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Abstract
State synchronization, the process by which a new or recovering peer catches up with the state of
other operational peers, is critical to the operation of blockchain-based systems. Existing approaches
to state synchronization typically involve downloading snapshots of system state. Such approaches
introduce an attack vector from malicious peers that can significantly degrade performance. Moreover,
the process of creating snapshots leads to performance hiccups. This paper presents a technique for
peers to catch up with operational peers without trusting any particular peer and gracefully recover
from misbehavior during the process. We have integrated our design into a production blockchain
middleware. Our evaluation shows that during operation, the transaction throughput is consistently
higher without pauses for snapshot construction. Moreover, the time it takes for a new peer to join
the blockchain is halved, while at the same time tolerating Byzantine peers.
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1 Introduction

Intuitively, a blockchain provides an append-only log of transactions implemented by geo-
graphically distributed peers. The execution of these transactions determines the system
state. Each peer stores the system state in a Merkle tree [23], or similar data structures (e.g.,
Merkle-Patricia-tree [26]). Executing a transaction involves performing operations on the
tree. By executing the log of transactions in the same order, each peer transitions through
the same state changes (i.e., state machine replication model [22]). The fact that the state is
stored in a Merkle tree allows a peer to validate the consistency of the state by computing
a hash on the reconstructed tree. A Merkle-tree is a tree in which every leaf node stores
a cryptographic hash of its value, and every non-leaf node stores the hash of its children.
Every block header in the blockchain stores the hash of the tree root constructed by the
transactions in a previous block (e.g., block n contains the hash of the tree root computed
with transactions in block n − 1).
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In theory, a new peer joining the network (or a recovering peer) could download the
transactions it misses, possibly the entire blockchain, and reconstruct the state by re-executing
every missing transaction. However, this is impractical, since the number of transactions
grows too large over time. Therefore, existing blockchain-based systems (e.g., [2, 26]) rely on
periodic snapshots of the system state. The snapshot is a serialized representation of the tree
data structure. When a new peer joins the blockchain (or a failed peer recovers), it downloads
the blockchain blocks with transactions (or block headers, with a summary of the block)
and the snapshot. The peer then installs the snapshot and replays all transactions since the
snapshot was taken, to reconstruct the current system state. To validate a snapshot, a peer
simply computes the hash on its tree and compares the computed value with the value stored
in the trusted block header. To further decrease the time it takes for a new peer to join the
blockchain, a snapshot can be divided into chunks, each one containing multiple nodes of the
tree. This allows new peers to download chunks from many peers concurrently. A natural
strategy to assign tree nodes to chunks is to traverse the tree (e.g., using depth-first search)
and build fixed-sized chunks [3].

Unfortunately, this approach to state synchronization suffers from two subtle, but import-
ant problems. The first problem is due to the relationship between chunks and validation. If
nodes of the state tree are assigned to chunks in a naïve way, as described above, then the
chunks cannot be validated independently. Instead, a peer must download the entire tree
before it can compute the hash. This introduces an effective attack vector for misbehaving
peers. If a single malicious peer shares an invalid chunk, the new peer cannot identify the
problem until it has downloaded all of the chunks. This wastes network and disk resources
of both the sender and the receiver, and can significantly prolong the time it takes for a
new peer to join the blockchain. The second problem is with performance. When a peer
computes a snapshot, it needs to search the tree, serialize all nodes, build chunks, and save
them to local storage. We show in the paper that existing blockchain-based systems based
on this approach experience periodic hiccups, dropping transaction throughput.

In this paper, we provide data structures and algorithms for robust and fast blockchain
state synchronization. By robust, we mean that our solution can tolerate Byzantine failures.
By fast, we mean that (i) validation and state reconstruction can be performed quickly, and
(ii) peers do not have to pause operation in order to compute a snapshot. The key component
of our solution is the design of a novel data structure targeted specifically to the state
synchronization use case. This data structure, which we call an AVL* tree, is a Merklized
AVL tree in which the tree leaves are organized into chunks. However, the assignment of
nodes to chunks ensures that each chunk always contains a sub-tree of the system state. This
enables batches of leaves to be securely and efficiently downloaded concurrently, while also
permitting chunks to be verified for integrity using a compact proof. Finally, the structure of
the tree is such that after a transaction is executed, a peer needs only to recompute the hash
of the affected chunk, and propagate the hash up the tree to the root. It does not need to
recompute the entire snapshot. Thus, during normal operation, the peer never has to pause
transaction processing.

Incorporating leaf batching into a Merkle-ized AVL tree might seem straightforward.
In reality, the problem introduces several challenges. First among these is identifying the
proper invariants that must be maintained so that the integrity of the chunks can be checked
independently. Second is designing the non-trivial changes to the AVL tree’s operation
methods to preserve the invariants. Third, during state transfer, peers will download different
chunks in parallel, and can start reconstructing the tree. In general, inserting the data into a
tree can result in different trees. To ensure correctness, we need to guarantee that the tree
construction algorithm deterministically builds the same tree on different peers.
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We have implemented the AVL* tree data structure and integrated it into the Tendermint
blockchain middleware. We show that the time it takes for a new peer to join the blockchain
using AVL* is halved, while at the same time tolerating Byzantine peers. Moreover, the
improvements in the performance of state synchronization do not degrade the performance of
steady execution. In fact, AVL* slightly increases throughput and reduces latency. Finally,
we show that these improvements increase with the system size.

The rest of this paper is organized as follows. We first provide the necessary background
(§2). We then describe the basic structure and operations of our AVL* tree (§3), followed
by algorithms that enable fast state synchronization (§4). We then provide a thorough
evaluation of AVL* trees, comparing to an AVL tree (§5). Finally, we present related work
(§6) and conclude (§7). The Appendix contains a correctness argument for tree operations
and state synchronization, and the detailed algorithms proposed in the paper.

2 Background

2.1 Blockchain
A blockchain is a distributed ledger, an append-only log of transactions implemented by
geographically distributed peers. Clients submit transactions to the blockchain, which are
appended to the log and executed by peers. Clients and peers may be honest, if they follow
the protocol specification, or malicious (Byzantine), if nothing can be assumed about their
behavior. The blockchain behaves correctly if a fraction of the peers, typically more than
two-thirds, is honest [20].

The append-only log is structured as a linked-list of blocks, each block divided into a
header and a body. The header contains, among other information, a cryptographic link
to the previous block and a hash of the state. The body contains a list of transactions,
each transaction cryptographically signed by the client that submitted it. Some blockchain
systems (e.g., [24, 26]) allow the chain of blocks to momentarily fork, a situation in which
multiple blocks are linked to a previous block. An alternative design is to ensure a total
order on linked blocks (e.g., [15]). In this case, peers must agree on the next block to be
appended by means of a byzantine fault-tolerant consensus protocol (e.g., [16, 21]).

