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Abstract

Networks are expected to provide reliable performance
under a wide range of operating conditions, but existing
traffic engineering (TE) solutions optimize for perfor-
mance or robustness, but not both. A key factor that
impacts the quality of a TE system is the set of paths used
to carry traffic. Some systems rely on shortest paths,
which leads to excessive congestion in topologies with
bottleneck links, while others use paths that minimize
congestion, which are brittle and prone to failure. This
paper presents a system that uses a set of paths computed
using Räcke’s oblivious routing algorithm, as well as a
centralized controller to dynamically adapt sending rates.
Although oblivious routing and centralized TE have been
studied previously in isolation, their combination is novel
and powerful. We built a software framework to model
TE solutions and conducted extensive experiments across
a large number of topologies and scenarios, including the
production backbone of a large content provider and an
ISP. Our results show that semi-oblivious routing pro-
vides near-optimal performance and is far more robust
than state-of-the-art systems.

1 Introduction

Two roads diverged in a wood, and I –

I took the one less traveled by,

And that has made all the difference.

—Robert Frost

Networks are expected to provide good performance
even in the presence of unexpected traffic shifts and out-
right failures. But while there is extensive literature
on how to best route traffic through a network while
optimizing for objectives such as minimizing conges-
tion [3, 9, 13, 14, 15, 22, 24, 26, 47], current traffic engi-
neering (TE) solutions can perform poorly when operat-
ing conditions diverge from the expected [32, 42].

The tension between performance and reliability is not
merely a hypothetical concern. Leading technology com-
panies such as Google [18,24] and Microsoft [22,32] have

identified these properties as critical issues for their pri-
vate networks. For example, a central goal of Google’s
B4 system is to drive link utilization to 100%, but doing
this means that packet loss is “inevitable” when failures
occur [24]. Meanwhile a different study of availability at
Google identified “no more than a few minutes of down-
time per month” as a goal, where downtime is defined as
packet loss above 0.1%-2% [18].

Stepping back, one can see that there are two funda-
mental choices in the design of any TE system: (i) which
forwarding paths to use to carry traffic from sources to
destinations, and (ii) which sending rates to use to bal-
ance incoming traffic flows among those paths. Any TE
solution can be viewed in terms of these choices, but
there are also practical considerations that limit the kinds
of systems that can be deployed. For example, setting
up and tearing down end-to-end forwarding paths is a
relatively slow operation, especially in wide-area net-
works, which imposes a fundamental lower bound on
how quickly the network can react to dynamic changes
by modifying the set of forwarding paths [25]. On the
other hand, modifying the sending rates for an existing
set of forwarding paths is a relatively inexpensive opera-
tion that can be implemented almost instantaneously on
modern switches [32]. Another important consideration
is the size of the forwarding tables required to implement
a TE solution, as there are limits to how many paths can
be installed on each switch [7, 22, 42].

These considerations suggest that a key factor for
achieving reliable performance is to select a small set
of diverse forwarding paths that are able to route a range
of demands under a variety of failure scenarios. Unfor-
tunately, existing TE solutions fail to meet this challenge.
For example, using k-shortest paths works well in simple
settings but leads to excessive congestion in topologies
with shortcut links, which become bottlenecks. Using k-
edge-disjoint paths between pairs of nodes does not fare
much better, since paths between different node pairs still
contend for bandwidth on bottleneck links [24,32]. Using
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Figure 1: Semi-oblivious TE system model

a constraint solver to compute forwarding paths that opti-
mize for given scenarios and objectives effectively avoids
bottlenecks, but it can also “overfit” to specific scenarios,
yielding a brittle and error-prone solution. In addition,
it is difficult to impose a budget on the number of paths
used by the solver, and common heuristics for pruning
the set of paths degrade performance [42].

Our approach. We present Smore, a new TE system
based on two key ingredients. First, it uses a set of for-
warding paths computed using oblivious routing1 [38,39],
rather than shortest, edge-disjoint, or optimal paths, as in
current approaches [22, 24, 32]. The paths computed by
oblivious routing enjoy three important properties: they
are low-stretch, diverse, and naturally balance load. Sec-
ond, it dynamically adapts sending rates [9,22,26,28,47]
on those paths to fit current demands and react to fail-
ures. While these ideas have been explored in isola-
tion previously [3, 7, 20], their combination turns out to
be surprisingly powerful, and allows Smore to achieve
near-optimal performance. Our work is the first prac-
tical implementation and comprehensive evaluation of
this combined approach, called semi-oblivious routing.
Through extensive experiments with data from the pro-
duction networks of a large content provider (anonymized
as BigNet) and a major ISP, as well as large-scale simula-
tions, we demonstrate that Smore achieves performance
that is near-optimal, competitive with state-of-the-art so-
lutions [22, 24], and better than the worst-case scenarios
predicted in the literature. Smore also achieves a level of
robustness that improves on solutions explicitly designed
to be fault tolerant [32, 42].

Contributions. Our contributions are as follows:
1. We identify a general model for TE systems, and sur-

vey various approaches to wide-area TE (§2).
2. We present Smore’s design and discuss key properties

that affect performance and robustness (§3).
3. We demonstrate the deployability of Smore on a pro-

duction network, and develop a framework for model-
ing and evaluating TE systems (§4).

4. We conduct an extensive evaluation comparing Smore
with other systems in a variety of scenarios (§5-§6).

Overall, Smore is a promising approach to TE that is
based on solid theoretical foundations and offers attractive

1We use the term oblivious routing to refer to Räcke’s algorithm, and
not other demand-oblivious approaches.

Algorithm
Load balanced

Diverse Low-stretch
Capacity

aware

Globally

optimized

SPF / ECMP × × × X

CSPF X × × X

k-shortest paths (KSP) × × ? X

Edge-disjoint KSP × × X X

MCF X X × ×

Robust MCF [42] X X X ×

VLB [45] × × X ×

B4 [24] X X ? ?

Smore / Oblivious [39] X X X X

? : difficult to generalize without considering topology and/or demands.

