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Abstract—This work introduces MCBeth, a quantum program-
ming language that bridges the gap between near-term and non-
near-term languages. MCBeth allows users to directly program
and simulate measurement-based computation by building upon
the measurement calculus. While MCBeth programs are meant
to be executed directly on hardware, to take advantage of current
machines we also provide a compiler to gate-based instruction
sets. We argue that MCBeth is more natural to use than common
low-level languages, which are based upon the quantum circuit
model, but still easily runnable in practice.

Index Terms—quantum computing, programming languages,
measurement-based quantum computing, one-way quantum com-
puter, distributed computing

I. INTRODUCTION

Existing languages for quantum computing fall into two
categories: NISQ or non-NISQ. NISQ languages, such as
OpenQASM [1], are languages aimed to interface with Noisy
Intermediate-Scale Quantum technology, i.e., near-term hard-
ware which supports fifty to several hundred qubits but which
may also be prone to error [2]. They are analogous to assembly
languages, in that they are low-level, and they describe quan-
tum circuits, which can be verbose and difficult to understand.
However, NISQ languages are runnable in practice. In contrast,
non-NISQ languages, such as Q# [3] and Silq [4], describe an
algorithm at a high-level and are easier to read and write;
these languages, on the other hand, tend to not be runnable
on existing devices because, e.g., there is no way to compile
them to a runnable language or because the compilation is
not optimized for the current hardware. An ideal quantum
language would bridge the gap between NISQ and non-NISQ;
it would be easy to read and write, but also easily runnable
on existing devices.

Moreover, while there exists a plethora of software tools
for dealing with gate-based models of quantum computation
such as quantum circuits, few software tools currently exist for
dealing with alternative models such as measurement-based
quantum computing (MBQC) models – despite promising
experimental results of running measurement-based algorithms
on real quantum computers [5]. At the moment, most tools
available for effectively working with measurement-based
quantum algorithms are primarily theoretical frameworks, like
the measurement calculus [6]. The measurement calculus (§II)

has proven to be a powerful tool for reasoning about MBQC
algorithms, but there are currently few practical ways to create
and simulate programs written in this language.

In this paper, we present MCBeth, a programming language
and framework based on the measurement calculus which
allows one to easily read, write, and simulate quantum pro-
grams (§III, §IV). We argue that by basing MCBeth on MBQC
models, it avoids pitfalls present in the quantum circuit model
with respect to ease of use, while retaining the ability to run
on real devices.

We provide a library containing tools for creating MCBeth
programs via primitive instructions and non-primitive instruc-
tions which can be compiled down to the primitives. We
provide utility functions for converting the primitive measure-
ment calculus instructions to a standard form and checking
program validity. We provide functions for the weak and
strong simulation of MCBeth programs and implementations
of several quantum algorithms written in MCBeth. Addition-
ally, we provide a translation framework from MCBeth to
other quantum programming frameworks such as OpenQASM
and Cirq [7], giving programmers the ability to test their
programs on popular quantum devices. We provide functions
for constructing distributed MCBeth programs, converting
non-distributed MCBeth programs into a distributed form,
and provide data on the simulation runtime of different size
systems (§V, §VI).

II. PRELIMINARIES

We assume the reader is familiar with the basics of quantum
computing and will refer to a standard text, such as [8], as
required. Here we discuss the basics of MBQC.

A. Measurement-Based Quantum Computing

MBQC is a promising alternative to the standard circuit
model for quantum computation. One important model of
MBQC is the cluster state model [9]. The cluster state model
involves: (1) the creation of a collection of entangled qubits
called a cluster state, (2) the measurement of qubits in different
bases, and, in some variations, (3) the application of X and
Z corrections using the Pauli operators. Cluster states are
typically obtained by applying CZ gates between qubits to



(a) Traditional Circuit

q0 q1 q2

J(α)(q0, q1); J(β)(q1, q2) where α, β = 0

(b) Cluster and Commands

|q2⟩ = |q0⟩ Rz(−α) Rx(−β)

|q2⟩ = Rx(0)Rz(0) |q0⟩ = |q0⟩

(c) Cluster Effect on Original Quantum State

Fig. 1: Teleportation

entangle them. Because the entanglement of the cluster only
decreases in the second stage, the cluster state model is often
referred to as one-way quantum computation. The basis of
each measurement and whether corrections are performed
may be dependent on the outcome of earlier measurements
performed during the computation. In measurement-based
computation, this ordering of entanglement, measurement, and
correction operations is enforced.

