
Consensus for Non-Volatile Main Memory
Huynh Tu Dang∗, Jaco Hofmann†, Yang Liu‡, Marjan Radi‡, Dejan Vucinic‡, Fernando Pedone∗, Robert Soulé∗

∗Università della Svizzera italiana
{danghu, fernando.pedone, robert.soule}@usi.ch

†Technische Universität Darmstadt
hofmann@esa.tu-darmstadt.de
‡Western Digital Research

{yang.liu0, marjan.radi, dejan.vucinic}@wdc.com

Abstract—Traditionally, computer storage has been separated
into a hierarchy based on response time, volatility, and cost of
media. This tiering is undergoing a significant upheaval as a new
breed of memory technologies, termed Storage Class Memories
(SCM), now make it feasible to replace several tiers of the
hierarchy with a single, cost-effective, uniform type of mem-
ory/storage. To make large-scale SCM deployments practical,
however, memory system designers will first need to solve the
problem of how to guard against unavoidable storage wear-
out and failures—problems traditionally absent from “main
memory” and handled by software at leisurely timescales in the
domain of storage.

In this paper, we propose a novel approach to providing
fault tolerance in SCM-based main memory. Our key insight
is to treat memory as a distributed storage system and rely on
data replication and a consensus protocol to keep the replicas
consistent. Separate memory instances store replicated copies
of the data, and we use a programmable network interconnect
to provide fast consensus between the memory instances. Our
initial experiments using software memory controller emulation
demonstrate reasonable overhead over local memory reads and
show great promise as scalable main memory.

Index Terms—storage class memory, consensus, in-network
computing

I. INTRODUCTION

Computer memory and storage are organized in a hierarchy
with tiers distinguished by response time, volatility, and cost.
At the top of the hierarchy are SRAM caches and DRAM main
memory, which have low latency, unlimited write endurance,
and fine granularity of access. They are, however, power-
hungry, expensive and volatile, necessitating further tiering to
solid-state NAND flash storage (SSD), and finally to spinning
disk or tape magnetic storage at the bottom of the hierarchy.
These terminal tiers of non-volatile and durable bit storage
have much higher access latency and granularity than volatile
memory and, in the case of NAND flash, finite write endurance
limiting the total amount of data that can be written before
device replacement is required.

This traditional organization is being shaken up by the
advent of Storage Class Memory (SCM): several emerging
memory technologies, such as Phase-Change Memory (PCM)
[1], Resistive RAM (ReRAM) [2], and Spin-Torque Mag-
netic RAM (STT-MRAM) [3] are non-volatile, offer byte-
addressability, and response times not much slower than
DRAM, but could cost significantly less on account of simpler

memory cell architecture resulting in denser packing. Recent
breakthroughs in selector element physics [4] enabled larger
memory cell arrays which result in better utilization of die
area, leading to further cost advantages over DRAM. At the
time of writing one, such product based on cross-point PCM
(Intel Optane® M.2) is about 6.7x cheaper per gigabyte at
retail as a result of acute DRAM shortage. Consequently,
in some scenarios it is feasible to replace several tiers of
the traditional memory/storage hierarchy with a single, cost-
effective, uniform type of memory that also serves as the
terminal tier of non-volatile and durable data storage.

While this sounds appealing from the architectural simplic-
ity and elegance standpoint, there is a fly in the ointment. All
known SCM technologies involve movement of atoms, and so
have unavoidable wear-out mechanisms resulting in limited
write (and sometimes read) endurance of devices. This places
severe practical limits on scale-out size of storage systems
built on top of these technologies, and even the practicality of
single systems where DRAM is replaced with cheaper SCM
main memory that is, alas, guaranteed to fail after brief use.

What this means in practice is that to enable significant
displacement of DRAM in prevailing systems architectures,
we must translate a variety of techniques traditionally used
for slow durable storage (e.g., RAID for disks or SSDs) to
work at timescales suitable for main memory. This strategy
would enable us to satisfy data replication and consistency
requirements that are taken for granted in the current many-
tiered architectures.

Memory faults are not unique to SCM, even though the
details of how the errors occur differ depending on the storage
medium. A wide spectrum of approaches are used to solve the
problem. For main memory, many systems simply ignore the
issue, and treat the memory as if there were no errors. This
can result in crashes—any error detected in main memory or
caches is handled by simply shutting down the entire system.
In fact, memory errors are one of the largest causes of machine
failures [5]. Clearly, this approach doesn’t scale to larger main
memories for obvious reasons.

