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ABSTRACT
Optimistic concurrency control (OCC) is inefficient for high-

contention workloads. When concurrent transactions con-

flict, an OCC system wastes CPU resources verifying transac-

tions, only to abort them. This paper presents a new system,

called Network Optimistic Concurrency Control (NOCC),

which reduces load on storage servers by identifying trans-

actions that will abort as early as possible, and aborting them

before they reach the store. NOCC leverages recent advances

in network data plane programmability to speculatively exe-

cute transaction verification logic directly in network devices.

NOCC examines network traffic to observe and log transac-

tion requests. If NOCC suspects that a transaction is likely

to be aborted at the store, it aborts the transaction early by

re-writing the packet header, and routing the packets back to

the client. For high-contention workloads, NOCC improves

transaction throughput, and reduces server load.

CCS CONCEPTS
• Networks → In-network processing; • Information
systems → Distributed database transactions;
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1 INTRODUCTION
Optimistic concurrency control (OCC) [21] is a key tech-

nique used by storage systems to ensure correctness in the

presence of concurrent transactions. With optimistic con-

currency control, a storage system speculatively executes

a transaction without acquiring locks. Before committing a

transaction, t , the storage system must verify that no other

transaction has modified the data that has been read by t .
This optimistic approach stands in contrast to two alter-

native mechanisms for concurrency control: blocking and

immediate restart [1]. Blocking and immediate restart are

both pessimistic approaches based on locking objects before

a transaction executes. The mechanisms differ in how they

handle denied lock requests. In the first approach, the trans-

action blocks until locks are acquired. In the latter approach,

the transaction is immediately aborted and must be retried.

There have been numerous studies comparing the per-

formance of OCC to pessimistic concurrency control [2, 8,

8, 13, 30]. Many of these studies have contradictory results.

Carey and Stonebraker [8] argue that blocking provides bet-

ter performance than restarts. Tay [30] argues that restarts

provide better performance than blocking. And Franaszek

and Robinson [13] argue that optimistic methods are prefer-

able to pessimistic approaches.

A landmark paper by Agrawal et al. [1] sheds some light

on why these reports disagree. The authors identify three im-

portant assumptions on which the prior works differ: (i) the

existence of infinite resources; (ii) whether or not restarted

transactions are replaced with new independent transac-

tions; and (iii) whether read operations use exclusive locks,

or shared locks that may be upgraded to exclusive locks.

https://doi.org/10.1145/3229591.3229597
https://doi.org/10.1145/3229591.3229597
https://doi.org/10.1145/3229591.3229597
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This paper focuses on optimistic concurrency control and

the infinite resource assumption.

By “infinite resources”, Agrawal et al. mean an infinite

number of CPUs. Given an infinite number of CPUs, in the

absence of contention, throughput should be a function of

the number of concurrent transactions (since each CPU could

process a separate transaction in parallel). Note that the like-

lihood of conflicts increases with the number of concurrent

transactions. Agrawal et al. showed in simulation that, as-

suming the existence of infinite resources, OCC throughput

continues to increase with the amount of concurrency since

it never needs to acquire locks. In contrast, the throughput

of blocking and immediate restart would both plateau.

However, in practice, with a bounded number of CPUs,

OCC is inefficient under high contention. Its performance

degrades, since OCC wastes CPU resources to verify transac-

tions, only to abort them. In other words, the throughput of

OCC is bounded by the number of non-conflicting parallel

executions of transactions.

In this paper, we argue that recent advances in programmable

network hardware [6, 33] allows us to develop an OCC sys-

tem that behaves as if it had infinite resources. The key idea is

a new technique called speculative verification offload, which
executes verification logic in the network. We have imple-

mented speculative verification offload in a system named

Network Optimistic Concurrency Control (NOCC). NOCC

identifies transactions that are likely to abort in a Top-of-

Rack switch, and aborts them before they reach the store.

Thus, transactions that reach the store rarely abort, avoid-

ing wasted server CPU, resulting in an extremely efficient

optimistic concurrency control.

Motivation. To demonstrate the above behavior, and mo-

tivate NOCC, we performed a simple experiment in which

we increased contention, and measured the throughput of

successful transactions. To increase contention, we increased

the number of clients attempting to read and modify (incre-

ment) the same object in a key-value store. All the transac-

tions passed through a switch that operated in one of two

different modes of execution. In the first, the switch acted tra-

ditionally, and simply forwarded requests to the store. In the

second configuration, which will be explained in Section 2,

the switch executed NOCC logic to offload verification.