The measurement calculus by Danos et al. [6] provides a
clear syntax and semantics to cluster state operations/instruc-
tions, also known in the measurement calculus as commands,
along with rewriting rules for simplifying sequences of instruc-
tions. The measurement calculus, like the cluster state model,
is universal for quantum computation. Although there has been
much work on the measurement calculus, it has lacked an
implementation. MCBeth aims to rectify this with a practical
and usable language for the measurement calculus.

III. MCBETH BY EXAMPLE: TELEPORTATION

We now introduce MCBeth and the measurement calculus
by walking through the implementation of the quantum tele-
portation algorithm. To highlight how MCBeth differs from
the quantum circuit model, we provide implementations of
teleportation using both the gate-based model and MCBeth.

Teleportation is fundamental to any form of distributed
quantum computing and quantum networking. Teleportation
is important because it provides a way to transfer a quantum
state between two qubits without using a quantum channel
or violating the no-cloning theorem. The no-cloning theorem
states that it’s not possible to copy a quantum state from one
qubit to another. Teleportation, however, allows us to at least
transfer the quantum state to another qubit via entanglement
and sending of information over classical channels.

Gate-based Teleportation. Figure 1a depicts the traditional
quantum circuit for this process. The first four gates – the
two Hadamard and CNOT gates – entangle the qubits together.
Measurement is then performed on the first and second qubits.
Finally, X and Z gates are applied to the last qubit based on
the measurement outcomes of the first and second qubits. One
may not find it clear at first glance, however, how the qubits of
this circuit actually affect one another and why the state ends
up being transferred from the first qubit to the last qubit. The
measurement calculus, on the other hand, does help us reason
about how the qubits interact with each other and about the
overall computation in general.

Using Clusters to Construct Measurement-based Programs.
We can start by approaching the problem diagrammatically.
We want to find a cluster that will render the desired effect
on the input qubits’ states during computation; in this case, we
wish for our initial qubit’s state to be transferred identically to
some other qubit. We will ultimately use the cluster depicted
in Figure 1b. A cluster consists of qubits arranged in a grid
so that there are rows and columns of qubits; for example,
Figure 1b consists of one row and three columns. Each qubit
may be considered a node in a graph and then entanglement
between qubits is represented via edges.

Each distinct cluster has an associated program and can
be interpreted as performing a computation starting on the
leftmost qubits in a cluster, i.e., the leftmost column, and
propagating the computation through the cluster until the final
state is remaining in the rightmost qubits of the cluster. This
relationship between the leftmost initial qubits and rightmost
final qubits can be mapped to a quantum circuit acting on n
qubits, where n is the number of rows in our cluster. Thus,
reading the graph of a cluster from left to right, nodes in the
first column represent input qubits and nodes in the last column
represent output qubits. We display several example clusters
with their corresponding circuits and commands collectively
in the online appendix.1

Edges between nodes in different columns represent the
application of the command J(α)(qi, qj) in the measurement
calculus. The J(α)(qi, qj) command is a non-primitive com-
mand which compiles down to several lower-level primitive
commands; specifically, it entangles qubits qi and qj , measures
qi, and then corrects qj as necessary, where qi is the left
qubit, qj is the right qubit, and α ∈ [0, 2π] is the angle
of measurement. The angle of measurement determines what
basis we measure qi in. We explain this further below.

Edges between nodes in the same column represent the
application of the CZ(qi, qj) command, which just entangles
qi and qj – as seen in Figure 3b.

We can also concatenate two clusters together by merging
the nodes in the last column of one cluster with the nodes in
the first column of another cluster.

Writing the Measurement-based Teleportation Program in
MCBeth. For our purposes, we want the three qubit cluster

1https://www.aidantevans.com/pubs/mcbeth-appendix.pdf



depicted in Figure 1b. Here we have three qubits positioned
in a horizontal line with entanglement between q0 and q1 and
between q1 and q2. Computation then proceeds by measuring
q0 in a certain basis, impacting q1’s state, and then measuring
q1, impacting q2’s state. Specifically, we get the following
program written in the measurement calculus:

J(α)(q0, q1); J(β)(q1, q2)

For teleportation, because we wish for the final state to equal
the initial state, we set α, β = 0 and now get

J(0)(q0, q1); J(0)(q1, q2)

Figure 1c shows the effect this will have on the original
state of qubit q0. Note that this corresponds to performing
an Rz rotation of 0 and Rx rotation of 0; i.e., the state is not
changed yet because the computation was propagated through
the clusters, we end up with our state from q0 in q2 as desired.