Contemporary supercomputers, where memory Mean Time
Between Failures (MTBF) is measured in minutes on account
of the sheer number of independent components that can fail,
deal with main memory faults by “checkpointing”, i.e. peri-
odically storing a copy of all memory on disks. Sophisticated

management is required to keep the overhead of checkpointing
reasonable [6], and cost is not to be spoken of.

Disk and NAND flash SSD storage often use RAID. Unfor-
tunately, RAID does not work well at scale since it depends
on a centralized controller, the failure of which renders the
data unavailable and possibly corrupted.

In this paper we propose a new approach to providing fault-
tolerance in non-volatile main memory based on SCM. Our
key insight is to treat memory as a distributed storage system,
and rely on data replication with a consensus protocol to keep
the replicas consistent through failures. Although consensus
protocols have been historically considered a performance bot-
tleneck, several recent projects have demonstrated a promising
new approach to achieving high-performance consensus [7]–
[12]. These systems leverage programmable network hard-
ware [13]–[15] to execute consensus logic directly in the
network forwarding plane, achieving tremendous reductions
in latency and increases in throughput.

Our approach uses replicated SCM instances that are kept
consistent by a programmable interconnect running a gener-
alization of a protocol by Attiya, Bar-Noy, and Dolev [16].
We refer to this as the ABD protocol. The ABD protocol
is well suited to the task for several reasons. First, the
protocol ensures linearizable read/write access to memory,
while tolerating failures. Second, ABD is simpler than more
general protocols, such as Paxos [8], allowing for an efficient,
in-network implementation. Third, ABD only requires that the
switch keeps soft state during the protocol exchange, reducing
the reliance on scarce switch resources (e.g., SRAM, TCAM).

Overall, this paper makes the following contributions:
• We identify constraints and requirements for an in-

network implementation of a consensus protocol for
storage class memory.

• We describe an implementation of a memory controller
and network adaptation of the ABD protocol.

• We provide initial evidence of the feasibility and benefits
of using in-network consensus to keep replicated PCM
consistent.

The rest of this paper is organized as follows. We first
provide background on phase-change memory and the ABD
protocol (§II). We then summarize how the protocol maps
to network hardware abstractions (§III). Next, we present an
evaluation on programmable ASICs and FPGAs (§V). Related
work is discussed in (§VI). Finally, we conclude in (§VII).

II. BACKGROUND

Before discussing the details of our system design, we first
briefly present background on both a leading SCM technology
and the ABD protocol.

A. Phase-Change Memory

Of the many SCM technologies explored in research lab-
oratories, Phase-Change Memory [17] has been the most
successful in the marketplace to date, at first in power-
constrained mobile devices [18] and more recently in enter-
prise storage [19]. The memory element relies on the peculiar

Ui

S1

SN

Sj

“Send me
your timestamps”

ts1

tsj

tsN

(v,t) “OK”

Ui chooses t=pM+i,
such that t is greater

than any ts

(a) Write operation.

Ui

S1

SN

Sj

“Reading”
(v1,ts1)

(vj,tsj)

(vN,tsN)

Ui chooses (v,t)=(vj,tj)
for max tj

(v,t) “OK”

(b) Read operation.

Fig. 1: The ABD protocol.

phase diagram of so-called amorphous semiconductors, most
commonly alloys of Germanium, Antimony and Telluride
(GST), which exhibit two distinct solid phases. If the material
is heated and cooled quickly, it stays in an amorphous solid
state with high resistivity and good optical transparency. If
instead the material is heated just below the critical melting
temperature, it crystallizes into an opaque solid state of low
resistivity.

GST materials were first explored in late 1960s [20] and
found widespread use in optical storage media (e.g., Blu-
Ray®) but the technology to make them commercially vi-
able as solid-state memories has only recently matured (e.g.,
Optane® and 3D XPoint® from Intel and Micron) [21]. The
breakthrough involved the development of a suitable selector
device [4], [22], [23] permitting larger arrays of memory cells
and better die utilization, which resulted in reduced cost and
increased profitability of the technology.

