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Abstract

This document defines the Spade language, version 2. Spade is a programming language for high-
performance distributed stream processing systems. A Spade program describes a data flow graph,
where the vertices are operator instances and the directed edges are streams. Spade is extensible by
allowing users to define their own primitive operators in a native language, and by allowing users to
define their own parameterizable composite operators in Spade itself. Furthermore, Spade permits users
to dynamically compose independently launched streaming programs. Thanks to its generality, Spade
makes it easy to express applications from a large variety of domains, including but not limited to
financial trading, transportation monitoring, manufacturing control, security, healthcare, etc.

1 Introduction

This document describes the language design of the Spade language, version 2. Spade is the programming
language for InfoSphere Streams, IBM’s high-performance distributed stream processing system [1]. This
document only focuses on the syntax and semantics of user-visible features; a description of the implementa-
tion design or the inner workings of the compiler is out of scope for this document. Spade 2 is not backward
compatible to Spade 1, and instead takes the opportunity to clean up several features.

This document is sprinkled with paragraphs containing auxiliary information:

• Practical advice: Best practices and conventions for users.

• Implementation note: Note about how the compiler or runtime implements a feature.

• For Spade 1 users: Comparisons between old and new language features.

• For language experts: Terminology from the programming language community.

• Language design rationale: Justification for decisions where we had to reconcile conflicting design goals.

In addition, there are numerous code examples. IBM’s Spade compiler is continuously tested on these
examples. While some examples are semantically incomplete (e.g., using undefined identifiers), all examples
are syntactically valid.

1.1 Language Overview

FileSource
Bid Quote

Join

Sink

Sale

FileSource

Figure 1: Stream graph for sale-join example.

Spade is a stream programming language. Figure 1 shows an example stream graph. The following code
shows how it could be implemented in Spade.

composite SaleJoin { // 1
graph // 2
stream<string8 buyer, string8 item, decimal64 price> Bid = FileSource() { // 3
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param fileName: "BidSource.dat"; format: csv; // 4
} // 5
stream<string8 seller, string8 item, decimal64 price> Quote = FileSource() { // 6
param fileName: "QuoteSource.dat"; format: csv; // 7

} // 8
stream<string8 buyer, string8 seller, string8 item> Sale = Join(Bid; Quote) { // 9
window Bid : sliding, time(30); //10

Quote : sliding, count(50); //11
param match : Bid.item == Quote.item && Bid.price >= Quote.price; //12
output Sale : item = Bid.item; //13

} //14
() as Sink = FileSink(Sale) { param fileName: "Result.dat"; format: csv; } //15

} //16

A Spade program consists of one or more composite operators. A composite operator defines a stream
graph. The vertices of the stream graph are operator invocations, and the edges are streams. An operator
invocation defines output streams by invoking a stream operator on input streams. For example, the operator
invocation in Line 9 invokes the Join operator on two input streams Bid and Quote to produce one output
stream Sale. An operator invocation may also have zero input streams (e.g., FileSource in Lines 3 and 6)
or zero output streams (e.g., FileSink in Line 15). The body of an operator invocation customizes the way
the operator works. For example, the window, param, and output clauses in Lines 10-13 customizes how the
Join operator is invoked.

This language specification is written bottom-up, starting from types such as string8 or int32 (Sec-
tion 2). Values of these types are manipulated by expressions, such as Bid.item == Quote.item (Section 3).
But the core concept of Spade is the operator invocation, such as Sale = Join(Bid; Quote) (Section 4).
Spade allows users to define their own primitive or composite operators, such as SaleJoin (Section 5). Fi-
nally, a Spade program specifies functions and operators in namespaces (Section 6). The appendix contains
an extended example (A), a grammar overview (B), acknowledgements (C), and an index.

1.2 Summary of Changes to Spade 1

For Spade 1 users: This document refers to the original Spade language as “Spade 1”. It is described
at http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.spade.html. There is
also a research paper about Spade in SIGMOD’08 [4]. The Spade 2 language specification is self-contained,
so it should be accessible to people new to Spade.