In MCBeth, we would represent these commands using the
following program:

Input(0);
PrepList([1, 2]);
J(0.0, 0, 1);
J(0.0, 1, 2);

Here, we have a list of commands. The “J(0.0, 0, 1);”
command is the command for J(0)(q0, q1).

This program can then be both decomposed into the prim-
itive commands, which we describe in detail below.

Decomposing into Primitive Commands. The commands

J(0)(0, 1); J(0)(1, 2)

help us make sense of the circuit in Figure 1a because in
the measurement calculus, non-primitive commands such as J
are actually slight abstractions of lower-level quantum opera-
tions we call primitive commands. These include, preparation
(Ni), entanglement (Eij), measurement (Mα

i ), and Pauli-X
and Pauli-Z corrections (Xi and Zi). We now discuss these
commands individually and their associated MCBeth counter-
parts; further detail of the MCBeth language is provided in
Section IV.

The preparation command, Ni, initializes qubit i to the |+⟩
state. The |+⟩ and |−⟩ states are two common states used in
quantum computation:

|+⟩ = 1√
2
(|0⟩+ |1⟩)

|−⟩ = 1√
2
(|0⟩ − |1⟩)

In MCBeth, the initialization command is represented by the
command Prep(q) where q is a qubit; thus, to initialize a
qubit 0, we write Prep(0). For convenience, we also provide
a command which allows one to initialize a list of qubits at
once: PrepList([0; 1; 4]). This initializes qubits 0, 1,
and 4 to the |+⟩ state.

Since some qubits in a program may be passed in as input
as opposed to initialized, we signify this distinction by having

an input command: Input(q). During simulation, a mapping
from qubits to states can then be passed into the simulator
which will set each input qubit q to its desired state at the
start of the simulation.

All qubits must either be declared using the Prep or Input
commands at the start of the program.

The measurement calculus’s entanglement command, Eij ,
entangles qubits i and j by performing a controlled-Z gate
between them with i the control and j the target. In MCBeth,
we write this as Entangle(q1, q2).

The measurement command, Mα
i , measures qubit i with the

following basis states:

|+α⟩ =
1√
2
(|0⟩+ eiα |1⟩)

|−α⟩ =
1√
2
(|0⟩ − eiα |1⟩)

where α ∈ [0, 2π]; α is the the angle of measurement. Notice
that when α = 0, measurement is performed with the |+⟩
and |−⟩ basis states. In MCBeth, we write Measure(α, q,
signalss, signalst) where α is a float and signals are lists
of qubits – signals are explained further below.

The correction commands, Xi and Zi, apply the Pauli X
or Z gates, respectively, to qubit i. In MCBeth we write,
XCorrect(q, signals) and ZCorrect(q, signals).

The measurement and correction commands may depend on
the results of past measurements performed. The outcome of
a measurement on qubit i is denoted as si where

si =

{
0 if the qubit collapsed to |+α⟩
1 if the qubit collapsed to |−α⟩

Dependent commands use signals to determine the operation
performed. Signals are the exclusive-or of measurement out-
comes. In other words, signal s = (⊕i∈Qsi) where Q is the
set of qubits the commands depends on. Q is referred to as
the domain of a signal.

Dependent corrections are written Xs
i and Zs

i . The opera-
tion is performed if s = 1 and not performed if s = 0. For
example, in the case of Xs

i , X1
i = Xi and X0

i = Ii where I
is simply the identity matrix.

Dependent measurements are written as
t[Mα

i ]
s =M

(−1)sα+tπ
i

where t and s are signals. In MCBeth, these signals are
included in the measurement and correction commands as lists
of qubits.