PCM has several attractive qualities as a memory tech-
nology. First, it has very fast response time, practically on
the order of a hundred nanoseconds but reaching even below
one nanosecond under laboratory conditions [24], well into
DRAM’s domain. To put that in context, read latency of
modern high-capacity NAND flash is on the order of 50-70
microseconds, making SSD response times in the vicinity of
100 microseconds after error correction and protocol overhead.
Second, unlike NAND flash, PCM is byte-addressable on both
reads and writes, so requires no erase block management
and garbage collection which cause poor latency tails [25].
Third, PCM is naturally non-volatile due to the properties of
the GST material. Other forms of non-volatile memory with
comparable response times, such as battery-backed DRAM,
require constant power with its associated cost and logistical
complexity. Fourth, PCM has high write endurance of more
than a million cycles and long retention time of many years.
Finally, PCM is inherently less expensive to produce than
DRAM at lithographic parity as a result of its denser packing
and simpler memory cell structure.

B. ABD Protocol

Attiya, Bar-Noy, and Dolev described a protocol for im-
plementing an atomic register in an asynchronous message-
passing system [16]. This protocol is well-suited as a building
block for providing fault-tolerance for storage class memory,
because the protocol is optimized for read and write requests—
i.e., the operations that we would expect from memory. It is
more efficient in terms of communication steps than alternative
protocols, such as Paxos [26] and Chain Replication [27],
which allow for arbitrary operations (e.g., increment).

The protocol assumes that there are user processes that have
access to message channels and would like to execute read
and write operations as if they had some shared memory at
their disposal (i.e., emulating shared memory with message
passing). Although the original paper assumes a single writer,
the protocol can be easily generalized for multiple writers and
multiple readers. We refer to the generalized protocol, which
we describe below, as the ABD protocol.

We first describe the general formulation of the protocol,
before discussing the modifications that we need to make for
a switch-based deployment in Section III.

The ABD protocol assumes there are M user processes, and
N server processes. Every user process can send a message
to every server process, and vice-versa. Each user process
Ui ∈ {U1, . . . , UM} chooses a unique timestamp of the form
t = pM + i, where p is a positive integer. For example, if
M = 32, U1 chooses timestamps from the set {1, 33, 65, . . .}.
This naming convention allows us to easily identify which user
process issued a request. Both read and write requests require
two phases, as illustrated in Figure 1.

To write a value, v, the user process, Ui, sends a message to
all server processes, requesting their timestamp. Each server
process, Sj ∈ {S1, . . . , SN} responds with their current
timestamp, tsj . Upon receiving a majority of responses, Ui

chooses a new timestamp, t, of the form t = pM+i, such that t
is greater than its previous t and any tsj it received. Ui sends
the pair (v, t) to all server processes. The server processes
compare t to their local timestamp, tsk. If t is greater than
tsk, the server processes update their value and timestamp to
v and t, and return an acknowledgement to Ui.

To perform a read, the user process, Ui, sends a read
message to all server processes. Each server process, Sj ∈
{S1 . . . SN} responds with their current value and timestamp,
(vj , tsj). Upon receiving a majority of responses, Ui chooses
(v, j) = (vj , tsj) for the maximum value of tsj . Then,
like the write operation, Ui then sends the pair (v, t) to all
server processes. The server processes compare t to their local
timestamp, tsk. If t is greater than tsk, the server processes
update their value and timestamp to v and t, and return an
acknowledgement to Ui.

III. DESIGN

Figure 2 illustrates the high-level design of our system.
Overall, there are three main components. Clients, using a
custom memory controller, issue read and write requests. A set
of memory instances service those requests. The stored data is

Clients SCM

Programmable
Switch

Fig. 2: Clients issue memory read/write requests to off-device
storage-class memory instances. A programmable switch runs
ABD protocol to keep replicas consistent.

replicated across several memory instances. A programmable
switch running a modified version of the ABD protocol
interposes on all requests, and ensures that the replicas stay
consistent.

Implementing the ABD functionality as part of the switch-
ing fabric allows multiple replicas of data to be kept consistent,
while satisfying the stringent performance demands on mem-
ory accesses. However, implementing this logic on any ASIC
(including reconfigurable ones) imposes constraints due to the
physical nature of the hardware. These constraints include:

• Memory. The amount of memory available in each stage
for stateful operations or match actions is limited [28].

• Primitives. Each stage of the pipeline can only execute a
single ALU instruction per field.

• State between stages. There is a limited amount of Packet
Header Vector (PHV) that pass state between stages.

