
Distributed CQL Made Easy

Robert Soulé, Martin Hirzel, Robert Grimm, Buğra Gedik

New York University and IBM Research

1

Thursday, January 27, 2011

Streaming SQL Must Scale

Stream computing is everywhere

Crucial to finance, government, science

Streaming SQL is popular because it has a familiar syntax

CQL is a streaming SQL with a formally defined semantics

More and more data means streaming SQL needs to scale

Either across large NUMA machines or clusters

2

Thursday, January 27, 2011

Distributed CQL the Hard Way

Build syntactic and semantic analyzers,
code generator, etc.

Implement core optimizations, such as
re-ordering and parallelization

Develop runtime for process
management, data-transport, etc.

This is painful!

3

Front End

Optimizer

Distributed
Runtime

CQL

Thursday, January 27, 2011

The Big Con:
A PL Talk at a DB Summit

4

Thursday, January 27, 2011

Distributed CQL the Easy Way

5

Front End

Runtime

IL Optimizer

CQL

Translate source language to an
intermediate language (IL)

Optimize at the IL level directly

Map IL to an existing distributed
runtime

Thursday, January 27, 2011

Design Tension For IL

6

Many languages

Many optimizations,
but a few core ones

A few high-quality
runtimes

Thursday, January 27, 2011

result

River, a Streaming IL:
Make Everything Explicit

7

output hits;
input logs;
(window, $win) <-Range(logs, $win) @{parallel, commutes, keys=[]};
(result,$count) <-Aggregate(window, $count)@{parallel, commutes, keys=[origin]};
 (hits) <-IStream(result) @{parallel};

IStreamAggregate

$count

Range

$win

window hitslogs

Thursday, January 27, 2011

result

River, a Streaming IL:
Make Everything Explicit

7

output hits;
input logs;
(window, $win) <-Range(logs, $win) @{parallel, commutes, keys=[]};
(result,$count) <-Aggregate(window, $count)@{parallel, commutes, keys=[origin]};
 (hits) <-IStream(result) @{parallel};

IStreamAggregate

$count

Range

$win

Explicit
operators

window hitslogs

Thursday, January 27, 2011

result

River, a Streaming IL:
Make Everything Explicit

7

output hits;
input logs;
(window, $win) <-Range(logs, $win) @{parallel, commutes, keys=[]};
(result,$count) <-Aggregate(window, $count)@{parallel, commutes, keys=[origin]};
 (hits) <-IStream(result) @{parallel};

IStreamAggregate

$count

Range

$win

Explicit state

Explicit
operators

window hitslogs

Thursday, January 27, 2011

result

River, a Streaming IL:
Make Everything Explicit

7

output hits;
input logs;
(window, $win) <-Range(logs, $win) @{parallel, commutes, keys=[]};
(result,$count) <-Aggregate(window, $count)@{parallel, commutes, keys=[origin]};
 (hits) <-IStream(result) @{parallel};

IStreamAggregate

$count

Range

$win

Explicit state
Explicit

communication

Explicit
operators

window hitslogs

Thursday, January 27, 2011

result

River, a Streaming IL:
Make Everything Explicit

7

output hits;
input logs;
(window, $win) <-Range(logs, $win) @{parallel, commutes, keys=[]};
(result,$count) <-Aggregate(window, $count)@{parallel, commutes, keys=[origin]};
 (hits) <-IStream(result) @{parallel};

IStreamAggregate

$count

Range

$win

Explicit state
Explicit

communication

Explicit
operators

Explicit
annotations for

optimization
window hitslogs

Thursday, January 27, 2011

An IL vs. a Query Plan

Serves as a target for many languages

Allows arbitrary operator graph, not restricted to a tree

Allows arbitrary operators, not restricted to relational operators

Makes all uses of state explicit

Adds explicit properties for optimization

8

Thursday, January 27, 2011

Translation

9

logs : {origin : string; target : string} stream;
hits : {origin : string; count : int} stream =
 select istream(origin, count(origin))
 from logs [range 300]
 where origin != target

Pre-existing
operator templates Bag.filter (fun x -> #expr)

Bag.filter (fun x -> origin != target)

IStreamAggr

$count

Range

$win

Select

Expose operators,
communication,
and state
{

Thursday, January 27, 2011

Changes for Distribution

10

Original CQL River CQL Impact

Shared memory for
operators and queues

Centralized scheduler

Operator local memory
Don’t need distributed

shared memory

Each operator has its
own thread and

synchronization logic
Increased parallelism

now
pro
ject

istre
am

dup
split

ran
ge

partiti
on

join pro
ject

disti
nct

dup
split

istre
am

now

agg

join pro
ject

join pro
ject

rstre
am

pro
ject

sel
ect

aggran
ge

Thursday, January 27, 2011

Using Properties
For Parallelization

11

Range Aggr IStream

Thursday, January 27, 2011

Using Properties
For Parallelization

11

Range Aggr IStream

Range Aggr IStreamMerge Split Merge Split

i

Thursday, January 27, 2011

Using Properties
For Parallelization

11

Range Aggr IStream

Range Aggr IStreamSplit Merge

ii

Range Aggr IStreamMerge Split Merge Split

i

Thursday, January 27, 2011

Using Properties
For Parallelization

11

Range Aggr IStream

Range Aggr IStreamSplit Merge

ii

Range Aggr IStreamSplit Merge

Range Aggr IStreamSplit Merge

Range Aggr IStreamSplit Merge

iii

Range Aggr IStreamMerge Split Merge Split

i

Thursday, January 27, 2011

Start With an Existing Runtime

Map from River to an existing streaming runtime

IBM’s streaming platform, System S

Shared-nothing cluster of commodity machines

Main abstractions: graph of streams and operators

12

Thursday, January 27, 2011

It Works!

Prototype runs on IBM’s System S

Two benchmark applications

Linear Road on 1, 2, and 4 machines shows distribution

Web log query analyzer on 1-16 machines shows parallelism

Results are promising, but our synchronization is a bottleneck

13

Thursday, January 27, 2011

CQL Parallelization
Has Limited Effect

14

0

1

2

3

 2 4 8 16

1.00

1.47
1.86

2.09 2.15

CQL Log Analyzer Speedup

0

1

2

3

1 2 4

1.00

1.84
2.12

Linear Road Speedup

2.12x speedup on 4 machines

Limited task and pipeline
parallelism

2.15x speedup on 16 machines

Synchronization is bottleneck

Thursday, January 27, 2011

It Works For Other Languages

15

Front End

StreamIt Sawzall

Front End

Runtime

River
IL

Optimizer

CQL

Front End

Thursday, January 27, 2011

MapReduce on River
Scales (Almost) Linearly

16

1

10

100

 2 4 8 16 32 641.00
1.63

3.21

6.26
10.77

13.82
18.93

Our Sawzall uses the same data-parallelism optimizer as CQL

10.77x speedup on 16 machines, 18.93x speedup on 64 cores

Sawzall Speedup

Thursday, January 27, 2011

Conclusion

Streaming is everywhere and it needs language support

A streaming IL makes it easier to implement a distributed CQL

Provides a lingua franca for mapping streaming languages to
existing distributed runtimes

Provides a common substrate for optimizations

17

Thursday, January 27, 2011

18

http://cs.nyu.edu/brooklet

Thursday, January 27, 2011

19

Thursday, January 27, 2011