Table 1: Properties of paths selected by different algorithms.

performance and robustness.

2 System Model and Related Work

This section develops a general model that captures the
essential behavior of TE systems and briefly surveys re-
lated work in the area.

Abstractly, a TE system can be characterized in terms
of two fundamental choices: which forwarding paths to
use to carry traffic, and how to spread traffic over those
paths. This is captured in the two phases of the model
shown in Fig. 1: (i) path selection and (ii) rate adap-

tion. The first phase maps the network topology to a
set of forwarding paths connecting each pair of nodes.
Typically this phase is executed only infrequently—e.g.,
when the topology changes—since updating end-to-end
forwarding paths is a relatively slow operation. In fact, in
a wide-area network it can take as long as several minutes
to update end-to-end paths due to the time required to up-
date switch TCAMs on multiple geo-distributed devices.
In the second phase, the system takes information about
current demands and failures, and generates a weighted
set of paths that describe how incoming flows should be
mapped onto those paths. Because updating path weights
is a relatively fast operation, this phase can be executed
continuously as conditions evolve. For example, the sys-
tem might update weights to rebalance load when de-
mands change, or set the weight of some paths to zero
when a link breaks. The main challenge studied in this
paper is how to design a TE system that selects a small
set of paths in the first phase that is able to flexibly handle
many different scenarios in the second phase.

2.1 Path Properties

The central thesis of this paper is that path selection
has a large impact on the performance and robustness of
TE systems. Even for systems that incorporate a dynamic
rate adaption phase to optimize for specific performance
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Figure 2: Link capacities in two production WANs.

objectives, the set of paths selected is crucial as it defines
the state space for optimization. Desirable path properties
include:

A. low stretch for minimizing latency,
B. high diversity for ensuring robustness, and
C. good load balancing for achieving performance.

Unfortunately, current TE systems fail to guarantee at
least one of these properties, as shown in Table 1. For
example, approaches based on k-shortest paths (KSP)
fail to provide good load balancing properties in many
topologies due of two fundamental reasons. First, KSP
is not capacity-aware. Note that wide-area topologies
evolve over time to meet growing demands [18], leading
to heterogeneous link capacities as shown in Fig. 2. As
KSP does not consider capacities, it often over-utilizes
low-capacity links that lie on many shortest paths. Using
inverse of capacity as link weight is a common technique
to handle this, but it can lead to increased latency due to
capacity heterogeneity. Second, because KSP computes
paths between each pair of nodes independently, it does
not consider whether any given link is already heavily
used by other pairs of nodes. Hence, lacking this notion
of globally optimized path selection, even if one shifts
to using seemingly more diverse edge-disjoint k-shortest
paths, the union of paths for all node pairs may still over-
utilize bottleneck links.

In general, to achieve low stretch and good load balanc-
ing properties, a path selection algorithm must be capac-

ity aware and globally optimized. To illustrate, consider
the topology in Fig. 3 where unit flows arrive in the order
f1, f2, and f3. In Fig. 3a, we use the shortest paths to
route, as in KSP, and thus link (G,E) becomes congested.
In Fig. 3b, we greedily assign the shortest path with suffi-
cient capacity to each flow in order of arrival, as in CSPF,
which leads to a locally optimal but globally suboptimal
set of paths since some paths have high latency. Finally,
in Fig. 3c we depict the globally optimal set of paths.
The challenge is to compute a set of paths that closely ap-
proximates the performance of these optimal paths while
remaining feasible to implement in practice.

2.2 Related Work

The textbook approach to TE merges the two phases
in our model and frames it as a combinatorial optimiza-
tion problem: given a capacitated network and a set of
demands for flow between nodes, find an assignment of
flows to paths that optimizes for some criterion, such as
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Figure 3: Local vs. globally optimal path selection

minimizing the maximum link utilization (MLU). This is
known as the multi-commodity flow (MCF) problem in
the literature, and has been extensively studied. If flows
are restricted to use a single path between node pairs, then
the problem is NP-complete. But if fractional flows are
allowed, then optimal solutions can be found in strongly
polynomial time using linear programming (LP) [44].

Another approach, which has been widely used in prac-
tice, is to tune link weights in distributed routing proto-
cols, such as OSPF and ECMP, so they compute a good
set of forwarding paths [14, 15], and not perform any
rate adaptation. This approach is simple to implement as
it harnesses the capabilities of widely-deployed conven-
tional protocols, but optimizing link weights for ECMP
is NP-hard. Moreover, it often performs poorly when
failures occur, or during periods of re-convergence af-
ter link weights are modified to reflect new demands.
COYOTE [8] aims to improve performance of such dis-
tributed approaches by carefully manipulating the view
of each switch via fake protocol messages.

Several recent centralized TE systems explicitly de-
couple the phases of path selection and rate adaption.
SWAN [22] distributes flow across a subset of k-shortest
paths, using an LP formulation that reserves a small
amount of “scratch capacity” for configuration updates.
The system proposed by Suchara et al. [42] (henceforth
referred as “R-MCF”) performs a robust optimization that
incorporates failures into the LP formulation to compute
a diverse set of paths offline. It then uses a simple lo-
cal scheme to dynamically adapt sending rates at each
source. Recent work by Chang et al. [6] also used robust
optimization to validate designs that provide performance
and robustness guarantees that are better than worst-case
bounds. FFC [32] recommends (p,q) link-switch dis-
joint paths and spreads traffic based on an LP to ensure
resilience to up to k arbitrary failures. B4 [24] selects
paths greedily based on demands. It uses BwE [28] and
heuristic optimizations to divide flows onto paths to im-
prove utilization while ensuring fairness.

Another line of work has explored the space of oblivi-
ous approaches that provide strong guarantees in the pres-
ence of arbitrary demands [2,3,7]. Valiant Load Balanc-
ing (VLB) routes traffic via randomly selected intermedi-
ate nodes. Originally proposed as a way to balance load



in parallel computers [45], VLB has recently been applied
in a number of other settings including WANs [48]. How-
ever, the use of intermediate nodes increases path length,
which can dramatically increase latency—e.g., consider
routing traffic from New York to Seattle via Paris.