• Depth of pipeline. There is a fixed number of match units.
The goal of our design is to provide efficient implementation
of the ABD algorithm that respects the physical limitations
of the hardware. In creating our design, we necessarily make
some assumptions about the deployment. To make these as-
sumptions explicit, we list them below:

• We do not want to extend the memory controller with
logic for replication. It should only be aware of read/write
requests. This is to simplify integration with existing
coherence buses and CPU cache controllers and avoid re-
engineering everything starting from the CPU pipelines.

• We assume that cache lines are 64 bytes. Since the values
in the ABD protocol are cache lines, the size of the values
in the protocol are also 64 bytes.

• We assume that switches do not fail. In reality, any device
may fail, and a true fault-tolerant system would account
for those failures. However, accounting for switch failure
would make the protocol significantly more complex. Be-
cause the mean time to failure for memory is significantly
shorter than the mean time to failure for a switch, we start
with the simplified version.

• We assume that clients are directly connected to the
switch, with one client per port. This constrains the
deployment topology, and this constraint may not hold
in practice. This assumption could be relaxed given an
appropriate tunneling protocols between clients and the
switch. However, again, as a first step, we make this
assumption to simplify the protocol.

• We assume that the system will need to support ∼1000
CPUs, each issuing about 10 concurrent requests. So, the
load that the switch needs to support will be about 10K
concurrent requests at a time.

Below, we describe the design of the memory controller and
switch logic in more detail.

A. Memory Controller
The system needs to issue ABD reads and writes transpar-

ently without modifying user applications. To achieve this, we
provide a pair of special device drivers (client and server)
to handle page faults. When an application on the client
calls malloc, instead of going to the standard system call
implementation of the library, our system intercepts the library
call, and invokes mmap on the character device we create.
The client device driver then allocates the requested size of
memory from the kernel driver on the remote server, and
returns the address back to the client driver.

The client device driver maintains a local buffer with
configurable size (set to page size of 4KB by default) to serve
the page faults in the first place. When there is a miss in
the local buffer, the driver will issue ABD accesses to fetch
the page remotely. If the local buffer is dirty at the miss, the
content of the buffer will be written to the remote server first,
before the requested content can be retrieved from the server
and updated to the local buffer.

The servers and the clients communicate with a remote
procedure call (RPC) mechanism inside the drivers, so that
the remote servers know how to handle malloc, free, and
ordinary reads and writes issued by the clients.

B. Switch Logic
Our deployment model and assumptions necessitate that we

modify the original protocol described in Section II-B. The
original protocol is designed to access a single register. We
need to generalize the protocol to support multiple registers,
each corresponding to a different cache line. Moreover, be-
cause we don’t want the memory controller to be aware of the
replication (i.e., it should simply issue read and write requests),
the switch needs to maintain the timestamps that are stored at
the client in the original protocol.

The amount of state that needs to be stored on the switch
is dependent on a few different variables. First, the size of the
address space and the size of the cache lines determine the
number of cache lines that need to be stored:

of cache lines =
size of address space

size of cache line
(1)

Our implementation used a cache line of 64 bytes, and an
address space for 4GB of data.

P4 offers a programming abstraction of “registers”, which
are an array of cells. The size of each cell is bound by the
width of the ALU on the underlying hardware. Since the size
of the cell is less than the size of the cache line, the cache line
needs to be split across multiple register entries. The number
of register cells per cache line is determined by the following
equation:

cells per cache line =
size of cache line

size of cell
(2)

Ideally, we would store one timestamp per cache line per
port. However, if the address space is too big, then one can
keep a timestamp per block of cache lines. Overall, the number
of cache lines and number of timestamps must be less than
the total memory available:

((# of cache lines× entries per cache line)
+ # of timestamps)× (size of cell)

≤ (memory per stage)× (# of stages)
(3)

Moreover, the switch code uses an additional 4 registers,
each with (# of timestamps) cells of size 8-bits for quorum
checking in each phase of read/write requests; including
timestamp and write quorums in a write request; and read
and write-back quorums in a read request.

The switch also has a table for forwarding packets. For-
warding is done at layer 2. ABD packets should not need
an IP header, although our prototype implementation still
uses them, as they are required by the server NICs. To send
messages to a set of memory replicas, our implementation uses
Ethernet multicast. We assign one multicast group to each set
of replicas; when sending messages to the replicas, the switch
code sets the destination MAC address to be the multicast
group identifier.