A measurement calculus program consists of a finite se-
quence of commands and three sets of qubits: V , I , and O.
V is the computational space, i.e., the set of all qubits used
in the computation. I is the set of input qubits and O is the
set of output qubits. Moreover, in this paper, a sequence of
commands, A1; . . . ;An is read from left to right.2 Note that

2In Danos et al.’s measurement calculus, commands are written from
right to left so mathematical operations, i.e., matrix multiplication, are easier
expressed. Since we are designing a language for programming, we choose
the standard representation for sequencing.



I ∪ O ⊆ V and the sets I and O may share the same qubits
– I ∩O may be non-empty.

Programs must abide by the following constraints:
1) no command depends on an outcome not yet measured
2) no command acts on a qubit already measured
3) no command acts on a qubit not yet prepared, unless it

is an input qubit
4) a qubit i is measured by some Mα

i if and only if i is
not an output qubit

This enforces a physically realizable execution order.
The given set of non-primitive commands are universal for

quantum computation; i.e., any quantum algorithm can be
implemented using only these commands:

CZ(i, j) := Eij

J(α)(i, j) := Eij ;M
−α
i ;Xsi

j

where V = {i, j} for both commands; for CZ, I = O =
{i, j}; for J(α)(i, j), I = {i} and O = {j}.

Standardizing Command Order. We also want all entanglement
to occur before measurement; this process is known as stan-
dardization. Standardizing a program takes an arbitrary, well-
formed sequence of commands and rewrites the program to put
commands in the following order: preparations, entanglement,
measurement, corrections. The program is rewritten using a
set of rewriting rules laid out by [6]. Once standardized, the
program is simplified and in the format required for cluster
state computation. This is easily done in MCBeth by passing a
list of commands into the standardization function; given
a list of commands, it will return an equivalent standardized
list of commands.

Importantly, the rewriting rules preserve the semantics of
the program; therefore, the standardized program will result in
the same computation as the original, non-standardized one.
In interest of space, we defer the full set of rewriting rules to
the online appendix.

Returning to our example of teleportation, we can decom-
pose our program

J(0)(0, 1); J(0)(1, 2)

into

E01;M0;X
s0
1 ;E12;M1;X

s1
2

Here, V = {0, 1, 2}, I = {0}, and O = {2}; in other words,
the quantum state of qubit 0 is transferred to qubit 2. Because
1 and 2 are non-input, they are initialized to the |+⟩ state.

Then, using the rewriting rules, we can obtain the equivalent
program below:

E01;E12;M0; [M1]
s0 ;Zs0

2 ;Xs1
2

Thus, in MCBeth, we would obtain the standardized program
shown in Figure 2.

Note that standardization now allows us to perform all of
the entanglement at once. Furthermore, if we create the initial
entanglement of the qubits on one computer, we can distribute

Input(0);
PrepList([1, 2]);
Entangle(0, 1);
Entangle(1, 2);
Measure(0, 0.0, [], []);
Measure(1, 0.0, [0], []);
ZCorrect(2, [0]);
XCorrect(2, [1]);

Fig. 2: Teleportation in MCBeth after Standardization

the qubits over a quantum network to two other nodes such
that qubits 0 and 1 are on one node and qubit 2 is on another.
Thus, we can transfer the quantum state of qubit 0 to qubit
2 over any distance, as long as we can transfer the signals
s0 and s1 over a classical channel. Further application of this
distributed architecture is explained in Section VI-A.

Comparison to the gate-based version. By using the measure-
ment calculus, we can see how a circuit such as the one in
Figure 1a could be constructed to teleport a quantum state
between two qubits. We first constructed a cluster state which
allowed us to have the desired effect on our input state – in this
case, no effect. We then constructed a program representing
this cluster, decomposed the program into low-level primitive
commands, and standardized the program. This process gave
us a sequence of quantum operations where entanglement
happens first, then measurement, and finally corrections –
similar to that of our circuit in Figure 1a.

In the gate-based model, using circuit identities, the CNOT
and Hadamard gates can be converted to two CZs. Remember
that our entanglement command, Eij , is equivalent to a CZ;
therefore, the CNOT and Hadamard gates entangle the three
qubits together. The circuit then measures two qubits and uses
this outcome to apply dependent X and Z gates, just like in
the measurement calculus.

In the measurement calculus, however, we had a clear
process of how to approach setting up the cluster and the
effects it would have on our final qubit; we were easily able to
reason about how the state would be transferred among qubits
using the J operator. We did not have this ability with the
gate-based circuit.