Oblivious routing, which generalizes VLB, computes a
probability distribution on low-stretch paths and forwards
traffic according to that distribution no matter what de-
mands occur when deployed—in other words, it is obliv-

ious to the demands. Remarkably, there exist oblivious
routing schemes whose congestion ratio is never worse
than O(logn) factor of optimal. One such scheme, pro-
posed in a breakthrough paper by Räcke [38], constructs
a set of tree-structured overlays and then uses these over-
lays to construct random forwarding paths. While the
O(logn) congestion ratio for oblivious routing is surpris-
ingly strong for a worst-case guarantee, it still requires
overprovisioning capacities by a significant amount. Ap-
plegate and Cohen [3] developed an LP formulation of
optimal oblivious routing. They showed that in contrast
to the O(logn) overprovisioning suggested by Räcke’s
result, in most cases, it is sufficient to overprovision the
capacity of each edge by a factor of 2 or less. While better
than the worst-case bounds, it is still not competitive with
the state-of-the-art. This lead us to explore augmenting
oblivious routing for path selection with dynamic rate
adaption in order to achieve better performance.

3 SMORE Design

Our design for Smore follows the two-phase system
model introduced in the preceding section: we use obliv-
ious routing (§3.1) to select forwarding paths, and we use
a constraint optimizer (§3.2) to continuously adapt the
sending rates on those paths. This approach ensures that
the paths used in Smore enjoy the properties discussed
in §2 by construction—i.e., they are low-stretch, diverse,
and load balanced.

Performing a robust, multi-objective optimization to
compute paths based on anticipated demands is chal-
lenging in practice in the presence of resource con-
straints [6, 32]. Moreover, if the actual conditions differ
from what was predicted—e.g., due to failures, or in an
ISP where customers may behave in ways that are diffi-
cult to anticipate—performance will suffer in general [3].
In contrast, because the paths in oblivious routing are
computed without knowledge of the demands, they avoid
overfitting to any specific scenario, which makes the sys-
tem naturally robust. Finally, Smore comes pre-equipped
with a simple mechanism for imposing a budget on the
total number of paths used, which allows it to degrade
gracefully in the presence of resource constraints, unlike
many other approaches.

3.1 Path selection

The core of Smore’s oblivious path selection is based
on a structure we call a routing tree that implicitly de-
fines a unique path for every node pair in the network
G(V,E). A routing tree comprises: (i) a logical tree
T (Vt,Et ) whose leaves correspond to nodes of G, i.e.,
there is a one-to-one mapping m′

V
: V → Vt , and (ii) a

mapping mE : Et → E* that assigns to each edge eT of T

a corresponding path in G, such that edges sharing a com-
mon endpoint in T are mapped to paths sharing a common
endpoint in G. One can obtain a path PathT (u,v) from
u to v in G by finding the corresponding leaves m′

V
(u)

and m′
V

(v) of T , identifying the edges of the unique path
in T that joins these two leaves, and concatenating the
corresponding physical paths based on mE in G. Gen-
eralizing this idea, a randomized routing tree (RRT) is
a probability distribution over routing trees. The corre-
sponding oblivious routing scheme computes a u−v path
by first sampling a routing tree T , then selecting the path
PathT (u,v). One way to think of oblivious routing is as a
hierarchical generalization of VLB, where the network is
recursively partitioned into progressively smaller subsets,
and one routes from u to v by finding the smallest subset
in the hierarchy that contains them both, and construct-
ing a path through a sequence of random intermediate
destinations within this subset. Räcke’s breakthrough
discovery [39] was an efficient, iterative algorithm for
constructing RRTs.

We illustrate how the set of paths selected by Smore
have the required properties, in contrast to other well
known path selection algorithms, such as ECMP, KSP,
edge-disjoint k-shortest paths (EDKSP), VLB and MCF
using a representative WAN topology (Hibernia At-
lantic).2 Fig. 4 shows the paths selected by various
algorithms for all node pairs and uses a color-coding to
indicate load (i.e., the sum of weights of paths using each
link). The inset images show the latencies of paths se-
lected by each algorithm for different node pairs.

A. Smore’s paths have low stretch. The central ingredi-
ent in Räcke’s construction of RRTs is a reduction from
oblivious routing to the problem of computing low-stretch

routing trees, defined as follows. The input is an undi-
rected graph G whose edges are assigned positive lengths

ℓ(e) and weights w(e). The length of a path P, ℓ(P), is
defined to be the sum of its edge lengths, and the average
stretch of a routing tree T is defined to be the ratio of
weighted sums

stretch(T ) =

∑
e=(u,v) w(e)ℓ(PathT (u,v))
∑

e=(u,v) w(e)ℓ(e)
,

where both sums range over all edges of G. The problem
is to select T so as to minimize this quantity, which can be

2From the Internet Topology Zoo (ITZ) dataset [23]
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interpreted as the (weighted) average amount by which we
inflate the length of an edge e when we join its endpoints
using the path determined by T .

For every instance of the low-stretch routing tree prob-
lem, there exists a solution with average stretch O(logn),
and a randomized algorithm, due to Fakcharoenphol, Rao,
and Talwar (FRT) [10], efficiently finds such a tree. The
algorithm works by computing all-pairs shortest paths in
G to define a metric space, then hierarchically decom-
posing this metric space into clusters of geometrically
decreasing diameter, each with a distinguished vertex
called the cluster center. The topology of the routing
tree is defined to be the Hasse diagram of this hierar-
chical decomposition ordered by inclusion, and the paths
associated to its edges are shortest paths between the cor-
responding cluster centers. Thus, to route from a source
u to a destination v, one constructs a path from u by bub-
bling up through the hierarchy, taking shortest paths to
centers of increasingly large clusters, until one reaches
the center of a cluster containing both u and v; let’s call
this center the least common ancestor (LC Au,v); then one
reverses this process to route from that cluster center to
v. If both u and v belong to a cluster C, then the length of
the path thus constructed is bounded by a constant times
the diameter of C. This explains why paths tend to avoid
the lengthy detours that can plague VLB, especially when
the source and destination are near one another as shown
in insets in Fig. 4. In practice, oblivious routing is of-
ten competitive with shortest-path based approaches in
terms of latency. Also note that while MCF optimizes for
congestion, it may pick long detours to avoid bottlenecks.