C. Failure Assumptions

In contrast to Paxos [26], which depends on the elecion
of a non-faulty leader for progress, the ABD protocol only
depends on the availability of a majority of participants. The
ABD protocol assumes that the failure of a participant does not
prevent connectivity between other participants, which can be
violated in the event of a switch failure. To cope with switch
failures, there would need to be a redundant component, and
the protocol would need to be extended to include a notion of
sending to the primary or the backup. For now, our prototype
assumes that switches do not fail. Packet reordering is handled
naturally by the ABD protocol, which ensures atomicity (i.e.,
serializability). To cope with packet loss, we rely on time-outs.
If a client does not receive a response after the time limit, it
must resend the request.

IV. IMPLEMENTATION

The switch logic for the client side of the ABD protocol
was implemented with 858 lines of P414 code, and compiled
using Barefoot Capilano to run on Barefoot Network’s Tofino
ASIC [14]. To simulate the memory endpoints, we used

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

Latency [µs]

C
D

F

Type
local
replicated

Fig. 3: Latency CDF reading a cache line from local memory
and from the replicated remote memories.

Xilinx NetFPGA SUME FPGAs. The server side code of the
ABD protocol was written with 208 lines of P416 code, and
compiled using P4-NetFPGA [29] to run on the NetFPGA
SUME boards.

The memory controller emulator is implemented as a Linux
character device driver. It maintains the necessary data struc-
tures, and handles page faults by sending and receiving packets
to and from the servers. When incoming packets arrive, the
driver handles the actual memory management and content
updates, and returns the requested content back to the clients
(i.e., applications). The driver is written with 1157 lines of C
code.

V. EVALUATION

Our evaluation quantifies the overhead for page fault han-
dling via calls to remote replicated memory versus local
memory.

For the experimental setup, we used a 32-port ToR switch
with Barefoot Networks Tofino ASIC [14]. The switch, which
ran the ABD protocol, was configured to run at 10G per
port. To simulate the memory endpoints, we used three Xilinx
NetFPGA SUME FPGAs, hosted in three Supermicro 6018U-
TRTP+ servers. To issue read and write requests, we used the
kernel client running on a separate Supermicro server. The
servers have dual-socket Intel Xeon E5-2603 CPUs, with a
total of 12 cores running at 1.6GHz, 16GB of 1600MHz DDR4
memory and one Intel 82599 10Gbps NIC. All connections
used 10G SFP+ copper cables. The servers were running
Ubuntu 16.04 with Linux kernel version 4.10.0.

For our preliminary experiments, we did not yet implement
a true memory controller in hardware. Instead, we emulate
the behavior using an application that calls mmap to map a
file into memory, and then issues write requests to addresses
at different pages. We recorded the time before and after the
write requests to measure the latency for each request. We
repeated the measurement 100K times under two different con-
figurations: one with unmodified Linux network page handler

servicing the requests locally, and one with the calls to remote,
replicated memories.

The results are shown in Figure 3. The median latency for
fetching a cache line from local memory is 3 µs while it
takes 18 µs for fetching a page from the remote replicated
memories. The latency is pretty stable around 18 µs. We
note that these measurements include full L2 parsing. A
custom protocol could further reduce the latency. These results
are encouraging. The performance is significantly faster than
traditional replicated storage systems and shows great promise
for use with scalable main memory.

VI. RELATED WORK

This paper describes an in-network implementation of the
ABD protocol to provide consensus for Storage Class Mem-
ories. As such, there is related work on different consensus
protocols, in-network computing, and low-latency network
hardware used for storage.

Consensus Protocols: The ABD protocol differs from
both Paxos [26] and Chain Replication [27] in several respects.
First, the ABD protocol is optimized for read and write re-
quests, as opposed to arbitrary operations (e.g., increment). As
a result, it is more efficient that Paxos and Chain Replication
in terms of communication steps. Chain Replication assumes
that failures are detected reliably, while Paxos and ABD do
not. Paxos depends on the elecion of a non-faulty leader, or
otherwise the protocol does not make progress. Chain Repli-
cation relies on a trusted entity outside of the chain to manage
group membership, and that entity is usually implemented as
a replicated service using Paxos. Thus, Chain Replication also
depends on a non-faulty leader. In contrast, with ABD, as long
as there is a majority of non-faulty processes, an operation can
finish.