MBQC’s forced ordering of operations clearly distinguishes
computation into three phases which highlight the true role that
entanglement and measurement have in quantum programs.
Because the ordering requires all entanglement to be realized
upfront, instead of buried in the computation, MBQC shows
how entanglement is really a resource for a quantum compu-
tation. An initial amount of entanglement is provided upfront
in the form of an entangled cluster. Computation proceeds
by using measurement to continually remove qubits from
the cluster; thus, disentangling the cluster. This underscores
how the computation itself is primarily performed by the
measurement operations. Thus, with MBQC, it is clear what
quantum operation the computation itself primarily depends
on. This is in direct contrast to the quantum circuits used by
popular NISQ languages where every step of the program (i.e.,



every gate) is just said to simply perform a computation.

IV. PROGRAMMING IN MCBETH

We now discuss programming in MCBeth. We first infor-
mally present the syntax. A BNF specification and denotational
semantics may be found in the online appendix. We then
provide an implementation of the Deutsch-Jozsa algorithm in
MCBeth to highlight features of the language beyond what
was covered in Section III. Additionally, a 2-bit version of
Grover’s algorithm may be found in the online appendix.

A. Syntax

A MCBeth program consists of a list of commands sep-
arated by semicolons. The supported commands break down
into three general categories: input preparation, core execution,
and readout. When writing a program, qubits are referenced
via natural numbers.

The input preparation phase consists of two types of com-
mands: “Input” commands and “Prep” commands. “Input”
allows one to declare which qubits should be passed in as input
during the start of the computation, while “Prep” initializes the
qubit to |+⟩. “InputList” and “PrepList” commands are added
to allow for the easy initialization of a list of qubits.

The main execution phase consists of applying the com-
mands for entanglement, measurement, and Pauli corrections
to the quantum system initialized in the input preparation
phase. For the applicable commands, signals are passed in
as lists of qubits.

Finally, an optional readout phase performs a final mea-
surement on specified qubits in a custom basis and stores
measurement outcomes as output reported at the end of
execution. This is done using the ReadOut(...) command.

B. The Deutsch-Jozsa Algorithm

Deutsch’s problem [10] motivated an early example of the
power of quantum computing. The question is as follows:
given a black box function that implements f : {0, 1} →
{0, 1}, determine if that function is constant (f(0) = f(1)) or
balanced (f(0) ̸= f(1)). A quantum computer can solve this
using a single query to the oracle.

The Deutsch-Jozsa [11] algorithm generalizes Deutsch’s
algorithm and is widely considered the starting point for
understanding quantum algorithms. This is the case due to the
straightforwardness of the problem, and the relative simplicity
of implementation.

The algorithm solves the following problem: provided a
quantum oracle which implements a function f : {0, 1}n →
{0, 1} and the knowledge that this function is either constant
(that is, all outputs are 0, or all are 1) or balanced (half the
input domain returns 1, the other half returns 0), determine if f
is constant or balanced using the quantum oracle. Classically,
this problem takes 2n−1+1 queries to the oracle in the worst
case. Using a quantum computer, however, we only need one
query to the oracle.

We convert the MBQC-based algorithms for Deutsch-Jozsa
developed by [12] and [13] into MCBeth programs. We present

a 6-qubit cluster state for this in Figure 3b; this cluster
handles the case where the oracle being queried is balanced.
In Figure 3c, we provide the MCBeth program for this; we
also show here how taking advantage of different measurement
bases allows us to remove two qubits from the cluster state
(q4 and q5) and achieve the same algorithm. We also compare
it to the circuit version displayed in Figure 3a to demonstrate
the differences in readability and operation count for programs
with the same output.

The measurement calculus program for this cluster is below,
and can be extended to accommodate an additional bit x by
adding a CZ operator from qubit 1 to qubit x, and a J operator
from qubit x to an additional qubit y:

J(α)(q0, q1);CZ(q1, q2);CZ(q1, q3);

J(α)(q2, q4); J(α)(q3, q5);

As displayed in the MCBeth program outlined in Figure 3c,
performing readout measurements on qubits 1, 2, and 3 in
the bases shown instead of all in the same base allows us to
remove the need for qubits 4 and 5.

Furthermore, removing the CZ operations and leaving the
rest of the cluster intact will implement the constant oracle for
the problem.