B. Smore uses diverse paths for robustness. VLB
achieves robustness by routing through random interme-
diaries, which avoids treating any particular link as crit-

ical. Oblivious routing generalizes VLB by allowing for
a hierarchy of random intermediate destinations rather
than just one. A u−v path is constructed by concatenat-
ing paths through a sequence of intermediate destinations
representing their ancestors in the sampled routing tree
T , up to and including LC Au,v . A well-chosen RRT
will have the property that the detour through LC Au,v

rarely consumes much more capacity than directly taking
a shortest path. This allows routing with RRTs to attain
aggregate utilization that is nearly as efficient as shortest-
path routing, worst-case load balancing that matches or
improves VLB, as well as good robustness properties.

One can quantify robustness by generalizing the con-
cept of a SRLG3 and grouping u−v paths, Π(u,v), by the
edges they share, such that an edge failure can break all
the paths in the shared risk group. We define risk, reuv , of
an edge e with respect to a node pair (u,v) as the fraction
of Π(u,v) paths using e. If e is not used by (u,v), then
reuv is undefined. For highest resilience, Π(u,v) con-
sists of pairwise edge-disjoint paths, and for any edge e,
reuv ≤

1
|Π(u,v) |

. A fragile Π(u,v) has paths sharing some
common edge e′, and re′uv = 1. Thus, low risk implies
high resilience to faults, and low impact on congestion
when reacting to failures as more paths are available to
share the load. A robust set of paths will have less high
risk edges. Fig. 5 shows the distribution of risk when
using up to 4 paths per node pair. Ideally, EDKSP should
have the entire mass at 0.25. But, a closer look at the
topology reveals that for most node pairs, only two edge-
disjoint paths exist, implying risk of 0.5 for all edges in
those paths, as illustrated in Fig. 6. KSP always finds 4
(u,v) paths which differ slightly and these differing edges
have low risk, but the significant number of overlapping
edges in these paths have high risk. Interestingly, the set
of paths computed using MCF also tend to be brittle. On
this topology, both oblivious routing and VLB compute
diverse sets of paths, and thus are robust to failures.

C. Smore’s paths are optimized for load-balancing.

Smore’s path selection algorithm is a capacity-aware iter-
ative algorithm that constructs a sequence of instances of
the low-stretch routing tree problem, with the same graph

3Shared Risk Link Groups (SRLGs) usually refer to links sharing a
common physical resource. If one link fails because of the shared
resource, other links in the group may fail too.
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topology but varying edge lengths, and solves each in-
stance using FRT. In a given iteration, the root is selected
randomly and the length of each edge is multiplied by an
exponential function of the “cumulative usage”, relative
to capacity, of that edge in previously computed routing
trees4. The tree computed in each iteration is thus pe-
nalized for re-using edges that have been heavily utilized
in previous trees, and consequently, the ensemble of all
routing trees in the sequence (with suitable probabilities)
balances load among edges in a way that ensures O(logn)

congestion ratio regardless of the traffic matrix (TM).

To illustrate this, consider the nodes Boston and Hali-
fax in Fig. 4. There is a direct “shortcut” link connecting
these nodes, as well as a slightly longer path to the north.
Shortest path based algorithms overload the shorter link
and ignore the detour, while MCF balances load equally
on the two paths. Oblivious routing distributes load un-
equally, preferring the direct link but reducing its load by
using the detour for a fraction of traffic.

We note another interesting observation based on the
Seattle-Miami paths depicted in Fig. 6. Paths selected
by KSP are identical for most part, and the only variation
occurs at nodes in close proximity within the US north-
east. In our experience, this phenomenon occurs often,
and failures of such shared edges can adversely affect
performance. In contrast, oblivious routing and VLB se-
lect a more diverse set of paths which are edge-disjoint
with higher probability. Another intuitive way to look at
this is that most path selection algorithms compute paths
greedily for individual node pairs while oblivious routing
globally optimizes paths considering all pairs simulta-
neously, like MCF. For instance, even though EDKSP
computes diverse paths for individual pairs, when paths
for all pairs are considered together, the shortcut links can
become overloaded, as they may be used by many pairs.

4This is an instance of the multiplicative weights update method [4],
a general iterative method for solving programs such as packing and
covering LPs. The method has a tunable parameter ǫ which governs
the trade-off between the approximation accuracy and the number of
iterations required. Our implementation uses ǫ = 0.1.

Variable Definition

G(V, E) Input graph
Input Π The base set of paths allowed in G

D Predicted traffic matrix

Π(s, t) The set of all s to t paths in Π
d(s,t) Demand from s to t specified by D

Auxiliary cap(e) Capacity of link e

Ue Expected utilization of link e

Z Expected maximum link utilization
ep(P) End-points of path P

Output wP Weight of path P. (wP ∈ [0,1])

minimize Z

s.t. : ∀s, t ∈ V :
∑

P∈Π(s,t)

wP = 1

∀e ∈ E : Ue ≤ Z

Ue =

∑

P∈Π:e∈P

wP · dep(P)

cap(e)

∀P ∈ Π : wP ≥ 0

Table 2: Smore LP formulation for rate adaptation.

3.2 Rate adaptation

These observations on properties of paths selected by
oblivious routing motivate using a static set of paths while
dynamically adjusting the distribution of traffic over those
paths as the demand varies and/or network elements fail
and recover. This combination of a static set of paths and
time-varying adaptation of flow rates on those paths has
been called semi-oblivious routing [20]. From a worst-
case standpoint, this approach is not significantly better
than oblivious routing. Hajiaghayi et al. [20] proved that
any semi-oblivious routing scheme that uses polynomi-
ally many forwarding paths must suffer a congestion ratio
of Ω(logn/ log (log (n))) in the worst case. However, the
proof of the lower bound involves constructing highly
unnatural TMs and topologies such as recursive series-
parallel graphs and grids satisfying specific properties. In
contrast, WAN topologies grow in a planned manner, and
capacities are augmented based on forecasted demands.
Hence, real-world topologies and TMs are implicitly cor-

related. This raises the question of whether it is possible
for semi-oblivious routing schemes to approach or match
the performance of optimal MCF in practice.