2.2 Merkle trees
Generally, the state of a blockchain is stored locally by each peer in a key-value store
structured as a Merkle-tree [25], or similar data structure (e.g., Merkle-Patricia-tree [26]). In
a Merkle-tree, each leaf holds the value and its hash, and each inner node holds the hash of
its children. The hash of the tree’s root (Merkle-root) is stored in the blockchain header,
which ensures its integrity. The key function of Merkle-trees is to provide succinct proofs of
data integrity of any node of the tree. One can prove in logarithmic time and space that a
leaf v belongs to the tree by providing the hash of the siblings of the tree nodes in the path
from v to the Merkle-root m. In Figure 1, these hashes are h0 and h3. One can verify that v

belongs to the tree by recalculating h2, h1 and m, and then verifying that the recalculated
m is equal to the known trusted Merkle-root hash, stored in the blockchain.

The Merkle-tree of a blockchain is multi-version: a new tree is created for every new
blockchain block, typically implemented with copy-on-write for performance reasons. When a
new version of the tree is instantiated, the Merkle-root from the current version is copied to a
new Merkle-root and made the Merkle-root of the new version. Modified nodes are duplicated
and saved under the new tree. Although it is not common for peers to navigate on older
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b0 b1 b2 bn
. . .

m : H(h0, h1)

h1 : H(h2, h3)h0

h3h2 : H(v)

v

Figure 1 Blockchain b0, ..., bn and Merkle-proof h0;h3 of v. Hashes m, h1 and h2 are computed
from v, h0, and h3, and hash function H(); v is valid if m matches the value stored in block b1.

versions of the tree, it is required for certain inter-blockchain communication protocols [6],
where peers serve as relayers between blockchains, allowing one blockchain to verify state
proofs from another at a recent block.

2.3 State synchronization problem

A new (or recovering) blockchain peer needs to retrieve and execute transactions from all
the blocks it has missed in order to catch up with operational peers. Merkle-trees enable
fast catch up techniques based on traditional state machine replication [16]: Instead of
re-executing all missing transactions, the peer retrieves a recent version of the Merkle-tree
(i.e., a snapshot) from other peers and applies only the transactions in blocks that succeed
the retrieved Merkle-tree. This technique has been implemented in popular blockchain clients
(e.g., Geth [7], Ethereum’s main client).

The obvious question, though, is how should a peer download the snapshot? On the one
hand, since a snapshot can be large, the download process can be accelerated by partitioning
the tree into chunks, and downloading chunks from several peers in parallel. On the other
hand, in blockchain systems, leaf sizes tend to be small (e.g., a hundred bytes), and the
number of leaves quite large, creating significant I/O overhead if one were to serve each leaf
independently. It makes sense to batch leaves together to reduce the I/O overhead.

Existing systems choose a fixed-size chunk and assign nodes to the chunk until it is full [2].
A natural implementation strategy is to perform a traversal of the tree (e.g., in depth-first
order) and assign nodes to chunks. However, this approach fails to capitalize on the key
property of Merkle-trees: that subtrees can be validated independently. Consequently, the
snapshot cannot be validated until a peer has downloaded the complete state. Put another
way, the peer must download all chunks before it can check if they are valid. Consequently, a
single misbehaving peer serving an invalid chunk can initiate a type of “denial of service”
attack, significantly prolonging the time it takes for a new peer to join the blockchain.
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Figure 2 Insertion and rotations in AVL* (white square: inner node; white circle: leaf; gray
rectangle: chunk with chunk id; bold square/leaf: chunk root). (a) a balanced AVL tree, (b) an
imbalanced AVL tree after the insertion of 25, (c) an imbalanced AVL tree after right rotation of
previous tree at inner node 30, (d) a balanced AVL tree after left rotation of previous tree at pivot
(inner node 20).

3 The AVL* chunked tree

The AVL* tree is a Merkle-ized, balanced binary search tree. As an AVL+ tree (§3.1), it
preserves the same invariant: the height difference between its left and right children is
at most 1. The key difference between the two is that the leaf nodes in an AVL* tree are
organized into chunks, or batches (§3.2), and each AVL* chunk can be validated individually.
The AVL* tree requires new data structures (§3.3), and algorithms for searching (§3.4),
inserting (§3.5), and deleting (§3.6) nodes. Moreover, organizing the tree in chunks has
implications on re-balancing (§3.7), multi-versioning (§3.8), and the correctness of the tree
(discussed in the Appendix). A chunked AVL* tree can be downloaded in parallel during
state synchronization, and independently checked for integrity.

3.1 AVL+ trees

While the techniques described in the paper could be used with any Merkle-ized trees, we
focus the discussion on AVL trees [12, 5]. An AVL+ tree is a self-balanced ordered binary
tree that implements a key-value storage API, where all values are stored in leaves and inner
nodes store keys, used to keep the tree ordered. Leaves store the hash of values, and inner
nodes the hash of their children and keys. As an immutable data structure, all updates are
performed using copy-on-write. To add a key-value pair, the tree is traversed from its root
until a leaf is found. Then, a new inner node is created, from which the found leaf and the
new leaf (with the key-value to be included) will descend.

When the height difference between the left and right subtrees of an inner node is greater
than one, the tree is said to be imbalanced. To re-balance the tree, one or two rotations are
needed involving the lowest imbalanced subtree, whose root is called pivot node. Figures 2
(b) and (c) show imbalanced trees with inner node 20 as pivot. A left rotation at the pivot is
enough if the subtree on the right of the pivot is higher than the subtree on the left of the
pivot (Figure 2 (c)). But a right rotation at the right child of the pivot must happen first, if
the left side of the pivot’s right child is higher than the right side of the pivot’s right child.
This is what happens in Figure 2 (b) since the left side of inner node 30, on the right of pivot
20, is higher than its right side. The cases for right and left-right rotations are symmetric.
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3.2 Chunks
A chunk is a set of nodes that are grouped together, and serves as the unit of access for the
persistent store, communication, and integrity check. Grouping the nodes of the tree into
batches facilitates parallel downloads. But, the assignment of nodes to chunks is important.
If done incorrectly, it would not allow individual chunks to be checked for integrity. Each
chunk has a root which is defined as follows:

▶ Definition 1. The root of a chunk C, root(C), is the lowest (i.e. deepest) node that has
all the nodes in C as descendants.