Figure 1 demonstrates that the performance of OCC de-

grades under high contention. With the traditional OCC

store, as the number of clients increases, the store sends

more aborts per transaction. In contrast, NOCC is much

more efficient. Since the switch performs the validation of

transactions, most conflicting transactions are aborted in the

network, resulting in higher throughput.

Contributions. Wehave implemented a prototype of NOCC

using the P4 language [5], and evaluated it using Barefoot
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Figure 1: Throughput for incrementing a single
counter as contention increases.

Network’s Tofino ASIC [6]. Our experiments include both a

set of micro-benchmarks that explore the parameter space,

and an implementation of TPC-C [9] to emulate a real-world

workload. Our evaluation shows that under high-contention

workloads, NOCC significantly increases transaction through-

put and reduces server load. Under low-contention work-

loads, NOCC adds no additional overhead.

Overall, this paper makes the following contributions:

• It presents a novel algorithm for improving the perfor-

mance of optimistic concurrency control by offloading

verification logic to the network.

• It describes an implementation of the speculative verifica-

tion offload technique that builds on emerging technologi-

cal trends in programmable data planes.

• It explores the parameter space for network-based trans-

action verification, and demonstrates significant perfor-

mance improvements for high-contention workloads.

The rest of this paper is organized as follows. We first de-

scribe the design of NOCC (§2) and the details of its imple-

mentation (§3). We then present a thorough evaluation (§4).

Finally, we discuss related work (§5), and conclude (§6).

2 DESIGN
Before presenting the design of NOCC, we briefly provide

important definitions and describe the system model (i.e.,

key aspects of the system and environment).

Definitions and System Model
We consider a distributed system composed of client pro-
cesses and a store. Processes communicate through message

passing and do not have access to a shared memory. The

system is asynchronous; We do not assume any bound on

messages delays and on relative process speeds. Processes

are subject to crash failures and do not behave maliciously

(e.g., no Byzantine failures).

The store contains a set D = {x1,x2, ...} of data items.

Each data item x is a tuple ⟨k,v⟩, where k is a key and v a

value. We assume that the store exposes an interface with

two operations: read(k) returns the value of a given k , and
write(k,v) sets the value of key k to value v . We refer to

those transactions that contain only read operations as read
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Figure 2: Overview of NOCC deployment.

transactions. Transactions that contain at least one write

operation are called write transactions.
We assume that clients execute transactions locally and

then submit the transaction to the store to be committed.

When executing a transaction, the client may read values

from its own local cache. Write operations are buffered until

commit time.

The isolation property that the system provides is one-
copy serializability: every concurrent execution of committed

transactions is equivalent to a serial execution involving the

same transactions [4]. To ensure consistency, the store imple-

ments optimistic concurrency control. All read transactions
are served directly by the store. To commit a write transac-
tion, the client submits its buffered writes together with all

values that it has read. The store only commits a transaction

if all values in the submitted transaction are still current. As

a mechanism for implementing this check, the system uses

a compare(k,v) operation, which asserts that the value of k is

v (i.e., the value has not changed since the client’s last read.

In the event of an abort, the server returns corrections with
the up-to-date values that caused the compares to fail. This

allows the client to immediately re-execute the transaction.

System Overview
Figure 2 shows a basic overview of NOCC. Transaction re-

quests pass through a NOCC switch, which either forwards

the request on to the store, or aborts the transaction and

responds to the client directly.

The blue, dashed-line shows the forwarding case: (1) the

client submits the transaction; (2) the switch logs the trans-

action in its local cache, and forwards it to the store; (3)

the store decides to commit or abort the transaction and

responds with the decision; (4) the switch logs the result of

the execution, and forwards the response to the client. (5)

the transaction either completes or the client must re-try.

The red, dotted-line shows the abort case: (7) the switch

examines the transaction message. If the switch sees that the

transaction is likely to abort based on some previously seen

transaction, the switch preemptively aborts the request; (8)

Upon receiving the abort message, which contains correc-

tions, the client can re-submit the transaction.

For a transaction that would have aborted at the store,

there are two advantages of the speculative verification of-
fload approach. First, the store does not waste resources on

verifying the transaction, reducing load on the store. Second,

the message avoids traveling the distance from the switch to

the store, dss , twice.

Data Store. A transaction request message contains three

possibly empty lists of operations: compares, reads, andwrites.
The store first checks the compares for stale values. If any

compare fails, the store aborts the transaction. As part of

the abort response, the store includes a list of correct values,

with the updated values for comparisons that caused the

transaction to fail. Otherwise, the store updates the values of

its data items with the values from the writes. Then the store

responds to the client with all the values that were updated,

along with the values that the transaction may read.

