
Distributed CQL Made Easy
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This talk is about making it easy to implement a dis-
tributed CQL. CQL is a continuous query language that
extends SQL with a notion of windows over infinite
streams of data. Programmers like using CQL, because
its syntax is already familiar to them from their experi-
ence with other database-backed applications. CQL was
originally designed to target a single node implementa-
tion of the Stanford Stream Data Management System.
However, as streaming applications are expected to pro-
cess larger and larger amounts of data at faster and faster
rates, CQL will need to scale to run on clusters of ma-
chines.

As database implementers can attest, developing a
distributed streaming system from scratch would be a
daunting endeavor. This talk argues that they key to
simplifying not just the development of distributed CQL,
but streaming applications in general, is to treat this as
a language problem, not a database problem. What we
need is an intermediate language (IL) that maps existing
streaming languages, like CQL, to existing distributed
streaming runtimes. If that intermediate language is de-
signed correctly, and the translation from the IL to the
existing runtime is implemented, then the task of de-
veloping a distributed CQL becomes simply a matter of
providing a straightforward translation from CQL to the
IL. Figure 1 illustrates this approach.

A well designed intermediate language does not only
simplify the task of mapping existing streaming lan-
guages to existing runtimes, but it can also help sim-
plify the task of implementing optimizations. Critical
optimizations, such as the data-parallelism that has made
MapReduce [8] so popular, can be implemented directly
at the level of IL. This means that optimizations need
only be implemented once, and can then be shared by
different streaming languages.

Our key insight is that the IL must make things ex-
plicit that require special machinery in distributed sys-
tems to facilitate reasoning about that machinery. First,
communication channels must be explicit and one-to-
one, i.e., connect the output of exactly one operator
with the input of exactly one operator. After all, any
form of many-to-many communication in a distributed
system requires explicit machinery, such as application-
level multicast. Next, all uses of state must be made ex-
plicit. After all, keeping state consistent across nodes in
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Figure 1: Distributed CQL with River. As the figure in-
dicates, the same approach can be used for other stream-
ing languages, such as StreamIt and Sawzall.

a distributed system requires explicit machinery, such as
two-phase commit. Finally, the IL cannot assume glob-
ally deterministic execution. After all, ordered execu-
tion in a distributed system requires, again, additional
machinery, such as a sequencer.

Our intermediate stream processing language, River,
is based on our prior work on Brooklet [11], a universal
calculus for stream processing languages that makes op-
erators, communication, and state explicit. While both
Brooklet and traditional query plan representations cap-
ture these structural features, River also has represen-
tational features for data types and expressions. Thus,
we can use River to implement the operators themselves.
In fact, our implementation of CQL and River share a
common expression language, which greatly reduces the
overall implementation and translation effort. Moreover,
the original description of CQL [7] did not specify a data
definition language for declaring data schemas, so we
designed our own. Again, to reduce implementation ef-
fort, our CQL and River share a common syntax for data
types. We feel that our addition of a strong type sys-
tem results in a more complete language implementation
than the original system.

Our implementation of the CQL operators differs
from the original description [7] in two respects. First,
because the original implementation targeted a single
node, operators could store pointers to tuples to avoid
unnecessarily copying data. This is obviously not pos-
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Figure 2: Speedup (throughput relative to single processor) and scaleup (speedup divided by number of processors).

sible for a distributed deployment. However, because
River makes topology and uses of state explicit, it is
easy to determine when stateful operators are co-located
on the same host. In on-going work, we are exploring
how to apply the same shared state optimization for co-
located, stateful operators.

Second, to ensure deterministic execution on a dis-
tributed system, the River representation of CQL de-
pends on a sequencer to mark all input data. Unlike
the published CQL semantics [5], all operators are in-
crementalized. This means that each operator consumes
a single data item at a time, which contains bags of in-
sertions and deletions. This conforms to the actual im-
plementation of the Stanford STREAM system. The
Stanford STREAM system required a central scheduler,
which restricts interleavings and would be prohibitively
expensive in a distributed system. Therefore, our im-
plementation does all scheduling locally. Unfortunately,
this causes non-unary operators to become bottlenecks.
Operators execute when they receive input data from any
port, and they make no assumptions about which port
receives data first. Divergent operators (e.g., splitters)
must send something on every path for every timestamp,
and convergent operators (e.g., joins, unions) must block
until they have received data from every input port.

Our prototype implementation provides a translation
of CQL to River, and a translation from River to IBM’s
streaming middleware, System S [4]. We have used our
prototype to run the Linear Road benchmark [6] on 1, 2,
and 4 machines, and the results are shown in Figures 2
(a) and (b). Despite the fact that the Linear-Road appli-
cation shows only limited amounts of task and pipeline
parallelism, the first distributed CQL implementation
achieves a 2.12x speedup by distributing execution on
4 machines. To test the benefits of data-parallelism, we
replicated operators from a web log analyzer query with
increasing amounts of parallelism on 1 to 16 machines.
The results are shown in Figures 2 (c) and (d). Replica-
tion was only able to provide a 2.2x speedup, due to the
previously mention synchronization bottleneck.

Of course, our approach can generalize to other
streaming languages. In this talk, we concentrate on
CQL, rather than other SQL-like languages for stream
processing [2, 3, 1, 9], because it has a formally de-

fined semantics [5]. River can also support other styles
of streaming languages, and we provide additional trans-
lations for the StreamIt [12] and Sawzall [10] languages.
This not only allows System S [4] to run programs writ-
ten in CQL, StreamIt, and Sawzall, but it also allows all
three languages to share a common data-parallelism op-
timization.

In short, this work not only significantly reduces the
development effort for implementing a distributed CQL,
but also provides a lingua franca for mapping stream-
ing languages in general to distributed streaming run-
times, and a common substrate for implementing opti-
mizations.
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