Given this definition, the important invariant preserved by AVL* when assigning nodes to
chunks is as follows:

▶ Property 1. For any chunks Ca and Cb, neither root(Ca) is a descendant of root(Cb) nor
root(Cb) is a descendant of root(Ca).

Property 1 ensures an overall minimal proof size for checking the integrity of a chunk. A
client peer can check the integrity of chunk C with C and the proof that root(C) is a valid
node. If root(C) is valid (see §2.2) then all data it stores is valid, including the hash of its
subtree. The client peer then computes the hash that should be stored in root(C) from the
leaves in C all the way up to root(C) and then checks whether the computed hash matches
the hash stored in root(C).

Trivially, we see that this property would be satisfied if we were to assign every node to
the same chunk, or assign each node to its own chunk, begging the question of how big a
chunk should be? There is a trade-off: if a chunk is too large, then we lose the ability to
download multiple chunks concurrently, but if a chunk is too small, we lose the benefits of
batching. The chunk size is a constant set when the tree is instantiated. In our experiments,
we empirically evaluate different chunk sizes.

The key challenge in designing the AVL* tree is updating the insertion and delete
algorithms of the AVL+ tree to respect this invariant, despite tree rotations.

3.3 Data structures
In an AVL* tree, inner nodes are stored in volatile memory only (DRAM); leaves are
embedded in chunks, which are stored in volatile memory and in a persistent store. Table 1
details the structure of inner nodes, leaf nodes, and chunks.

An inner node contains a key, used to search the tree; a pointer to a chunk, if the key
is the root of the chunk; pointers to left and right nodes (inner or leaf); the height of the
node; a hash, discussed below; and a boolean is_leaf that asserts that a pointer to the node
references an inner node.1

A leaf node contains a key-value pair; a pointer to a chunk, if the key is the root of the
chunk; an i_node pointer to an inner node, if the leaf’s key is also an inner node; the height
of the node, which is zero if the key is not stored as an inner node or the height of the inner
node that stores the same key as the leaf; a hash; and a constant boolean is_leaf.

A chunk contains a unique chunk identifier cid, a number in 0..(m − 1), where m is the
number of chunks; the version of the chunk, the number of leaves stored in the chunk, size;
a pointer to the chunk root, which can be an inner node or a leaf; and a set leaf with all the
leaves stored in the chunk. A chunk can store up to Cp leaves, a parameter of the system.

1 For simplicity, we assume that pointers can reference either inner nodes or leaves.
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Table 1 The data structures used in the AVL*.

Inner node
key unique item identifier
chunk pointer to chunk, if chunk root
left pointer to the left node, inner or leaf
right pointer to the right node, inner or leaf
height the height of the node
hash needed by the Merkle-ized tree
is_leaf false

Leaf node
key unique item identifier
value arbitrary data held in the node
chunk pointer to chunk, if chunk root
i_node pointer to matching inner node, if any
height 0 or i_node height (when sending chunk)
hash needed by the Merkle-ized tree
is_leaf true

Chunk
cid unique chunk id, starting in 0
version version number of the chunk
size number of leaves in the chunk
root pointer to the chunk root, inner or leaf
leaf[0..(Cp − 1)] set of leaf nodes in the chunk

Hashes are computed after all changes in the tree have been performed, that is, the
blockchain block the tree corresponds to has been fully processed. The hash of a leaf takes
as input the key, value, height of the tree, and the chunk id and version, if the leaf is the
chunk root. The hash of an inner node includes the key, the hashes of its children, and the
chunk id and version, if the leaf is the chunk root.

3.4 Search
Searching for a key in the AVL* tree is just like a search in a regular AVL tree. The only
difference is that if the search traverses a part of the tree that is not stored in main memory,
then the corresponding chunk is read from disk and its entire subtree is stored in main
memory.

3.5 Insertion
The insertion starts by searching down the tree for a leaf with a key that is immediately
smaller or bigger than the key to be inserted. This will determine the position of the new
leaf, either left or right of the found leaf, with the key-value element to be inserted. When
searching down the tree, the root of a chunk is eventually found. From Property 1 (see §3.2),
only one root chunk is traversed when inserting an element in the tree. If the root chunk
points to a full chunk, before searching further, the chunk is split. The split, detailed next,
does not change the structure of the tree but ensures that there is an available position in the
chunk to accommodate the new leaf. To insert the new element, one inner node is created,
pointing to the found leaf and the new leaf. When unrolling the recursion that leads to the
insertion of an element, the height of every visited tree node is recomputed. If the subtree
rooted at the visited node becomes imbalanced, a rotation is executed.

For example, in Figure 2 we add a node with key 25 in the tree depicted in (a), which
has two chunks. Chunk #0 has one leaf and chunk #1 is full with two leaves. The insertion
starts from the tree root and traverses to the right child at node 30, the chunk root of chunk
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#1, which is at maximum capacity, and splits it, creating chunk #2. The algorithm continues
traversing the tree until leaf 20 is reached. Since the new key is bigger than the leaf’s key,
a new inner node is added copying the value of the new key and rearranging the leaves
accordingly, resulting in the tree (b) before balancing is done.

To split a chunk, we create two new chunks and run a depth-first search (DFS) from the
left and right children of the chunk root to be split. Each call to DFS builds a new chunk
that is assigned to the left and right children of the old chunk root. At the end of the split
the old chunk is deallocated and its chunk root set to nil.

3.6 Deletion
Deleting a node from the AVL* tree is similar to deleting a node from an AVL tree. We
discuss next the basic procedure and then two extensions that account for chunks.

To delete key k, we start by searching the tree to find a pivot node p such that (i) p’s left
node is a leaf, or (ii) p is an inner node with key k. Then, there are four cases to consider:

Case (a): p’s left child is the leaf with key k. In this scenario, p’s left node is deleted,
p’s right node takes the place of the pivot, and the original pivot is deleted. This case
happens when we want to remove key 10 in Figure 2 (a), where the pivot is inner node 20.
Case (b): p’s right child is the leaf with key k. In this case, p is necessarily the inner node
with the key to be deleted. Both p and its right child are deleted and p’s left child takes
the place of the pivot. This case happens when we want to remove key 30 in Figure 2 (a),
where the pivot is inner node 30.
Case (c): The left child of p’s right child is the leaf with key k. The leaf with k is deleted,
p is replaced with p’s right child, and the original pivot is deleted. For this case, consider
the deletion of key 20 in Figure 2 (a), where the pivot is inner node 20.
Case (d): Otherwise, we find the inner node x with the lowest value at the sub-tree on
the right of p, delete x’s left leaf, replace pivot p with x, and delete the inner node p. We
illustrate this case with the deletion of key 20 in Figure 2 (b), where the pivot is inner
node 20 and x is inner node 25.