Speculative Verification Offload. The NOCC switch logs

requests and responses from several clients in order to de-

termine if a subsequent transaction is likely to abort. NOCC

adopts an aggressive strategy for aborting transactions. It

proactively updates its cache with the latest value after the

switch has seen a transaction request (step 2 in Figure 2).

Note that this cache is only used to make decisions about

aborting, and does not serve read requests.

We refer to this as a speculative verification offload strategy.
It is speculative because the switch assumes that any transac-

tion request that it has seen and conforms to its cached values

is likely to be committed. As a result, it can make decisions

about aborting subsequent transactions sooner. However,

this approach may abort transactions that would not have

been aborted by the store, which we discuss in Section 4.

The logic for speculative verification offload is as follows.

The switch has logic for processing both transaction requests

and their responses. When the switch receives a transaction

from the client, it checks the compares. If any compare op-

eration references a key that is not in the cache, then the

switch cannot reason about the validity of the transaction,

so it forwards the request to the store. If the compare refer-

ences a key that is in the cache, then the switch compares

the value in the packet with that in the cache. If the values

differ, the value in the cache is added to a per-transaction set

of corrections. After processing the compares, if there is at

least one correction (i.e. there was a comparison that failed),

the switch immediately sends an abort response to the client

with the set of corrections. When the client receives the abort

response, it uses the values in the corrections to recompute

and resubmit the transaction immediately, avoiding an extra
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round trip of requesting the latest value from the store. There

are two benefits: the client can retry the aborted transaction

right away (lower latency); and the there is less chance that

the value will have changed again since receiving the abort

(which would be more likely if the client had to re-request

the value).

If no comparisons fail, then the switch checks if the re-

quest contains write operations. If there are write operations,

the switch updates its cache with the new values. Then, it

forwards the transaction to the store for processing.

An abort message from the store contains a non-empty

list of the corrections. The corrections contain the updated

values that caused the transaction to fail. When the switch

receives an abort message, it updates its cache with the cor-

rect values. If the switch did not update its cache on aborts,

it would incorrectly abort subsequent transactions.

We note that although a NOCC switch needs to maintain

states in its local cache, the size of the cache does not need to

be too large to be effective. It is sufficient to reserve enough

space for “hot” data items. The amount of space available to

the cache will depend on the target platform for deployment.

If the size is restricted, NOCC could use a cache eviction

policy to make space available for new items.

Detecting Stale Values. In a typical transactional storage

system, data items would include a version number that

the store would use to determine if a transaction should

be aborted due to a stale value. However, with the specu-

lative verification offload strategy, the switch must update

its local cache of data items before the store could assign a

version number. Therefore, NOCC cannot use version num-

bers to check for stale values. Instead of comparing version

numbers, NOCC compares the actual values of data items.

Furthermore, by storing the actual values on the switch, they

can be included in switch-generated abort messages, which

enables clients to retry transactions immediately with the

latest values. This obviates the extra round trip of the client

requesting the latest value from the store, reducing transac-

tion retry latency and load on the store.

Expected Deployment. We expect that NOCC would be

deployed in a Top-of-Rack switch that inspects all traffic in

a rack of storage servers. However, if NOCC were deployed

in a way that it did not interpose on all traffic to a store

(e.g., clients connected to different switches update data at

the store), NOCC does not violate correctness. Clients and

switches will learn of new values after an abort message

from the store. For example, if client1 writes a value v1 for
key k1, then switch1 will record v1 in its cache. However, if

clientn+1 had previously written a value v ′
1
for key k1, the

request from client1 will pass through switch1, but will be

aborted by the store. The client and switch1 will learn of

the new value v ′
1
in the abort response from the store. They

will both then update their local caches, and the client can

re-submit the transaction with the latest value.

Correctness. The store ensures one-copy serializability. The
serialization order is defined by the arrival order of transac-

tions at the store. A transaction only commits if all the reads

it performed during execution are still up to date at the time

the transaction is received by the store.

The correctness of the switch logic follows from the fact

that (a) the switch does not commit any transaction, although

it may abort transactions, and (b) the switch forwards non-

aborted transactions to the store without changing their

operations. The switch may abort transactions that would

not have been aborted by the store; this does not compro-

mise correctness, but has a performance penalty which is

outweighed by the benefits of correct aborts.

