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Streaming SQL Must Scale

Stream computing is everywhere

Crucial to finance, government, science

Streaming SQL is popular because it has a familiar syntax

CQL is a streaming SQL with a formally defined semantics

More and more data means streaming SQL needs to scale

Either across large NUMA machines or clusters
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Distributed CQL the Hard Way

Build syntactic and semantic analyzers, 
code generator, etc.

Implement core optimizations, such as 
re-ordering and parallelization 

Develop runtime for process 
management, data-transport, etc.

This is painful!

3

Front End

Optimizer

Distributed
Runtime

CQL

Thursday, January 27, 2011



The Big Con:
A PL Talk at a DB Summit
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Distributed CQL the Easy Way
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Translate source language to an 
intermediate language (IL)

Optimize at the IL level directly

Map IL to an existing distributed 
runtime
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Design Tension For IL
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Many languages

Many optimizations, 
but a few core ones

A few high-quality 
runtimes
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result

River, a Streaming IL:
Make Everything Explicit
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output hits;
input logs;
(window, $win) <-Range(logs, $win)                 @{parallel, commutes, keys=[ ]};
(result,$count)  <-Aggregate(window, $count)@{parallel, commutes, keys=[origin]};
                 (hits) <-IStream(result)                      @{parallel};

IStreamAggregate

$count

Range

$win

window hitslogs
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result

River, a Streaming IL:
Make Everything Explicit

7

output hits;
input logs;
(window, $win) <-Range(logs, $win)                 @{parallel, commutes, keys=[ ]};
(result,$count)  <-Aggregate(window, $count)@{parallel, commutes, keys=[origin]};
                 (hits) <-IStream(result)                      @{parallel};
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An IL vs. a Query Plan

Serves as a target for many languages

Allows arbitrary operator graph, not restricted to a tree

Allows arbitrary operators, not restricted to relational operators

Makes all uses of state explicit

Adds explicit properties for optimization
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Translation
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logs : {origin : string; target : string} stream;
hits : {origin : string; count : int} stream =
  select istream(origin, count(origin)) 
    from logs [range 300]
    where origin != target

Pre-existing 
operator templates Bag.filter (fun x -> #expr)

Bag.filter (fun x -> origin != target)

IStreamAggr

$count

Range

$win

Select

Expose operators, 
communication, 
and state
{
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Changes for Distribution
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Original CQL River CQL Impact

Shared memory for 
operators and queues

Centralized scheduler

Operator local memory
Don’t need distributed 

shared memory

Each operator has its 
own thread and  

synchronization logic
Increased parallelism
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Using Properties
For Parallelization
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Range Aggr IStream
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Using Properties
For Parallelization
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Range Aggr IStream

Range Aggr IStreamMerge Split Merge Split
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Using Properties
For Parallelization
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Range Aggr IStream

Range Aggr IStreamSplit Merge

ii

Range Aggr IStreamMerge Split Merge Split
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Using Properties
For Parallelization
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Range Aggr IStream

Range Aggr IStreamSplit Merge
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Range Aggr IStreamSplit Merge

Range Aggr IStreamSplit Merge

Range Aggr IStreamSplit Merge
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Range Aggr IStreamMerge Split Merge Split
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Start With an Existing Runtime

Map from River to an existing streaming runtime

IBM’s streaming platform, System S

Shared-nothing cluster of commodity machines

Main abstractions: graph of streams and operators
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It Works!

Prototype runs on IBM’s System S

Two benchmark applications

Linear Road on 1, 2, and 4 machines shows distribution

Web log query analyzer on 1-16 machines shows parallelism

Results are promising, but our synchronization is a bottleneck
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CQL Parallelization 
Has Limited Effect
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2.12x speedup on 4 machines

Limited task and pipeline 
parallelism

2.15x speedup on 16 machines

Synchronization is bottleneck
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It Works For Other Languages
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MapReduce on River
Scales (Almost) Linearly
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Our Sawzall uses the same data-parallelism optimizer as CQL

10.77x speedup on 16 machines, 18.93x speedup on 64 cores

Sawzall Speedup
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Conclusion

Streaming is everywhere and it needs language support

A streaming IL makes it easier to implement a distributed CQL

Provides a lingua franca for mapping streaming languages to 
existing distributed runtimes

Provides a common substrate for optimizations
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http://cs.nyu.edu/brooklet
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