Akin to the AVL-tree deletion, when unrolling from the recursion that found pivot p, the
nodes involved in the deletion have their heights updated and possibly rotated. Differently
from the insertion, a deletion may involve rotations at all nodes in the way up to the root.

Deletion of a node in an AVL* tree differ from deletion in an AVL tree in two aspects.
First, in cases (c) and (d) above, when an inner node x replaces a deleted inner node (i.e.,
the pivot). If x is a chunk root, then it will no longer be root, and the root of the chunk it
referred to will be a node that descends from x.

Second, when deleting a leaf, it may happen that a chunk ends up with no leaves. This
situation requires attention since the validity of a chunk is attested by the chunk root
(discussed in §4), and an empty chunk has no root. To handle this case, when a chunk
becomes empty, we take the chunk with the current largest unique id, assign to this chunk
the id of the empty chunk, and decrement by one the number m of existing chunks (see §3.3).
This ensures that every chunk with id in 0..(m − 1) has at least one node, and therefore a
chunk root.

3.7 Re-balancing
If, as a result of an insertion or a deletion, there is a height difference between two child
subtrees, then the parent tree must be re-balanced. Similar to the AVL tree, a rotation in
an AVL* tree happens if the height difference from the children of a node is greater than
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one. There can be four types of rotations: left, right-left, right, and left-right. Left and right
rotations happen with a single rotation to the left or right, respectively. When rotating to
the left on a pivot, the right child of the pivot takes the place of the pivot (called new pivot),
the right child of the old pivot becomes the left child of the new pivot, and the left child
of the new pivot becomes the old pivot. For the right-left rotation, first the right child of
the pivot is rotated to the right and finally the pivot is rotated to the left. The right and
left-right rotations are symmetrical to the cases explained before. The tree can be balanced
with at most two rotations after an insertion.

If the rotation involves a chunk root, then there are two cases to consider. First, if the
root of the chunk is the pivot of the rotation, then the node that takes the position of the
pivot becomes the new chunk root. Second, if the pivot of the rotation is not the root of a
chunk, but the node that takes the position of the pivot is the root of a chunk, then we split
the chunk before doing the rotation. This is done to ensure Property 1. As a consequence,
there will be extra splits even when a chunk is not full; in our experimental evaluation these
splits amount for around 4% of the total number of splits.

Continuing from the example in Figure 2, the tree (b) is imbalanced after the insertion.
Since the height of the root’s right child is greater than the height of the root’s left child,
it triggers a left or a right-left rotation. Since the root’s right child has a higher height on
its left child than the right one we do a right-left rotation. First we rotate inner node 30
to the right and then rotate the inner node 20 (root) to the left. When rotating the inner
node 30 to the right, we observe that its left child is a chunk root and split the chunk before
continuing with the rotation. After this step, the tree is depicted in (c); observe that the tree
has an extra chunk #3 created by the split and still is imbalanced. After the final rotation
to the left, the tree is finally balanced as shown in (d).

3.8 Multi-versioning
An AVL* tree is multi-versioned, and a new version of the tree is created for every new
blockchain block. For performance, a new tree is created using copy-on-write. Differently
from an AVL+ tree, in the AVL* tree the unit of allocation is a chunk. This means that
when a node is modified in the new version of the tree, the complete chunk that contains
the node is copied. This chunk-based allocation suggests a tradeoff: small chunks reduce
the overhead of creating the new tree, but increase the number of chunks that need to be
propagated upon state synchronization. We experimentally evaluate this tradeoff in §5.

3.9 Correctness of tree operations
We initially argue that, in the absence of rotations, the insertion and deletion algorithms
preserve Property 1.

In the case of an insertion, the property could only be invalidated when creating new
chunks. When splitting a chunk, two new disjoint chunks are created and assigned to the
left and right subtrees as the original chunk is extinguished. These steps do not violate
Property 1 since they do not create descendants below or above each chunk root.

To see why deletion preserves Property 1, assume node x replaces the pivot, and x is root
of its chunk. From the protocol, a descendant y of x becomes chunk root in place of x. Since
x was chunk root, none of the nodes in its subtree are chunk root, and thus, no descendant
of y is a chunk root.

We now argue that a right rotation preserves Property 1; the same reasoning applies for a
left rotation. When rotating a node x to the right, x’s left child is assigned as the right child
of x’s original left child. The only case a rotation would lead to a violation of Property 1 is
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8:10 Robust and Fast Blockchain State Synchronization

when there are chunk roots in x’s siblings. To deal with this case, before the assignment, we
split the left chunk root in case of a right rotation (and right chunk root in case of a left
rotation). After the split, the assigned node is a chunk root and can be safely moved to the
opposite part of the tree.

4 Robust state synchronization

In general, there may be many ways to build a balanced binary tree from the same data.
To be correct, we must ensure that all peers build the same tree. This is ensured if a peer
collects all chunks that make up a tree, these chunks are valid, and the re-construction of the
tree is deterministic. More formally, the tree reconstruction algorithm ensures the following
two properties:

▶ Property 2. Let T be the AVL* tree built by a honest peer after executing the n-th block
of the blockchain, and CT = {C0, ..., Cm−1} the chunks of T . Upon receiving chunk Ck from
a peer, a client peer can check whether Ck is valid (i.e., Ck ∈ CT ) before receiving any other
chunks in CT .

▶ Property 3. Let T and T ′ be two AVL* trees with the same nodes. If we build T ′ by
inserting node by node following their order of height in T , then T and T ′ are isomorphic.

We now describe a procedure to reconstruct the tree that satisfies Properties 2 and 3. To
check that T is valid, the client needs the trusted Merkle-root hash of T and the number
m of chunks in this tree. Both the Merkle-root hash and the number of chunks in the tree
must be included in the block headers of the blockchain to ensure that they are trusted. In
a blockchain, this information is available in the headers of a block that succeeds the n-th
block (e.g., in the (n + 1)-th block).

A client peer requests a chunk by its identifier (i.e., a value in 0..(m − 1)) and receives as
a response the requested chunk with the proof of inclusion of the chunk’s root. The peer
then rebuilds the subtree rooted at the chunk’s root with all the nodes in the chunk. The
procedure that checks the validity of the chunk (Property 2) proceeds in two steps. In the
first step, the peer verifies the proof’s validity by reconstructing the path from the chunk’s
root until the Merkle-root based on the hashes provided in the proof. The proof is valid if
and only if the reconstructed Merkle-root matches the trusted one. In the second step, the
peer recomputes the hashes of the subtree from the leaves up to the chunk root. The chunk
is valid if the computed hash of the chunk root matches the hash provided, known to be
valid from the first step.