V. SIMULATION AND EXECUTION

In this section, we discuss how we simulate and execute pro-
grams in MCBeth through our own simulator implementation,
and how we also compile them down for use on general gate-
based quantum systems. The MCBeth codebase is available
online3 under an open source license.

A. Simulation Implementation

We implement MCBeth using OCaml. Given the lack of
available libraries for quantum computing in OCaml, we
created our own from scratch.4 We define each individual
MCBeth command as an inductive data type and represent a
program as a list of these commands. Importantly, qubits are
specified as integers; a constraint on the current implementa-
tion is that an initial system must start the qubit number at 0
and then continue numbering successively so that if a system
uses n qubits, it will have a qubit associated with each integer
between 0 and n − 1, inclusively. We use the Lacaml matrix
library5 to simulate the execution of a MCBeth program.

We provide two simulators for MCBeth programs: one
for weak simulation and one for strong simulation. The
key difference between weak and strong simulation is that
weak simulation uses randomization to determine which basis
to collapse to during measurement and only computes that
computation path, while strong simulation computes both
computation paths and uses the result to construct a probability
distribution. While more computationally intense, strong sim-
ulation gives a whole picture of the possible outcomes while

3https://github.com/seunomonije/mcbeth
4https://github.com/seunomonije/mcbeth/tree/master/mcbeth/lib/qlib
5https://github.com/mmottl/lacaml



(a) Deutsch-Jozsa circuit with a balanced
oracle; for a constant oracle, remove the
two CZ gates in the middle.

q3 q5

q2 q4

q0 q1

(b) Cluster with balanced oracle.

PrepList([0, 1, 2, 3]);
J(pi, 0, 1);
CZ(1, 2);
CZ(1, 3);
ReadOut(1, Z);
ReadOut(2, X);
ReadOut(3, X);

(c) MCBeth with Balanced Oracle and
Read-out Optimizations

Fig. 3: Deutsch-Jozsa in three different representations

weak simulation only gives one possible outcome; therefore,
in order to extract useful information from a weak simulation,
the simulation must be run for many iterations to create a
sample of possible outcomes. Nonetheless, weak simulation
is more faithful to actual execution on a quantum computer
and is more appropriate for deterministic programs like the
Deutsch-Jozsa algorithm.

A weak simulation of an MCBeth program is executed by
passing the program into the rand_eval function contained
in the Backend.Run module; similarly, strong simulation is
executed with the simulate function.

These functions return three objects: a matrix representing
the output quantum system, an ordered list of qubits corre-
sponding to those qubits in the output quantum system, and
a table containing entries for the readout qubits. Because
the quantum system during the computation gets partially
destroyed by the measurement commands, the ordered list of
qubits is required in order to properly know the position of
each qubit left in the system.

The return output matrix differs in type for weak and strong
simulation. For weak simulation, because we can simply col-
lapse to one basis randomly during the measurement operation,
we can perform the simulation using the state vector represen-
tation; therefore, a state vector of the output system is returned
by rand_eval. For strong simulation, because we need to
combine multiple possibilities of measurement, we perform the
simulation using the density matrix representation; therefore, a
density matrix of the output system is returned by simulate.
A density matrix is another way to represent a quantum
system mathematically; for unmeasured (pure) states, instead
of simply having the system represented as a state vector
|ψ⟩, we now represent the system as |ψ⟩ ⟨ψ|. For probability
distributions over measured (mixed) states, the corresponding
density matrix is the sum of the unscaled outcomes: For
instance, if we measure ρ = |+⟩ ⟨+| in the computational
basis, we get |0⟩ ⟨0| ρ |0⟩ ⟨0|+ |1⟩ ⟨1| ρ |1⟩ ⟨1| = 1

2I2.

B. Removing Measured Qubits

Because measurement is a destructive operation, instead of
keeping the result as a component in the vector or matrix
representing the system, during the measurement operation
we can remove it by projecting down into a subspace of

a lower dimension. The projection into a smaller subspace
removes the qubit from the system while also decreasing the
size of a state vector by one-half and the size of a density
matrix by three quarters. This allows for future computations
to multiply significantly smaller matrices, allowing for a faster
simulation of the quantum circuit. For example, in the case
of our teleportation example in Figure 2, each measurement
command will remove a qubit from the system; therefore, we
no longer need to keep track of it in our matrix.