3 IMPLEMENTATION
We have implemented NOCC as a P4 program that runs on

a Barefoot Tofino ASIC [31]. We have also implemented a

client program and OCC transactional storage system in

Python. NOCC uses a custom transaction header encapsu-

lated in a UDP packet, followed by a sequence of fixed-width

operation headers.

The P4 program contains parsers and tables for standard

L2 forwarding, as well as processing logic for transaction

packets, which is divided into two phases. In the first phase,

the program iterates over the operations, checking that the

compares are valid (i.e., the value in the packet matches the

value in the cache). In the second phase, the program iterates

over the operations a second time, either: updating the cache

if the transaction is valid; or, updating the invalid values in

the packet and returning it to the client as an abort.

The cached values on the switch are stored in registers

which allow up to 32 bits to be read or written in a single

pipeline stage [6]. This presented us with two challenges:

caching large values and accessing them multiple times for

the same packet (e.g., for the iterations). To store larger val-

ues, we split the value across multiple registers stored in

different stages. To iterate over the operations in the packet,

we use recirculation; after each iteration, the packet is recir-

culated through the pipeline, storing the state of the computa-

tion (including iteration index) in packet metadata. Although

we could recirculate an arbitrary number of times, the num-

ber of operations per transaction we support is bounded by

how deep the packet can be parsed, which in turn, is bound

by the size of the packet header vector [6]. Although recircu-

lation reduces the throughput of the switch, it still provides

better performance than a software implementation.
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Figure 3: NOCC has low aborts and latency at store.
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Figure 4: NOCC improves throughput and latency as
write ratio and contention changes.

4 EVALUATION
In this section, we describe two sets of experiments that

evaluate NOCC. The first set of experiments are microbench-

marks that explore how NOCC impacts the performance for

executing transactions on a key-value store under changing

operational conditions: number of clients, write ratio, and

workload contention (skew).

In the second set of experiments, we explore real-world

inspired workloads, by using the TPC-C [9] benchmark with

the parameters adjusted to increase contention. Overall, the

results demonstrate that NOCC improves throughput and

reduces latency for workloads with high contention.

Experimental setup. We used two machines, each with

12 cores (dual-socket Intel Xeon E5-2603 CPUs @ 1.6GHz),

16GB of 1600MHz DDR4 memory, and Intel 82599ES 10Gb

Ethernet Controllers connected to a Barefoot Tofino switch.

All the clients were collocated on one machine, while the

store server ran alone on the other machine.

Microbenchmarks
NOCC has higher throughput as the write ratio increases.

Each client in the benchmarks issues a mix of read and write
transactions on the same key. The write ratio dictates the

percent of the total number of transactions that are writes.

Figures 4a and 4c show throughput and latency for 8 paral-

lel clients, as the write ratio changes. These figures clearly

demonstrate the effect of write operations, which limit the

overall performance of the system. As the write ratio grows,

OCC’s throughput becomes limited due to the high cost of

aborting writes. NOCC’s throughput, on the other hand, de-

grades slowly, since requests are aborted at the switch and

clients can optimistically retry transactions sooner. At 0.2

write ratio, NOCC’s throughput is already 1.3x that of OCC,

reaching 2.2x that of OCC at 1.0 write ratio.

NOCC does not add overhead for reads. When all transac-

tions are reads, a NOCC switch does not perform verification

logic. We can see in Figures 4a and 4c that when the write

ratio is 0, NOCC has no overhead compared to OCC.

NOCC scales with the number clients. Figure 1 reports

throughput when the write ratio is fixed at 0.2. NOCC pro-

vides a higher transaction rate, past the saturation point

of OCC, reaching 4.6x the throughput at 40 clients. Using

NOCC, transactions can abort early and optimistically be

retried with the latest values, before the previous conflicting
transaction commits. Offloading verification to the switch re-

duces the number of aborts the store has to send (Figure 3a),

freeing the store’s resources to commit valid transactions.

Because of this, the transaction latency scales linearly with

the load, as Figure 3b shows.

Skewed workloads benefit from NOCC. This experiment

characterizes the effect of contention on the performance

of NOCC. Clients submit transactions that can access one

of 10 keys, and the popularity of each key is dictated by a

Zipf distribution. Figure 4b shows how increasing the Zipf

exponent affects throughput. With the Zipf exponent at 0, all

keys are accessed with the same probability, and contention

increases for larger exponents. As contention increases, the

number of aborts grows, limiting the performance of write

transactions for OCC. NOCC, on the other hand, by opti-

mistically aborting and retrying transactions closer to the

client, is less affected by the increase in contention.