To ensure that the client peer builds a proper subtree with the leaves in a chunk
(Property 3), the peer first sorts all leaves by height. Recall from §3.3 that the height stored
in a leaf is either 0, if the leaf’s key is not an inner node, or the inner node’s height in the
tree. Then, the peer builds the tree by adding one node at a time, in descending order of
the node height (i.e., root first). Multiple subtrees can be built in parallel to speed up the
process. When the last chunk is built, the peer links all the chunk subtrees: The peer sorts
all subtrees in descending order of their root node height, at which point the tree’s root lies
necessarily in the first position of the array. Each subtree is then added sequentially in the
tree. When the last element is added the tree is complete. The correctness of this procedure
is shown below. After the tree is built, the peer recomputes all the hashes.
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4.1 Correctness state synchronization
We initially consider Property 2. The first step of the protocol checks the validity of the
chunk root using the proof of integrity of a single node of the tree. This follows immediately
from the properties of Merkle trees (§2.2). A valid chunk root provides a trusted hash of its
subtree. Then, in the second step, we compute the hashes from the leaves all the way up to
the chunk root. If the trusted and the computed hash match, then the chunk is valid.

We now consider Property 3. Let h be the height of T , and T (n) be a subtree of T that
contains nodes from height h down to height n. The proof is by backwards induction on n.

Base step. Trivially true for n = h since there is a single node with height h in subtrees
T (h) and T ′(h), the root.

Inductive step. We assume that T (n + 1) and T ′(n + 1) are isomorphic and show that
T (n) and T ′(n) are isomorphic too, for 0 ≤ n < h. Let k be a node in T (n) that is not in
T (n + 1). Since T is a binary search tree, there is only one path in T (n + 1) that leads to k.
From the inductive hypothesis, T (n + 1) and T ′(n + 1) are isomorphic, thus, k will end up in
the same location in T ′(n). Since T (0) = T and T ′(0) = T ′, we conclude that T and T ′ are
isomorphic.

5 Evaluation
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Figure 3 Time for a peer to recover from scratch, 100k chunks, varying number of key/value
pairs.

5.1 Implementation and environment
To evaluate the behavior of our data structure and algorithms, we integrated them into
Tendermint and conducted experiments under different conditions. Tendermint is a blockchain
middleware that supports the replication of arbitrary applications. Tendermint provides
applications with an AVL+ tree to manage state, called IAVL+. Peers can join the network
by fetching a snapshot of the system state. To speed up the process, a peer can fetch a
snapshot in chunks of fixed size.

All tests were conducted in a wide-area network (WAN) using Amazon’s Elastic Computing
(EC2) platform. We evaluated the system with 10 peers (small setup) and 80 peers (large
setup). Our large setup is a fair approximation of Cosmos/Tendermint’s current production
system, with 125 peers. Peers were deployed in datacenters in seven Amazon regions: three
datacenters in North America (Oregon, Ohio, Canada Central), two in Asia (Tokyo, Hong
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Kong), three in Europe (Paris, Frankfurt, and London), one in South America (Sao Paulo),
one in the Middle East (Bahrain), and one in Africa (South Africa). We used t3.xlarge and
r5.xlarge instances.

We used most of Tendermint’s default parameters, and set the mempool cache with 50k
transactions, and block interval of 1 second for executions with 10 peers and 5 seconds for
for executions with 80 peers. These parameters led to the best results for throughput and
latency for both the IAVL+ and the AVL* experiments. In the setup with 10 peers, each
peer is connected to every other peer; in the setup with 80 peers, each peer is connected to
25 random peers.

We developed a key-value store application using Tendermint and benchmarked the
application using the IAVL+ tree and the AVL* tree. Clients submit transactions that add
new key-value pairs to the store. A key contains 20 bytes and a value contains 100 bytes,
both generated randomly by clients. We evaluated the IAVL+ and the AVL* trees with
chunks that can contain up to 10k and 100k key-value pairs, amounting to roughly 1MB and
10MB chunks, respectively. We considered executions in which clients include 10k, 100k, 1M
and 10M key-value entries to the store.

5.2 State synchronization
The first set of experiments evaluates the performance of the state synchronization operation.
The main metric of concern is the time it takes to perform synchronization for a new peer
joining the blockchain.

In these experiments, all peers but one are pre-initialized with a full tree. When the
experiment begins, the new peer recovers the state by downloading chunks in parallel from
the operational peers. We vary three parameters: (i) the size of the tree, (ii) the number of
validators (10 and 80), and (iii) the size of the chunks (10k and 100k).

Figure 3 shows the state synchronization times for IAVL+ and AVL*. The results for 10k
chunks and 100k chunks are similar; thus, we show results for 100k chunks only. We report
the results as a ratio, with the absolute time printed at the top of each column. There are
two important features to note. First, for both IAVL+ and AVL*, the synchronization time
increases linearly with the size of the tree, and it does not depend on the size of the system.
Second, the synchronization time for AVL* is roughly half the time required by IAVL+. This
happens because in the AVL*, when a chunk is received, it can be validated individually
and, if valid, the subtree it contains can be built before all chunks are received.

Table 2 Throughput and latency for IAVL+ and AVL* in different configurations.

10 peers
10k chunks 100k chunks

Throughput (tx/s) Latency (s) Throughput (tx/s) Latency (s)
average std. average std. average std. average std.

IAVL+ 2373.86 764.03 4.18 1.1 2362.76 713.46 4.16 1.02
AVL* 2538.63 798.46 3.85 0.94 2491.69 802.94 3.96 0.99

variation +7% -8% +5% -5%
80 peers

10k chunks 100k chunks
Throughput (tx/s) Latency (s) Throughput (tx/s) Latency (s)
average std. average std. average std. average std.

IAVL+ 893.28 218.33 8.63 2.27 892.82 235.59 8.71 2.6
AVL* 988.42 124.39 7.64 1.53 1001.25 131.8 7.54 1.55

variation +11% -11% +12% -13%
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(a) IAVL+ with 10k chunks.
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(b) AVL* with 10k chunks.
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(c) IAVL+ with 100k chunks.
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(d) AVL* with 100k chunks.

Figure 4 Throughput and latency of transaction execution, 10 peers, 1M key/value pairs.

We do note one detail. Recall that the AVL* does not guarantee fixed-sized chunks. So,
in these experiments, the AVL* chunks tend to be smaller than those made by snapshots in
the IAVL+. Snapshots from the AVL* have around 16% more chunks than the IAVL+ tree.
However, although there are more chunks in the application using the AVL* tree, the data
stored in each chunk is increased, since it includes the proofs of inclusion for each chunk.