C. Serialization and cross compatibility

In order to enable exploration of programs written in MC-
Beth to other formats, MCBeth serializes down to a standard
JSON format which can be parsed and translated to other
frameworks as needed.

Serialization of the language is straightforward. Each MC-
Beth command maps to a JSON object with the name of
the command as the key, and a nested JSON object as a
value. This nested JSON object contains relevant information
about the command following the structure of the cmd type
in our language implementation. For example, the MCBeth
command:

Entangle(0, 1)
translates to the JSON object:

{’Entangle’: {’on_qubits’: [0, 1]}}
As programs get larger, we represent them with a list of

these objects, which can be parsed and converted into the
desired language. In our work, we provide a translator from
MCBeth to Cirq with the CirqBuilder class. With this transla-
tion implementation, we can translate MCBeth programs into
OpenQASM by running them through Cirq first. The com-
piled OpenQASM representation of MCBeth programs makes
the language compatible with almost every major quantum
programming framework or language, and also allows us to
run programs written in MCBeth on popular quantum hard-
ware, e.g., the deployment of programs submitted via IBM’s
cloud platform. The programs that execute on these quantum
devices will not be MCBeth programs – as measurement-
based quantum computers aren’t available to access and submit
programs to online – but they will correspond semantically to
the original program.



VI. MCBETH-SPECIFIC ARCHITECTURES

In this section, we outline some systems and computer
architectures that can take advantage of measurement-based
computation’s unique benefits, and how MCBeth can be used
to realize and work with these systems.

A. Distributed Computation

One of the hardest challenges in achieving scalable quantum
computation is the issue of having quantum computers handle
large numbers of qubits. By using MCBeth to create programs
that can be distributed to multiple quantum computers, the
issue of scaling the number of qubits a computer can handle
is isolated to a single node which only needs to focus on
entanglement.

Because MCBeth standardizes the program to have entan-
glement first, MCBeth qubits can be initialized on a central en-
tangling node and sent to different nodes via quantum channels
(for instance, the photonic channels proposed by [14]). The
entangling node would be made specifically for the purpose of
entanglement and, thus, its hardware could be optimized for
performing entanglement. Because the qubits are entangled,
operations on one entangled qubit will still affect the qubits
with which it is entangled, regardless of where these qubits
are. Moreover, because the signals are classical pieces of
information, they may be shared across classical channels
during the computation. This would allow us to distribute
both the measurement and the corrections sections of the
computation across nodes, removing the need for each node
to have the ability to store and operate on large numbers of
qubits. While this could be done in the gate-based model
by converting non-suitable circuits into a distributed form,
programs in MCBeth are created by default in a distributed
form; therefore, there is no need to convert the program; This
makes MCBeth more natural to program in for this purpose.

Not only does distributed computation allow for the de-
crease in qubits per edge node, but it also allows for the execu-
tion of certain steps of a program in parallel. Figure 4a displays
just this case; there are two subsystems: S1 = [q1, q2, q3, q4]
and S2 = [q5, q6, q7, q8]. Because no qubit in S1 is dependent
on a qubit in S2, and vice versa, the computation of each
subsystem can be done perfectly in parallel.

We provide a module Backend.Distributed to split a
program up into distributed subsystems by passing it into
build_dist_prog along with a list of lists containing how
the qubits should be partitioned. This module contains utility
functions to split a program into isolated subprograms for each
network node. It is up to the designers of the architecture to
implement the communication between nodes.

We cannot simulate accurately all distributed computations
while also retaining distributed subsystems, because we cannot
simulate the entanglement between nodes when entangled
qubits are split between different nodes. However, if we split
a computation up in such a way where each node in the
network has only qubits entangled with other qubits in the
same node, such as that in Figure 4a as opposed to Figure 4b,
then entanglement does not exist between nodes. Thus, an
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accurate distributed simulation can be performed in such cases.
To measure simulation performance, we ran weak simulations
of arbitrary programs utilizing n qubits per node with m
nodes. Each node, therefore, contained one subsystem of
the computation, akin to Figure 4a. Results from the weak
simulation of distributed programs of various configurations
on a single processor, with each node simulated on separate
threads, is shown in Figure 5. As expected, the running time
of the simulation increases exponentially as the number of
qubits increases. Then, as the number of subsystems increase,
the runtime increases linearly since the subsystems were run
on separate threads of the same processor.