In Smore, we select the static set of paths, Π, using
Räcke’s algorithm to obtain a distribution over routing
trees, taking the union of the path sets defined by each
routing tree in the support of this distribution, pruning
this distribution to the paths with the highest weights to
respect path budget constraints, and then re-normalizing.
To distribute flow over paths, we solve a variation of
MCF using a linear program (LP). This is similar to the



usage of LP in SWAN and FFC, for instance, but with
different objective function and constraint set. In Smore
the LP formulation (Table 2) is used to minimize MLU by
balancing traffic over the allowed base set of paths. The
output variables wP express the relative weight of paths
for each source-destination pair. The constraints ensure
that the weights sum to 1 (i.e., all flows are assigned some
path) and that capacity constraints are respected.

4 Implementation

We discuss two implementations to understand and eval-
uate TE systems. First, we describe a real-world de-
ployment in a production WAN. We highlight a number
of practical issues that arose in that deployment (§4.1).
Second, we present an implementation using Yates [29],
a general framework for rapid prototyping and evaluation
of TE approaches (§4.2). We discuss how we calibrated
Yates’s simulator against a hardware testbed and the pro-
duction WAN.

4.1 IDN Deployment

To better understand the practical challenges associ-
ated with bringing Smore to production, we deployed a
TE system, which dynamically load-balances traffic over
a static set of paths, on BigNet’s inter-datacenter network
(IDN), which is similar to Google’s B4 [24] and Face-
book’s EBB [11].

Architecture. IDN consists of four identical planes
(topologies), each of which can be programmed inde-
pendently. The backbone routers at each datacenter site
are connected to an aggregation layer similar to Fat-
Cat [41], which distributes outgoing traffic across the
planes equally using ECMP. IDN employs a hybrid con-
trol model with distributed LSP agents as well as a cen-
tralized controller. It supports two traffic classes (high
and low priority) which can be managed using different
TE algorithms. This architecture facilitates experiment-
ing with different TE algorithms on a subset of planes
while the other planes provide a safe fallback.

Controller. The IDN controller allows the routes for
each plane to be updated every 15 seconds. The inputs
to the controller are obtained from a state snapshotter

service that captures the live state of the network includ-
ing: (i) configured components for IDN from a central
repository for network information [43], (ii) live link state
information from Open/R [12], (iii) any operational over-
rides (link, router, or plane drains), and (iv) real-time TM
estimated from sFlow [37] samples exported by routers.
When it receives a snapshot, the controller first computes
a new set of routes and splitting ratios and then sends
instructions to reconfigure the routers as needed.
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Figure 7: Overhead of Optimal TE on BigNet’s LBN.

Path budget. The IDN controller maintains an MPLS

LSP mesh—i.e., a set of LSPs connecting every pair of
end points. For operational simplicity and to (indirectly)
bound the number of forwarding entries that must be
installed on routers, we limit the number of LSPs per
node pair to a fixed budget, typically 4.

Traffic splitting. To allow splitting traffic over differ-
ent LSPs, IDN supports programming up to 64 next-hop

groups on the ingress router for each pair of nodes. Mul-
tiple next-hop groups can map to the same path, and thus
we can split traffic among LSPs at granularities of up to
1
64 . Since packets are mapped to next-hop groups (and
paths) based on hashing header fields, packets belonging
to the same flow take the same path and avoid any issues
related to packet reordering in multipath transmission.

Failures. In the event of a failure, traffic is routed along
pre-programmed backup paths until the IDN controller
computes a new routing scheme. In addition to data-plane
faults, failures can also arise due to control-plane errors,
such as router misconfiguration or control-plane having
an inconsistent view of the network. We proactively test
resilience using a fault-injector that can introduce both
kinds of failures in a controlled manner.

State churn and update time. To quantify the opera-
tional overheads of different TE approaches, we measure
path churn and the time required to compute an updated
routing scheme. Churn is undesirable for several reasons:
it increases CPU and memory load on routers and adds
significant complexity to the management infrastructure.
Fig. 7a shows the number of paths that would be changed
every hour when running MCF and CSPF5. Likewise,
routing schemes that are expensive to compute impose a
burden on the controller. Fortunately, the LP that Smore
uses for rate adaptation is less complex than the LP used
to solve MCF—the time needed to solve each problem
instance is two orders of magnitude less than MCF (order
of 100ms vs. 10s), as shown in Fig. 7b, using Gurobi [19]
for optimization on a 16-core machine with 2.6 GHz CPU.
Furthermore, because Smore only updates path weights,
which takes just a few milliseconds, it is more responsive
than MCF, which requires updating whole paths, which
can take tens of seconds [24, 32].

5We implement a centralized version with 80% link capacities.
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4.2 Yates Framework

We evaluate the performance of a wide range of TE
approaches under a variety of workloads and operational
scenarios using Yates [29], which consists of a TE
simulator and a SDN prototype. Although numerous
simulators and emulators have been proposed over the
years [5,21,30,34,36,46], Yates is designed specifically
to evaluate TE algorithms. With Yates, TE algorithms
are implemented as modules against a general interface.
Table 3 contains a partial list of TE algorithms that we
have implemented and made available under an open-
source license6. For clarity, we report results from only
a subset of these.