In-network Computing: Several recent projects [9]–[12]
have leveraged the emerging trend of programmable net-
works hardware [13]–[15] to optimize consensus. From a high
level, there are two approaches to network-accelerated con-
sensus. One group of systems, such as Speculative Paxos [9]
and NoPaxos [11], use programmable networks to enforce
a particular behavior (e.g., increased likelihood of in-order
delivery), which means that the consensus protocol makes
strong assumptions about the network. If these assumptions
are violated, then the systems must fall back to traditional
consensus. The second group, including Paxos Made Switch-
y [8], Consensus in a Box [10], and NetChain [12] implement
consensus protocol logic directly in the programmable hard-
ware. The work described in this paper falls into the latter
category.

In a separate, but related line of research, Eris [30] and
NOCC [31] use programmable switches to accelerate transac-
tion processing. However, they have very different execution
models. The Eris model is based on prior work on independent
transactions [32], [33], in which transactions are ordered first,
and then executed. In contrast, with the NOCC model, clients
pre-execute transactions locally, and then submit the result for
validation (i.e., ordering).

Low-latency Network Hardware: A variety of global
shared memory systems have been built on alternative low-
latency network architectures which are more amenable to
embedded use. For instance, the FaRM system [34] reports
31 µs latency for a distributed key-value store using RDMA
protocol over Inifiniband transport. Such systems differ from
the one reported here in two crucial aspects: first, they do not
use a consensus system for hardware replication of remote
distributed memory; and second, they rely on RDMA for
software management of local copies. The essence of our
solution is to pave the path to hardware-only management
of local working copies of data in DRAM or SRAM caches,
and so erase the ”local vs. remote” dichotomy imposed on
the system designer by the RDMA paradigm. Our current
choice of Ethernet transport was dictated by the commercial
availability of programmable dataplane switches, and does
not preclude using programmable Infiniband switches in the
future should they become available, with the commensurate
performance gains from reliable in-order transport.

VII. CONCLUSION

Overall, Storage Class Memory has incredible potential to
disrupt the traditional memory hierarchy. Using in-network
implementations of consensus helps solve a critical challenge
for adopting this new technology. Our initial experiments using
software memory controller emulation already operate at time
scales orders of magnitude faster than traditional replicated
storage systems and show great promise as scalable main
memory.

ACKNOWLEDGMENTS

We wish to thank our shepherd, Fernando Ramos, and
the anonymous reviewers for the constructive comments.
This work was supported in part by SNF grants number
200021 166132 and 407540 167173, and an award from
Western Digital Corporation.

REFERENCES

[1] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajen-
dran, M. Asheghi, and K. E. Goodson, “Phase Change Memory,” Proc.
IEEE, vol. 98, no. 12, pp. 2201–2227, Dec 2010.

[2] H. Akinaga and H. Shima, “Resistive Random Access Memory
(ReRAM) Based on Metal Oxides,” Proc. IEEE, vol. 98, no. 12, pp.
2237–2251, Dec 2010.

[3] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph,
“Current-Driven Magnetization Reversal and Spin-Wave Excitations in
Co /Cu /Co Pillars,” Phys. Rev. Lett., vol. 84, pp. 3149–3152, Apr 2000.

[4] G. W. Burr, R. S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi,
and H. Hwang, “Access Devices for 3D Crosspoint Memory,” J. Vac.
Sci. Technol. B, vol. 32, no. 4, Jul 2014, art. ID 040802.

[5] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the Wild:
A Large-scale Field Study,” PER, vol. 37, no. 1, pp. 193–204, Jun. 2009.

[6] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System,” in ACM/IEEE HPC, Nov 2010, pp. 1–11.

[7] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “NetPaxos:
Consensus at Network Speed,” in ACM SOSR. ACM, Jun. 2015, pp.
1–7.

[8] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos Made Switch-
y,” ACM CCR, vol. 46, no. 2, pp. 18–24, May 2016.

[9] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy,
“Designing Distributed Systems Using Approximate Synchrony in Data
Center Networks,” in USENIX NSDI, May 2015, pp. 43–57.

[10] Z. István, D. Sidler, G. Alonso, and M. Vukolic, “Consensus in a Box:
Inexpensive Coordination in Hardware,” in USENIX NSDI, Mar. 2016,
pp. 425–438.