Overall, the state synchronization time when using the AVL* is on average 58% faster
compared to the IAVL+ tree, despite having to download more chunks.

5.3 Steady-state operation

In the second set of experiments, we compare transaction throughput and latency of Tender-
mint using an AVL* and an IAVL+ tree. One distinctive aspect of AVL* is that peers do
not need to periodically build state snapshots. To understand the overhead of IAVL+, we
measure the time it takes to compute a snapshot. Finally, we assess AVL* space utilization.

In all the experiments, clients operate in a closed-loop, meaning a client only submits a
new transaction after it receives the response for the previously submitted transaction. The
client subscribes to the blockchain and delivers the blockchain blocks. Latency is computed
as the time it takes for a transaction to be included in a block. Throughput is the number of
transactions in a block divided by the time it took for the block to be ordered (i.e., interval
between the current block and the previous one). In the experiments with the IAVL+ tree,
snapshots are built every ten blocks.
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(a) IAVL+ with 10k chunks.
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(b) AVL* with 10k chunks.
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(c) IAVL+ with 100k chunks.
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(d) AVL* with 100k chunks.

Figure 5 Throughput and latency of transaction execution, 80 peers, 1M key/value pairs.

5.3.1 Steady-state performance

We show the throughput as a time series and the latency CDF for Tendermint using both
IAVL+ and AVL*. Figure 4 presents the results for a blockchain with 10 peers. Figure 4 (a)
and (b) report the results for chunks of size 10k, and Figure 4 (c) and (d) report results for
chunks of size 100k. Figures 5 shows the results for the same set of experiments when the
number of peers is increased to 80.

The graphs show that using the AVL* tree results in more predictable performance.
One of the reasons for the volatility of the IAVL+ tree is that there are periodic drops in
performance that occur during a snapshot operation. In the graph, the dashed-red lines
indicate the time that a snapshot occurs.

Although it is somewhat difficult to tell from the graphs, the performance of AVL* is not
only more predictable, but it is also better, on average, than the IAVL+. Table 2 shows the
mean values, the corresponding standard deviation, and the relative improvement of AVL*
over IAVL+ for all these experiments.

In a blockchain with 10 validators, AVL* increases the throughput and reduces the latency
by at least 5% when compared to the IAVL+ tree. These improvements increase with the
size of the blockchain: with 80 validators, the improvements in throughput and latency are
at least 11%.
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5.3.2 Time for a snapshot
One of the major differences between IAVL+ and AVL* is that AVL* trees do not need to
pause execution to compute a snapshot. This happens because in AVL* trees, chunks are an
integral part of the tree data structure. In IAVL+, chunks are built from tree snapshots.
Because snapshot computation has a significant impact on the IAVL+ performance, we
wanted to quantify the overhead.

Figure 6 shows the time it takes to compute a snapshot with IAVL+ trees as the number
of tree leaves (i.e., key-value pairs) is increased, varying from 0 to one million leaves. As the
tree gets bigger, snapshots take more time to complete. That happens because each snapshot
has to serialize the whole tree. Changing the chunk sizes does not have a significant impact
on the experiment’s performance.
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Figure 6 Time for an IAVL+ snapshot.

5.3.3 Space efficiency
The trade-off for using an AVL* is space efficiency, as the algorithm may fill chunks up to
their capacity. We define space efficiency as the number of chunks in the AVL* divided by
the ideal number of chunks (ceiling of elements divided by chunk size). For instance, if the
space efficiency were 2, it would mean that the AVL* uses twice as much chunks as the ideal
scenario. Note that when creating snapshot for the IAVL+, the space efficiency is always 1,
because the serialization process always serializes the tree from scratch. We evaluated the
space efficiency of the AVL* tree as we insert one million random keys into an empty AVL*
tree. The space efficiency stabilizes at around 1.4 for random data, which we believe is an
acceptable overhead.

5.4 State synchronization under attack
A key benefit of an AVL* tree over the IAVL+ tree is that it can gracefully recover from
Byzantine or malicious behavior from peers. An IAVL+ cannot be checked for validity until
the entire tree has been downloaded and reconstructed. If, after reconstructing the tree, the
tree’s root hash is different from the one in the trusted block header, then the client peer
must refetch all chunks again. In contrast, the AVL* tree allows the client peer to detect
invalid chunks easily, and remove misbehaving peers from their peer list.

To quantify the performance of AVL* in the presence of malicious peers, we again
performed the state synchronization experiment, but introduced malicious peers that respond
with invalid chunks. In these experiments, we used a fixed number of 80 peers and a tree with
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one million entries. We varied the number of malicious peers from 1 to 26. We performed
the experiment five times, and report mean synchronization time, as well as the maximums
and minimums in bars and whiskers. Figure 7 shows the results.

In Figure 7 (a), we see that, as expected, the presence of malicious peers degrades the
state synchronization time. The state synchronization time grows linearly with the number
of malicious peers. Because a peer can respond to multiple requests for chunks in parallel
before they are verified, the number of invalid chunks sent by peers can vary. In Figure 7 (b)
we see that the number of chunks that need to be re-fetched is proportional to the state
synchronization time.

From §5.2, we know that without any byzantine peers, it takes 16.3 seconds for a client
peer using IAVL+ to complete state synchronization (with 80 peers, 100k chunks and 1M
key-value pairs). With one byzantine peer, this time would double since the client peer would
have to start from scratch. And even after retrying, there is no guarantee that the second
attempt would succeed. Thus, a coordinated attack could substantially increase state sync
time of IAVL+. AVL* outperforms IAVL+ even under attack by 20 byzantine peers.
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Figure 7 State sync with byzantine peers, 100k chunks, 1M key/value pairs.

6 Related work

Many systems for state machine replication with byzantine actors have addressed the problem
of fast state synchronization without executing the entire transaction log. This is typically
done by taking snapshots of the state, often called checkpoints. Such checkpoints can then be
downloaded by new or recovering peers. While PBFT [17] proposed the use of a Merkle tree
for its checkpoints, the Upright [18] and BFT-SMaRt [13] systems consider Merkle trees and
copy-on-write semantics to be too invasive in general to the application developer. Upright
outlines three simple approaches to state transfer [18], and BFT-SMaRt [13] describes a
detailed Collaborative State Transfer protocol, where the full state is downloaded from a
single peer and verified against hashes from other peers. In PBFT, a binary Merkle-tree is
built at each checkpoint by partitioning the application state in 4KB pages. The pages are
stored as leaves of the Merkle-tree using copy-on-write to only persist pages that have been
modified since the previous checkpoint. This approach is not efficient to encode a key-value
storage, since operations on the key space (e.g., searches) do not have logarithmic complexity.