B. MCBeth for MBQC-Specific Architecture

In gate-based models, mapping between the program op-
erations and the hardware is achieved by compilation, which
maps input circuits to the topology of the hardware, and pulse
scheduling, which configures where and when pulses are sent
to the individual qubits. With a variety of gates and operations,
compiling and scheduling gate-based circuits can become a
complex and involved process. In measurement-based models
and specifically cluster-state computing, compiling the circuits
down is straightforward.

The separation of entanglement and measurement in cluster-
state, one-way computing models makes it easier for architec-
tures to delegate hardware specifically for entangling qubits
and creating the cluster-state, then send pulse schedules to
that cluster without needing to worry about re-entangling
or any other non-measurement operations. An example of
this architecture can be seen in a 2014 experimental imple-
mentation of Simon’s algorithm [5]. The group was able to



modify an existing photonic architecture used for a quantum
error correction code to generate a linear 1D cluster state by
producing photon pairs and entangling them using a polarizing
beam splitter (PBS). They then sent pulses to these entangled
photons to measure in the X, Y, or Z basis, with distinct pulse
paths for each basis.

In theory, all quantum algorithms that could be represented
through the cluster state, one-way model could be run on
this architecture, assuming that the hardware could produce
and entangle enough photons for an n qubit cluster state.
Compiling all quantum algorithms in this model becomes sim-
ple: prepare the cluster state, and schedule each measurement
one after another. This allows the programmer to be able to
develop algorithms at a high-level while also understanding
the program at the pulse level. In many cases, pulse-level
understanding would not be necessary, however; this shows
that from the programmer’s point of view, understanding the
computation at all levels in MCBeth is significantly easier than
doing so in the gate-based model.

VII. RELATED WORK

Compiling Non-NISQ Languages. Some non-NISQ languages,
like Q# [3], can be compiled to a NISQ language, allowing
them to be run on existing devices. These languages don’t give
programmers a good model for realizable quantum hardware,
which potentially limits their utility because no intuition for
the core of quantum computation is built. In contrast, with
MCBeth, the programmer gets higher-level simplicity with
hardware-level awareness.

ZX-calculus. Like MCBeth, the ZX-calculus [15] offers an
alternative to the quantum circuit abstraction. It introduces
both graphical representations and computations that aren’t
possible or apparent in the quantum circuit model. However,
while the ZX calculus is a powerful and extremely useful tool
to reason and work with MBQC programs, it is not intended
to perform the role of a programming language.

Paddle Quantum. Paddle Quantum is a Python framework
that offers a sub-module for measurement-based quantum
computing [16]. Paddle Quantum compiles from gate-based
programs to measurement-based programs, while MCBeth
allows for measurement-based to gate-based translation. The
MBQC functionality of Paddle Quantum is a sub-module of
a larger Python package, rather than a standalone package
like MCBeth, and it is more verbose in its command names.
Paddle does, however, provide a more flexible naming conven-
tion for qubits and their MBQC module performs additional
optimizations for weak simulation. Finally, Paddle Quantum
supports weak simulation, while MCBeth supports both weak
and strong simulation.

VIII. CONCLUSION

Our experience with MCBeth point to two benefits. First,
a measurement-based language leads to a more intuitive algo-
rithm composition procedure compared to quantum circuits,

which current NISQ languages are based on. Second, MC-
Beth is more easily adapted to scalable, distributed quantum
computing and in the design of quantum hardware.

Prior to this work, measurement-based quantum computing
was known to be a powerful alternative model to gate-based
quantum computation, but it had rarely been used for practical
quantum programming. In developing MCBeth, we were able
to explore the advantages and disadvantages of this model
from a programmer’s perspective. We created an open source
repository containing a simulator for the easy creation and sim-
ulation of MCBeth programs; we also provide a compiler from
MCBeth to a gate-based model, allowing MCBeth programs to
be run on common, real quantum hardware, or imported into
other quantum programming languages. We argued that pro-
gramming in MCBeth allows one to naturally create distributed
quantum algorithms, which could be executed on a network
of machines where each machine is specialized to handle a
different type of quantum operation. Therefore, MCBeth is
easily runnable in practice both in simulation and on different
types of quantum hardware.
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