. In 2009 Inter-
national Conference on Field Programmable Logic and Applications. 564–568.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[6] Broadcom. 2020. Knowledge-based processors. (2020). https://www.
broadcom.com/products/embedded-and-networking-processors/knowledge-
based/nla88650

[7] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1–13.

[8] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
Made Switch-y. SIGCOMM Comput. Commun. Rev. 46, 2 (May 2016), 18–24.
https://doi.org/10.1145/2935634.2935638

[9] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. 2019. The
P4->NetFPGA Workflow for Line-Rate Packet Processing. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA ’19). Association for Computing Machinery, New York, NY, USA, 1–9.
https://doi.org/10.1145/3289602.3293924

[10] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016. Consensus
in a Box: Inexpensive Coordination in Hardware. In Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation (NSDI’16). USENIX
Association, USA, 425–438.

[11] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and Robert Soulé.
2018. Life in the Fast Lane: A Line-Rate Linear Road. In Proceedings of the
Symposium on SDN Research (SOSR ’18). Association for Computing Machinery,
New York, NY, USA, Article 10, 7 pages. https://doi.org/10.1145/3185467.3185494

[12] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17). Association for Computing Machinery, New York,
NY, USA, 121–136. https://doi.org/10.1145/3132747.3132764

[13] Daehyeok Kim, Yibo Zhu, ChanghoonKim, Jeongkeun Lee, and Srinivasan Seshan.
2018. Generic External Memory for Switch Data Planes. In Proceedings of the
17th ACM Workshop on Hot Topics in Networks (HotNets ’18). Association for
Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3286062.
3286063

[14] Alberto Lerner, Rana Hussein, and Philippe Cudré-Mauroux. 2019. The Case for
Network Accelerated Query Processing. In CIDR.

[15] Dongyang Li, Qing Yang, Qingbo Wang, Cyril Guyot, Ashwin Narasimha, Dejan
Vucinic, and Zvonimir Bandic. 2015. A Parallel and Pipelined Architecture for
Accelerating Fingerprint Computation in High Throughput Data Storages. In
2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom
Computing Machines. 203–206.

[16] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’17). Association for Computing Machinery,
New York, NY, USA, 15–28. https://doi.org/10.1145/3098822.3098824

[17] Barefoot Networks. 2018. Barefoot Tofino. (2018). https://barefootnetworks.com/
products/brief-tofino/

[18] Muhsen Owaida, Gustavo Alonso, Laura Fogliarini, Anthony Hock-Koon, and
Pierre-Etienne Melet. 2019. Lowering the Latency of Data Processing Pipelines
through FPGA Based Hardware Acceleration. Proc. VLDB Endow. 13, 1 (Sept.
2019), 71–85. https://doi.org/10.14778/3357377.3357383

[19] Yi Qiao, Xiao Kong, Menghao Zhang, Yu Zhou, Mingwei Xu, and Jun Bi. 2020.
Towards In-Network Acceleration of Erasure Coding. In Proceedings of the Sym-
posium on SDN Research (SOSR ’20). Association for Computing Machinery, New
York, NY, USA, 41–47. https://doi.org/10.1145/3373360.3380833

[20] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé, and Noa
Zilberman. 2019. The Case For In-Network Computing On Demand. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). Association
for Computing Machinery, New York, NY, USA, Article 21, 16 pages. https:
//doi.org/10.1145/3302424.3303979

[21] Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Machine Learn-
ing? Toward In-Network Classification. In Proceedings of the 18th ACM Workshop
on Hot Topics in Networks (HotNets ’19). Association for Computing Machinery,
New York, NY, USA, 25–33. https://doi.org/10.1145/3365609.3365864

[22] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore. 2014. NetFPGA
SUME: Toward 100 Gbps as Research Commodity. IEEE Micro 34, 5 (2014), 32–41.

https://doi.org/10.1145/1534530.1534539
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://www.broadcom.com/products/embedded-and-networking-processors/knowledge-based/nla88650
https://www.broadcom.com/products/embedded-and-networking-processors/knowledge-based/nla88650
https://www.broadcom.com/products/embedded-and-networking-processors/knowledge-based/nla88650
https://doi.org/10.1145/2935634.2935638
https://doi.org/10.1145/3289602.3293924
https://doi.org/10.1145/3185467.3185494
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3286062.3286063
https://doi.org/10.1145/3286062.3286063
https://doi.org/10.1145/3098822.3098824
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://doi.org/10.14778/3357377.3357383
https://doi.org/10.1145/3373360.3380833
https://doi.org/10.1145/3302424.3303979
https://doi.org/10.1145/3302424.3303979
https://doi.org/10.1145/3365609.3365864

	Abstract
	1 Introduction
	2 Background
	3 Building Computing Hierarchies
	4 Challenges and Observations
	4.1 Primary Challenges
	4.2 Secondary Challenges

	5 Fingerprint Application and Prototype Implementation
	6 Evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	References