Unlike SMR systems, which either consider Merkle-trees too expensive [18, 13], or
construct them only for state synchronization at periodic checkpoints [17], many blockchain
systems already use Merkle-ized data structures to store the state. The primary use case for
such Merkle-trees is to facilitate light clients, who can efficiently query for particular leaves
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of the tree and verify their integrity, without ever downloading the entire state or transaction
history. The use of Merkle-trees for state synchronization has received much less attention,
but as the state of blockchain systems grow, synchronizing it becomes more expensive.

In Geth [7], state synchronization is performed by requesting individual nodes of the tree.
Peers do not have a way of knowing how long the state synchronization will last, because they
do not know the total number of nodes [4]. Since the Merkle-tree is part of the consensus
rules (i.e., Merkle-roots are stored in block headers), peers can verify that a received node
from the tree is correct. However, given the small size of nodes (less than one KB), their
randomized distribution in the underlying database, and the large size of the state (tens of
GBs), requesting nodes individually leads to performance degradation for peers requesting
and providing nodes. Batching nodes is a promising solution, however, it is challenging to
batch nodes in a manner that can be securely verified by peers, and limits attacks on honest
peers. For instance, in OpenEthereum [8], snapshots are taken periodically by serializing
the entire state, and dividing it in large chunks. The hashes of each chunk are published
in a manifest file. Since the manifest is not part of the consensus process, there is no way
to verify that a chunk is correct before downloading all of them. Successfully completing
the state synchronization in such a system thus depends on retrieving a correct manifest,
which requires strong assumptions, for instance, that a particular peer can be trusted or that
a majority of connected peers are correct. This is stronger than the usual assumption of a
single (though unspecified) correct peer commonly used in blockchain systems.

Other blockchain systems have proposed to take snapshots of the Merkle-tree by period-
ically dividing it in chunks. In Codechain snapshots [9], chunks are built from nodes within
a certain depth from a common root, and the hash of the snapshot is included in the block
header so chunks can be verified incrementally by peers. Chunks may contain entire sub-trees,
or may be limitted to the upper nodes in a sub-tree. In Tendermint IAVL+ snapshots, tree
nodes are serialized in order and assembled into chunks of a given size [1]. However, since
Tendermint’s block header does not currently support snapshot hashes, chunks cannot be
incrementally verified by peers. Hence the need for a tree that incorporates chunking directly
into its structure.

Motivated by their use in the blockchain context, numerous Merkle-tree designs have
been proposed lately. TurboGeth [10] separates the key-value storage from the Merkle
tree structure, and batches Merkle tree nodes in chunks to reduce the number of lookups
during Merkle operations. This has the effect of greatly improving performance without
changing the structure of the hash tree itself. Sparse Merkle-trees [19] have been adopted
by other blockchain projects [11]. Recent advances in cryptography have even offered a
glimpse into generalizations of Merkle trees called accumulators, which enable O(1) proofs of
set-membership and state-less blockchain clients [14]. While there has been a wide diversity
of proposed and implemented tree designs, the AVL* is the only known tree to target both
the light client and state synchronization use cases found in blockchain systems.

7 Conclusion

State synchronization is a significant bottleneck for blockchain-based systems. In this paper,
we have presented a novel extension to Merkle-ized AVL+ trees that incorporates chunks. This
extension allows peers to download portions of the state in parallel, and validate each chunk
independently. We have also described an algorithm for deterministic tree reconstruction,
ensuring that all peers have the same state. We have extensively tested our algorithms in
a geo-distributed environment that show the benefits when reconstructing the state from
snapshots and gracefully coping with byzantine failures.
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A Appendix: Algorithms

Algorithm 1 Insert.

1: next_cid := 0 ▷ next chunk identifier
2: procedure insert(node, key, val) ▷ node is a pointer to root
3: return insert_aux(node, key, val, ϵ) ▷ return ptr to new node
4: procedure insert_aux(node, key, val, last_chunk)
5: if node = ϵ then ▷ if the tree is empty:
6: chunk := new_chunk(next_cid) ▷ first chunk
7: node := insert_in_chunk(chunk, key, val)
8: node→chunk := chunk ▷ node becomes chunk root
9: chunk→root :=node ▷ ditto

10: return node
11: if node→chunk ̸= ϵ then ▷ if node is the chunk root:
12: c := node→chunk ▷ let c be this chunk
13: if c →size = Cp then ▷ if c is a full chunk:
14: split_chunk(node) ▷ split node (i.e., c’s root)
15: else
16: c := last_chunk ▷ chunk root is a higher node
17: if node→is_leaf then ▷ if node is a leaf:
18: node_chunk := node→chunk ▷ keep its chunk, if any
19: node→chunk := ϵ ▷ node can’t be chunk root
20: if key < node→key then ▷ normal AVL left insert
21: left := insert_in_chunk(c, key, val)
22: node := new_inner(node→key, left, node, 1)
23: else ▷ normal AVL right insert
24: right := insert_in_chunk(c, key, val)
25: node := new_inner(key, node, right, 1)
26: node→right→inner_node := node ▷ leaf points to its inner
27: node→chunk := node_chunk ▷ inner gets kept chunk
28: if node→chunk ̸= ϵ then
29: c→root := node
30: else ▷ if node is an inner node:
31: if key < node→key then ▷ go down left or...
32: node→left := insert_aux(node→left, key, val, c)
33: else ▷ ...go down right...
34: node→right := insert_aux(node→right,key,val,c)
35: update_height(node) ▷ new height from children heights
36: return balance(node) ▷ if needed, rotate to keep balance
37: procedure update_height(node)
38: node→height := ▷ height gets max children height plus one
39: max(node→left→height,node→right→height) + 1
40: procedure balance(node)
41: h := node→left→height - node→right→height
42: if h < -1 then ▷ if right branch is bigger than left branch:
43: return rotate_rl(node) ▷ rotate [right] left
44: if h > 1 then ▷ if left branch is bigger than right branch:
45: return rotate_lr(node) ▷ rotate [left] right
46: return node
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Algorithm 2 Auxiliary procedures.