TPC-C
The TPC-C [9] benchmark models an online transaction pro-

cessing (OLTP) workload for a fictional wholesale supplier

that maintains warehouses for different sales districts.

We note that TPC-C is not a good benchmark for evaluat-

ing NOCC, since the benchmark is intentionally designed to

avoid queries that result in high-contention. Nevertheless,
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Figure 5: TPC-C Payment transaction

TPC-C is a widely accepted standard for evaluating transac-

tion processing systems. We therefore focus on the TPC-C

payment transactions, which has contentious dependencies.

To further increase contention, we modified the parame-

ters of the benchmark. The TPC-C specification states that

the benchmark should be run with a set of specific parameter

values: 1 warehouse, 10 districts, 3000 customers and 100,000

items. For our evaluation, we used the following settings: 1

warehouse, 2 districts, 10 customers and 10 items.

As a TPC-C driver, we modified an open source Python

implementation from Pavlo et al. [26]. Since the store does

not have indexes, we modified the transaction executor to

only perform exact selects. To represent the TPC-C database

in our store, we map each record to a key-value pair. The

client driver keeps a copy of all records it has read or written,

essentially mirroring the store with a local cache. This elimi-

nates the unnecessary latency of issuing read requests for

records that have not changed. Consistency is guaranteed by

validating the transaction before committing, ensuring the

read values (possibly from the local cache) are up-to-date.

Figure 5a shows the throughput for the Payment trans-

action, and figure 5b shows the CPU usage at the store, for

increasing contention. In Figure 5b, we can see that NOCC

reduces the load on the store (by up to 22% compared to

OCC), while maintaining slightly higher throughput.

Discussion. After seeing the microbenchmark results, we

expected TPC-C to maintain higher throughput with NOCC.

However, the performance was limited by incorrect specu-

lative decisions. The switch aborts transactions that would

not have been aborted by the store. Nevertheless, NOCC per-

formed better than the OCC baseline, suggesting that NOCC

can speed-up transaction processing for high-contention

OLTP workloads.

5 RELATEDWORK
NOCC is superficially similar to Eris [23], in the sense that

they both use programmable switches to accelerate transac-

tion processing. However, they have very different execution

models. The Eris model is based on prior work on indepen-

dent transactions [10, 29], in which transactions are ordered

first, and then executed. In contrast, with the NOCC model,

clients pre-execute transactions locally, and then submit the

result for validation (i.e., ordering).

Proxies and caches. The idea of using a proxy to extend

distributed services is a well-established idea [28] that has

been widely adopted [3, 7, 19, 20]. Proxies are often used to

scale services by caching copies of data closer to clients, such

as with content distribution networks (CDNs) [14, 25, 32].

CDNs typically are used for static content, although there

are examples of proxies used for dynamic content [15]. Prior

work has also explored the possibility of leveraging the net-

work to route requests dynamically to proxies to service re-

quests [32]. Notably, SwitchKV [24] uses OpenFlow-enabled

switches to dynamically route read requests to proxy caches.

NetCache [18] provides a P4-based implementation of a key-

value store to cache hot-data items for highly skewed read

workloads. NOCC differs from this work in that it is not a

cache, per se. It keeps copies of transaction requests, but it

does not service client read requests. Rather, it uses copies of

previous requests to make informed decisions about when

to abort transactions early, with the goal of reducing latency

for write-heavy workloads.

Network Computing. Several recent projects have explored
moving application logic into programmable network de-

vices. Dang et al. [12] proposed the idea of moving consen-

sus logic in to network devices. Paxos Made Switch-y [11]

describes an implementation of Paxos in P4. István et al. [16]

implement Zookeeper’s atomic broadcast on an FPGA. Spec-

ulative Paxos [27] and NoPaxos [24] use programmable hard-

ware to increase the likelihood of in-order delivery, and

leverage that assumption to optimize consensus à la Fast

Paxos [22]. NetChain [17] provides a network implementa-

tion of a coordination service.

6 CONCLUSION
NOCC moves transaction processing logic into the network,

using a custom packet header and programmable switches

to identify and abort doomed transactions as early as possi-

ble. For write-intensive, high-contention workloads, NOCC

reduces load on the store and increases system throughput.

In the future, we envision combining NOCC with compli-

mentary techniques for read-heavy workloads, e.g., using a

cache to service read requests [18, 24].

Overall, concurrency control is a key component of stor-

age systems, and NOCC demonstrates how tighter integra-

tion with the network can lead to significant improvements

in performance.
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