[11] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports,
“Just Say No to Paxos Overhead: Replacing Consensus with Network
Ordering,” in USENIX OSDI, Nov. 2016, pp. 467–483.

[12] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“NetChain: Scale-Free Sub-RTT Coordination,” in USENIX NSDI, Apr.
2018, pp. 35–49.

[13] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling Packet
Programs to Reconfigurable Switches,” in USENIX NSDI, May 2015,
pp. 103–115.

[14] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hardware for SDN,” ACM
CCR, vol. 43, no. 4, pp. 99–110, Aug. 2013.

[15] “XPliant Ethernet Switch Product Family,” www.cavium.com/XPliant-
Ethernet-Switch-Product-Family.html, 2014.

[16] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing Memory Robustly in
Message-passing Systems,” J. ACM, vol. 42, no. 1, pp. 124–142, Jan.
1995.

[17] M. Wuttig and N. Yamada, “Phase-Change Materials for Rewriteable
Data Storage,” Nature Mater., vol. 6, no. 11, p. 824, 2007.

[18] G. Servalli, “A 45nm Generation Phase Change Memory Technology,”
in IEEE IEDM, Dec. 2009, pp. 1–4.

[19] A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe, S. Dong,
K. Hazelwood, C. Petersen, A. Cidon, and S. Katti, “Reducing DRAM
Footprint with NVM in Facebook,” in Eurosys, Apr. 2018, pp. 1–13.

[20] S. R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disor-
dered Structures,” Phys. Rev. Lett., vol. 21, no. 20, p. 1450, Nov. 1968.

[21] D. Kau, S. Tang, I. V. Karpov, R. Dodge, B. Klehn, J. A. Kalb, J. Strand,
A. Diaz, N. Leung, J. Wu et al., “A Stackable Cross Point Phase Change
Memory,” in IEEE IEDM, Dec. 2009, pp. 1–4.

[22] F. Pellizzer and A. Pirovano, “Phase Change Memory with Ovonic
Threshold Switch,” U.S Patent 7 677 830, Mar. 30, 2010.

[23] R. R. Shanks, “Ovonic Threshold Switching Characteristics,” J. Non-
Cryst. Solids, vol. 2, pp. 504–514, Jan. 1970.

[24] D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, and
S. Elliott, “Breaking The Speed Limits of Phase-Change Memory,”
Science, vol. 336, no. 6088, pp. 1566–1569, Nov. 2012.

[25] C. Sun, D. Le Moal, Q. Wang, R. Mateescu, F. Blagojevic, M. Lueker-
Boden, C. Guyot, Z. Bandic, and D. Vucinic, “Latency Tails of Byte-
Addressable Non-Volatile Memories in Systems,” in IMW. IEEE, May
2017, pp. 1–4.

[26] L. Lamport, “The Part-time Parliament,” ACM TOCS, vol. 16, no. 2, pp.
133–169, May 1998.

[27] R. van Renesse and F. B. Schneider, “Chain Replication for Supporting
High Throughput and Availability,” in USENIX OSDI, Dec. 2004, pp.
7–7.

[28] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krishnamurthy,
J. Nelson, and S. Peter, “Evaluating the Power of Flexible Packet
Processing for Network Resource Allocation,” in USENIX NSDI, Mar.
2017, pp. 67–82.

[29] “P4-NetFPGA,” https://github.com/NetFPGA/P4-NetFPGA-public,
2017.

[30] J. Li, E. Michael, and D. R. Ports, “Eris: Coordination-Free Consistent
Transactions Using In-Network Concurrency Control,” in ACM SOSP,
Oct. 2017, pp. 104–120.

[31] T. Jepsen, L. P. de Sousa, M. Moshref, F. Pedone, and R. Soulé, “Infinite
Resources for Optimistic Concurrency Control,” in NetCompute, Aug.
2018.

[32] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland, “The End of an Architectural Era: (It’s Time for a
Complete Rewrite),” in VLDB, Sep. 2007, pp. 1150–1160.

[33] J. Cowling and B. Liskov, “Granola: Low-overhead Distributed Trans-
action Coordination,” in USENIX ATC, Jun. 2012, pp. 223–235.

[34] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “FaRM: Fast
Remote Memory,” in USENIX NSDI, Apr. 2014, pp. 401–414.