1: procedure new_inner(key, ln, rn, ht) ▷ create inner node
2: new_inode := allocate new inner node
3: new_inode→key := key
4: new_inode→left := ln
5: new_inode→right := rn
6: new_inode→height := ht
7: return new_inode
8: procedure new_chunk(cid) ▷ create chunk
9: new_c := allocate new chunk

10: new_c→cid := cid
11: new_c→size := 0
12: new_c→root := ϵ
13: return new_c
14: procedure insert_in_chunk(c, key, val) ▷ insert key,val
15: c→leaf[c→size].key := key
16: c→leaf[c→size].value := val
17: node_addr := pointer to c→leaf[c→size]
18: c→size := c→size + 1
19: return node_addr
20: procedure delete_from_chunk(c, key)
21: for node in c→leaf do
22: if node.key = key then ▷ found leaf
23: swap(node, c→leaf[c→size]) ▷ swap with the last
24: deallocate c→leaf[c→size] ▷ free last leaf
25: c→size := c→size - 1 ▷ decrement number of leaves
26: if c→size = 0 then ▷ chunk is empty
27: next_cid := next_cid - 1 ▷ decrement number of chunks
28: last_chunk := get_chunk(next_cid) ▷ get chunk with highest id
29: last_chunk→cid := c→cid ▷ replace chunk’s id
30: deallocate c ▷ free empty chunk
31: procedure split_chunk(node) ▷ split chunk rooted at node
32: new_c := new_chunk(node→chunk→cid)
33: DFS(node→left, node, new_c)
34: node→left→chunk := new_c
35: new_c→root := node→left ▷ assign left chunk
36: next_cid := next_cid + 1
37: new_c := new_chunk(next_cid)
38: DFS(node→right, node, new_c)
39: new_c→root := node→right ▷ assign right chunk
40: node→right→chunk := new_c
41: deallocate node→chunk
42: node→chunk := ϵ ▷ x is no longer chunk root
43: return
44: procedure DFS(ptr, pnt, c)
45: if ptr→is_leaf then
46: c→leaf[c→size].key := ptr→key
47: c→leaf[c→size].value := ptr→value
48: c→leaf[c→size].i_node := ptr→i_node
49: if ptr→key < pnt→key then ▷ assign parent
50: pnt→left := pointer to chunk→leaf[c→size]
51: else
52: pnt→right := pointer to chunk→leaf[c→size]
53: c→size := c→size + 1 ▷ one more leaf in chunk
54: else
55: DFS(ptr→left, ptr, c)
56: DFS(ptr→right, ptr, c)
57: return
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Algorithm 3 Delete.

1: procedure delete(node, key)
2: if node.key = key and node.is_leaf then ▷ only one node
3: delete_from_chunk(node.chunk, key)
4: return ϵ
5: return delete_aux(ϵ, node, key, ϵ) ▷ return ptr to new node
6: procedure delete_aux(node, key, last_chunk)
7: if node→chunk ̸= ϵ then ▷ if node is the chunk root:
8: c := node→chunk ▷ let c be this chunk
9: else

10: c := last_chunk ▷ chunk root is a higher node
11: if node→left→key = key and node→left→is_leaf then
12: if c = ϵ then ▷ chunk is necessarily on the left
13: c := node→left→chunk
14: delete_from_chunk(c, key)
15: promoted := node→right
16: if node→chunk ̸= ϵ then
17: promoted→chunk := node→chunk ▷ node is a chunk root
18: deallocate node ▷ no need for inner-node
19: return promoted
20: if node→key = key and node→right→is_leaf then
21: if c = ϵ then ▷ chunk is necessarily on the right
22: c := node→right→chunk
23: delete_from_chunk(c, key)
24: promoted := node→left
25: if node→chunk ̸= ϵ then
26: promoted→chunk := node→chunk ▷ node is a chunk root
27: deallocate node ▷ no need for inner-node
28: return promoted
29: if node→key = key and node→right→left→is_leaf then
30: if c = ϵ then ▷ chunk is lower
31: if node→right→chunk ̸= ϵ then ▷ chunk on right
32: c := node→right→chunk
33: node→rightNode→rightNode→chunk = c
34: node→chunk = ϵ
35: else
36: c := node→right→left→chunk ▷ chunk on the left
37: delete_from_chunk(c, key)
38: aux := node→right
39: node→key := aux→key
40: node→right := aux→right
41: deallocate aux
42: return node
43: if node→key = key then
44: n, p := delete_leaf(node→right, c)
45: node→key = n→key
46: node→right := p
47: deallocate n
48: else
49: if key < node→key then
50: node→left := delete_aux(node→left, key, c)
51: else
52: node→right := delete_aux(node→right, key, c)
53: update_height(node) ▷ new height from children heights
54: return balance(node) ▷ if needed, rotate to keep balance
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Algorithm 4 Rotations.

1: procedure rotate_rl(node) ▷ normal AVL [right] left rotation
2: rl_height := node→right→left→height
3: rr_height := node→right→right→height
4: if rl_height > rr_height then
5: node→right := rotate_r(node→right)
6: update_height(node)
7: return rotate_l(node)
8: procedure rotate_lr(node) ▷ normal AVL [left] right rotation
9: ll_height := node→left→left→height

10: lr_height := node→left→right→height
11: if ll_height < lr_height then
12: node→left := rotate_l(node→left)
13: update_height(node)
14: return rotate_r(node)
15: procedure rotate_l(node) ▷ node is the pivot
16: if node→chunk ̸= ϵ then ▷ if subtree rooted at node in a chunk:
17: node→chunk→root := node→right
18: node→right→chunk := node→chunk ▷ node’s right child...
19: node→chunk := ϵ ▷ ...becomes new chunk root
20: else ▷ else, rotation may involve two chunks
21: if node→right→chunk ̸= ϵ then ▷ if r child is chunk root:
22: split_chunk(node→right)
23: new_pivot := node→right ▷ rotation in three steps: one, ...
24: node→right := new_pivot→left ▷ ...two, and...
25: new_pivot→left := node ▷ ...three!
26: update_height(node) ▷ update moved node height
27: update_height(new_pivot) ▷ update moved node height
28: return new_pivot
29: procedure rotate_r(node) ▷ node is the pivot
30: if node→chunk ̸= ϵ then ▷ if subtree rooted at node in a chunk:
31: node→left→chunk := node→chunk ▷ node’s left child...
32: node→chunk := ϵ ▷ ...becomes new chunk root
33: else ▷ else, rotation may involve two chunks
34: if node→left→chunk ̸= ϵ then ▷ if l child is chunk root:
35: split_chunk(node→left)
36: new_pivot := node→left ▷ rotation in three steps: one, ...
37: node→left := new_pivot→right ▷ ...two, and...
38: new_pivot→right := node ▷ ...three!
39: update_height(node) ▷ update moved node height
40: update_height(new_pivot) ▷ update moved node height
41: return new_pivot
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