Simulator. Yates’s simulator can model diverse opera-
tional conditions and record detailed statistics. It requires
three inputs: (i) topology, (ii) a timeseries of actual TMs
to simulate network load, and (iii) corresponding pre-

dicted TMs. For each predicted TM, it computes the
routing scheme based on the algorithm (Optimal uses
actual TMs) and then simulates the flow of traffic where
each source generates traffic based on the actual TM. We
choose the fluid model [27] to simulate traffic owing to its
scalability without sacrificing accuracy of macroscopic
behavior. In case the actual TM is unsatisfiable using the
routing scheme, Yates still admits the entire demand at
each source. However, it assigns each flow its max-min
fair share at each oversubscribed link and drops any traffic
exceeding the flow’s fair share for that link.

SDN prototype. The prototype, which consists of a SDN
controller and an end-host agent, allows us to evaluate
different TE algorithms using an approach similar to cen-
tralized MPLS-TE. The controller manages the forward-
ing rules installed on OpenFlow-enabled switches, while
the end-host agent, implemented as a Linux kernel mod-
ule, splits flows and assigns them to paths at the source.
Although SDN allows us to easily implement the back-
end, it is not a requirement. It can be easily replaced with
other control mechanisms, such as PCEP [31].

Simulator calibration. For simulation results to be cred-

6http://github.com/cornell-netlab/yates
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Figure 9: Expected performance on LBN over half a week.

ible, it is critical that they accurately correspond to re-
sults from real deployments. We validate the accuracy
of Yates’s simulator with: (i) a small-scale hardware
testbed, and (ii) BigNet’s large backbone network (LBN)
(§5). We use the SDN backend to emulate Internet2’s
Abilene backbone network [1] on a testbed of 12 switches
and replay traffic based on NetFlow traces collected from
the actual Abilene network. As shown in Fig. 8, the
simulation results closely match observed results in the
hardware testbed. We also implement a centralized ap-
proximation of the distributed TE algorithm used in pro-
duction in LBN. The network and demands are highly
dynamic, and the production TE scheme reacts to such
changes at a very fine time scale. As a result, we are able
to only approximate its behavior. Still, the values reported
by Yates closely match those seen in production.

5 BigNet WAN

We evaluate Smore in a production setting using multi-
ple criteria. For the setting, we use data from BigNet’s
large backbone network (LBN). LBN is one of the largest
global deployments and carries a mix of traffic ranging
from real-time video streaming and messaging to mas-
sive data synchronization globally. For criteria, we focus
on four key questions: How close is Smore to optimal
in terms of performance (§5.1)? What is the impact on
latency for not choosing strictly shortest paths (§5.2)?
How is performance impacted under failures (§5.3) and
other operational constraints (§5.4)? §6 explores whether
these results generalize to other settings, using large-scale
simulations over a diverse set of network scenarios.

Overview of BigNet’s WAN. The network models a
common content-provider design, with connections be-
tween several large datacenters across Asia, Europe, and
the US as well as connectivity to numerous Points-of-
Presence (PoPs) around the globe. The topology has
hundreds of routers and thousands of high-speed inter-
connecting links, varying vastly in capacity and latency.
This heterogeneity largely stems from the way the net-

http://github.com/cornell-netlab/yates
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Figure 10: BigNet LBN: predicted distribution of expected load, congestion and latency.

work evolved over many years. The topology exhibits
clustered structure, with clusters following geographic
constraints imposed by continents and links between clus-
ters running over transoceanic paths, similar to the topol-
ogy that we used for illustration in §3.

Traffic on LBN exhibits multiple strong diurnal pat-
terns, modulated by the activities of billions of users in
different time zones. Being a global system, different
parts of the network experience peak loads at different
times. Overall traffic patterns over the WAN can be split
into two major categories: (i) traffic between datacenters,
and (ii) traffic from datacenters to PoPs. Inter-datacenter
traffic typically consists of various replication workflows,
such as those related to cache consistency or bulk traf-
fic for Hadoop and database replication. A significant
amount of this traffic is delay tolerant, and could be
routed over non-shortest paths between the datacenters.
However, the traffic from datacenters to PoPs is latency
sensitive, as it represents content routed to BigNet users.

Methodology. We collect production data from LBN con-
sisting of accurate network topology, link capacities, link
latencies, aggregate site-to-site TMs, and paths used by
traffic in production. Using this data, we perform high-
fidelity simulations with Yates and present results based
on the statistics reported. Traffic with different latency
requirements are routed separately in production to avoid
excessive path stretch for latency-sensitive traffic. For
simplicity, we choose to route both types of traffic us-
ing the same TE scheme. Traffic on BigNet’s WAN is
growing at a rapid pace, and so the network also evolves
with it. We present results based on the network state and
demands for a month in late 2016.

5.1 Performance

For each hourly snapshot of the network under regular
operating conditions (i.e. without any failures), we mea-
sure various performance statistics (with a path budget
k = 4, same as reported in B4 [24]) using different TE ap-
proaches. Fig. 9 shows the (i) throughput normalized to
total demand, (ii) maximum congestion (fractional link
utilization), and (iii) normalized traffic dropped due to
congestion over a period of half a week. CSPF and Opti-

mal7 dynamically compute paths with sufficient capacity
for each flow, and thus avoid congestion. Remarkably,
only oblivious routing and Smore are able to achieve
100% throughput, while other centralized TE approaches
aren’t able to do so and introduce bottlenecks.

As expected, Optimal (which uses MCF to minimize
MLU) achieves the lowest maximum congestion, which
varies between 0.40 and 0.67 following a diurnal pat-
tern. We find that oblivious routing performance remains
within a factor of 2 as had been previously studied [3],
while Smore is closest to optimal with maximum con-
gestion within 16% of Optimal, on average and within
41% in the worst case.

Clearly, Smore’s path selection plays a crucial role in it
being so competitive. To gain further insight, we examine
the distribution of congestion and expected link utiliza-
tions, i.e., how much traffic each link would have carried
if packets weren’t dropped due to capacity constraints.
Figs. 10a and 10b show the corresponding complemen-
tary CDFs. We observe that ECMP8, FFC*9, R-MCF
and KSP+MCF (an approximation of SWAN’s path se-
lection and rate adaptation)10 scheduled ∼10% of links to
carry traffic exceeding their capacity—ECMP even over-
subscribed a link 80×! We find that these bottleneck links
usually appear in the shortest paths between many pairs of
nodes. In contrast, Räcke’s algorithm iteratively samples
paths while avoiding overloading any link, and Smore
load balances over these paths to reduce congestion even
further. On scaling up the demands, we do expect to
see congestion loss with all the approaches, including
Smore. From Fig. 10a, we also note that Smore main-
tains a lower congestion consistently for all links and has
a 95th-percentile congestion of 0.57—same as Optimal.

Even though FFC*, KSP+MCF and R-MCF dynami-
cally load balance traffic over a set of paths, they perform
suboptimally. This could be because the paths selected
under the budget constraint did not provide enough flexi-

7Optimal does not have any budget or other operational constraints.
8Using RTTs as link weights for computing shortest paths.
9Our implementation configures FFC to handle single link failures by
combining edge-disjoint k-shortest paths with fault-tolerance LP.
10We implement a version that uses k-shortest paths as tunnels and uses

MCF to assign path weights.
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Figure 11: Performance with different operational parameters on BigNet’s LBN network.

bility to eliminate bottlenecks for any traffic splitting ra-
tio, and this was further exacerbated as the inadmissible
fraction of demands also contributed to congestion before
being dropped. To validate this, we measure performance
with increasing budget in Figs. 11a and 11b. KSP+MCF
and R-MCF, indeed, become near-optimal when the sets
of paths become diverse enough. However, FFC* doesn’t
improve beyond a point as the number of disjoint paths is
very limited. Even though the “working set” [22] of paths
for KSP+MCF is small, it needs 8× as many total number
of paths as Smore to achieve similar performance.

5.2 Latency

Fig. 10c shows the distribution of latency as a frac-
tion of total demand that is delivered within a given la-
tency11. To compute latency experienced by traffic along
a path, we simply sum the measured RTTs for each hop
along the path. TE approaches which route over shortest
paths while respecting capacity constraints, like CSPF,
have the least latency. Oblivious routing doesn’t ensure
that the shortest paths are necessarily selected. How-
ever, as we showed in §3.1, the paths computed have low
stretch. Smore uses the same set of low-stretch paths. In-
tuitively, longer paths can increase congestion as the same
set of packets contribute to congestion at more links. As
Smore optimizes for congestion, it also indirectly favors
shorter paths. We find that Smore is competitive with
other shortest-path based approaches. Even if we ignore
dropped traffic and normalize y−values in Fig. 10c with
throughput, the median latency for Smore (58.3ms) is
similar to KSP+MCF (62.7ms). We find that for any
node pair, Smore finds a path with latency within 1.09×
the shortest path, on average. Furthermore, if we include
factors such as buffering at routers, which depends on
congestion, we expect to see better latency for Smore as
it has better congestion guarantees.

5.3 Robustness

There is a trade-off between performance and robust-
ness, and often TE systems that optimize for performance

11Assuming dropped traffic has infinite latency, curves reach a maxi-
mum y-value equal to throughput.
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Figure 12: Expected robustness on LBN over half a week.

tend to overfit and become brittle. In Fig. 12, we evalu-
ate the robustness of TE approaches to network failures.
Here, we fail a unique link every hour and note the impact
on performance. We implement a simple recovery mech-
anism which re-normalizes path weights to shift traffic
from failed paths on to unaffected paths, if available. The
recovery method is fast as it does not need setting up new
paths, and it decreases loss due to failure at the cost of
congestion. Usually, this increases throughput, but there
are exceptions as illustrated in §B.1. We see this with
R-MCF in Fig. 12. Optimal knows failures in advance
and reacts by setting up globally optimal paths instanta-
neously. FFC* is always able to find backup paths as it
uses disjoint paths, and thus avoids loss due to failure.
However, these paths are suboptimal for achieving the
best throughput as congestion causes packet drops.

Smore continues to deliver ∼100% throughput. Al-
though maximum congestion increases because of recov-
ery, Smore remains within 18% of Optimal, on average
and within 71% in the worst case. Smore’s high resilience
can be attributed to the fact that the paths it uses are di-
verse and have low risk, as we saw earlier in §3.1. This
ensures that, in most cases, Smore has sufficient options
to re-route traffic and load balance efficiently without
overloading any link.

5.4 Operational constraints

Various operational constraints need to be accounted
for while deploying a TE system. We describe one such
constraint—path-split quantization. So far, our evalu-



ation has assumed that traffic could be split in arbitrary
proportions. This is usually not the case, and path weights
are quantized. Most routers support splitting by allowing
to specify a certain number, typically up to 64, of next-hop
groups [24]. This means that path weights should be mul-
tiples of the path-split quantum, 1

64 . Fig. 11c shows the
impact of quantization on performance (at path budget of
4). We approximate traffic split ratio generated by differ-
ent TE schemes to be multiples of the path-split quantum
using a greedy approach. Smore degrades gracefully
when quantization becomes restrictive and performs well
for practical settings when path-split quantum ≥ 1

64 .

6 Large-Scale Simulations

The evaluation on LBN in the preceding section showed
that Smore achieves near-optimal performance and ro-
bustness for the topology and workload in a large produc-
tion network. We also obtained similar results for exper-
iments conducted using data from a major ISP (omitted
from paper due to space constraints). In this section, we
show that these performance (§6.1) and robustness (§6.2)
results generalize to a wider range of scenarios.

Methodology. We evaluate 17 TE algorithms over 262
ISP and inter-DC WAN topologies using Yates. We
model a diverse set of operational conditions by varying
demands, failures, TM prediction, and path budget. We
present a subset of our experimental data that illustrates
our main results over the scenarios described next.

Topologies. We select 28 topologies, shown in §C, from
ITZ and other real-world networks, to overlap with ones
used to evaluate TE approaches in the literature [24, 26].

TM Generation. We use Yates to generate TMs based
on the gravity model [40], which assigns a weight wi to
each host i and assumes that i → j demand ∝ wi · w j .
We sample wi from a heavy-tailed Pareto distribution ob-
tained by fitting real-world TMs. We model diurnal and
weekly variations by randomly perturbing the Fourier co-
efficients of the observed time-series and temporal vari-
ations at a finer scale by using the Metropolis-Hastings
algorithm to sample from a Markov chain on the space of
TMs, whose stationary distribution is the gravity model
with Pareto-distributed weights described above. The
algorithm updates wi at each time step to model grad-
ual variation over time. The following experiments scale
TMs such that the minimum possible MLU for the first
TM is 0.4, which matches the average MLU observed in
traditional overprovisioned WANs [22,24].

TM Prediction. Yates offers a suite of algorithms to
predict future TMs. These include standard ML methods
such as linear regression, lasso/ridge regression, logis-
tic regression, random forest prediction etc., as well as
algebraic methods like FFT fit and polynomial fit. For
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Figure 13: Aggregate performance at base demand.

each pair of hosts, we perform an independent time se-
ries prediction where, at each time step t, the demand is
predicted using demands observed in [t − k, t). We opti-
mize the size of the sliding window (k) separately using
cross-validation. Regression and random forest models
are trained using the previous k time steps as k features.
FFT fit finds a function with a bounded number of non-
zero Fourier coefficients, while polynomial fit finds a
bounded-degree polynomial function that minimizes the
absolute difference between predicted and actual TMs
over the past k time steps. This best-fit function is evalu-
ated in the current time step to yield the predicted demand.
Finally, Yates exposes an error parameter to assess the
sensitivity of TE algorithms to inaccuracy in prediction.

6.1 Performance

We start by evaluating basic properties of TE ap-
proaches including the effective capacity of the network
and the performance ratio with respect to Optimal.

Network capacity. During normal operation, the MLU
of a network is usually below 1, meaning there is spare
capacity in the network. Given a routing scheme and
a TM, we can define network capacity as the factor by
which the TM can be scaled up before it experiences
congestion. This spare capacity could be used to handle
unexpected surges in traffic, or to schedule background
traffic. As Optimal minimizes MLU, it has the high-
est possible network capacity. Fig. 13a shows network
capacity for different TE approaches, normalized with re-
spect to Optimal. As expected, oblivious routing, which
can use up more bandwidth on more links to route the
same TM, is unable to admit a significant fraction of
TMs that Optimal can handle. We find that Smore has

the highest network capacity and is near-optimal owing
to efficient load balancing over a diverse set of paths.

Performance ratio. Another way to compare TE ap-
proaches is to measure how far they are from Optimal,
with respect to minimizing MLU for a given set of TMs.
Here, we follow the metric defined by Applegate and Co-
hen [3], but use throughput after accounting for conges-
tion loss, if any, instead of using the demand TM to com-
pute congestion and performance ratio. Fig. 13b com-
pares the distribution of performance ratio over various
topologies and TMs. We find that Smore and KSP+MCF
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remain optimal in 75-80% of the cases but Smore has

closest to optimal performance ratio (§C.1).

6.2 Robustness

Similar to §5.3, we systematically inject failures in
the network to study the trade-off between performance
and robustness. Fig. 15 shows the distribution of loss
in throughput over all possible single link failures. With
base demands, failures are the main cause of loss. As
demand scales up, loss due to congestion becomes sig-
nificant. Smore performs better in both cases by being

more fault tolerant as well as spreading traffic evenly to

avoid congestion. Although TE approaches like FFC*
and R-MCF are designed to be fault tolerant, they do not
achieve the best throughput. This is because FFC* re-
lies on disjoint paths to be available to reroute traffic; the
number of such paths is limited in real-world topologies.
For instance, GÉANT’s topology has nodes with degree
1. These nodes have a single edge-disjoint path to any
other node; the failure of any edge along this path leads to
loss of traffic. Using (p,q) link-switch disjoint paths also
doesn’t improve the robustness much. Moreover, FFC*
is not congestion-optimal by design and incurs high loss
due to congestion as demands increase. R-MCF relies
on using a large number of paths for fault tolerance and
applying a budget deteriorates its performance [42].

Typically, SLAs refer to availability of a network in
terms of “nines”. This can also be translated in terms of
throughput and given a failure characteristic [17, 18, 33],
a network operator could be interested in questions such
as “what is the probability that throughput is greater than
99.9%?” Fig. 14 compares TE approaches on how likely
are they to achieve different levels of SLA under various
operational conditions. In addition to the scenario where
single link failures can happen with uniform probabil-
ity under regular load (Fig. 14a), we perform two more
experiments where we study robustness under increased

load (Fig. 14b), and concurrent failures (Fig. 14c). We
find that Smore consistently outperforms other TE ap-
proaches. Oblivious TE is robust under both single and
concurrent link failures at base demands, but its resilience
deteriorates for increased load. Smore benefits from the
robust set of paths selected by oblivious routing, and
also load balances efficiently even during increased load.
Thus, Smore is highly robust and achieves SLAs with

highest probability under diverse operational conditions.

7 Conclusion

In TE, there is a fundamental trade-off between perfor-
mance and robustness. Most systems are designed to
optimize for one or the other, but few manage to achieve
both. This challenge is further exacerbated by operational
restrictions such as the number of paths, overhead due to
churn, quantized splitting ratio imposed by hardware, etc.

This paper presents Smore, a new approach that navi-
gates these trade-offs by combining careful path selection
with dynamic weight adaptation. As shown through a
detailed evaluation on a production backbone network,
Smore achieves near-optimal performance in terms of
congestion and load balancing metrics, is competitive
with shortest-path based approaches in terms of latency,
and is also robust, allowing traffic to be re-routed around
failures without introducing bottlenecks while respect-
ing operational constraints. Our large-scale evaluation
shows that these performance and robustness guarantees
hold across a broader class of networks. More generally,
our experiences designing and implementing Smore sug-
gests lessons that are broadly applicable to TE systems
including the importance of capacity-aware and globally
optimized selection of low-stretch and diverse paths, as
well as the consideration of operational constraints when
building a practical TE system.
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