Spade 2 adds some features missing from Spade 1, removes others, and changes many features. Newly
added features include composite operators, shared variables, and a richer data model (tuple, map, decimal,
timestamp, etc.). Removed features include bundles, bulk functions, and the preprocessor. The most visible
change in Spade 2 is the syntax, which has become more readable, especially for programmers familiar with
C or Java. For example, in Spade 1, the operator invocation for Sale looks like this:

stream Sale(buyer: String, seller: String, item: String) # 1
:= Join(Bid <time(30)>; Quote <count(50)>) # 2

[ $1.item = $2.item & $1.price >= $2.price ] # 3
{ item := $1.item } # 4

Language design rationale: The design of Spade 2 has the same spirit as Spade 1: the primary goal
is permitting efficient implementation on distributed hardware. Most changes aim to make the language
simpler and more uniform. When given a choice between code readability and writeability, we usually opted
for readability.
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1.3 Grammar Notation

This language specification adopts a flavor of BNF (Backus Naur Form) to describe the syntax of language
features, following the following conventions:

italics Non-terminal
ALL CAPS ITALICS Token, e.g., ID for identifiers
‘fixed-width font’ Verbatim text, quoted to avoid confusion with meta-characters, e.g., ‘(’
(...) Grouping, to disambiguate meta-syntax precedence
... | ... Alternatives, match either syntax left or right of bar
...? The preceding syntax is optional
...* The preceding syntax is repeated zero or more times
...+ The preceding syntax is repeated one or more times
...*, Comma-separated list of zero or more items
...+, Comma-separated list of one or more items
...*; Semicolon-separated list of zero or more items
...+; Semicolon-separated list of one or more items
nonTerminal ::= ... Rule definition

1.4 Lexical Syntax

Spade files are written in unicode using UTF-8 encoding. Most syntactic elements, including keywords and
identifiers, use the subset of unicode that overlaps with ASCII characters (the subset 32-126 of the Latin-1
alphabet ISO 8859-1). The only two constructs where other unicode characters are valid are unicode string
literals and comments. Identifiers start with an ASCII letter or underscore, followed by ASCII letters, digits,
or underscores. The syntax for literal values of primitive types (numbers, booleans, strings, etc.) is similar
to that of Java or C++, and is described in Section 2.1.

Spade has two forms of comments: single-line comments (from // to the end of the line) and delimited
comments (between /* and */). Delimited comments can span multiple lines, and can be followed by regular
code in the same line.

Spade syntax is not sensitive to indentation or line breaks. Spade syntax is case-sensitive, for example,
mud and Mud are different identifiers.

Spade uses lexical scoping for identifiers. In other words, a declaration in an inner scope shadows
declarations of the same identifier in statically enclosing scopes. Spade does not permit synonymous entities
of different categories in the same scope. For example, it is a compiler error if a program declares both an
operator named f and a function named f in the same scope. As another example, it is a compiler error if
a program declares both a type named t and a variable named t in the same scope. In other words, Spade
does not segregate scopes by identifier categories, unlike for example Java. That also means that identifiers
in inner scopes shadow identifiers in outer scopes even when they are of a different category. For example,
a locally declared stream s hides any function s in an outer scope.

Practical advice: We encourage developers to imitate the indentation and line breaks style demonstrated
in the examples in this document. We encourage starting identifiers for operators, aggregations, and user-
defined types with an upper-case letter, and starting functions, variables, and built-in types with a lower-case
letter. We encourage CamelCase instead of underscore style to separate words in identifiers. We encourage
starting shared variable identifiers with s .

For Spade 1 users: In Spade 1, single-line comments started with # and delimited comments were
surrounded by #*...*#.

2 Types

Spade has a wide array of primitive types tailored for streaming, and a small set of composite types inspired
by scripting languages but statically checked. Figure 2 shows all types arranged in a hierarchy. This section
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describes the types, how to define them, and how to convert values between different types.

                              (any) 

               (primitive)                  (composite) 

boolean enum  (numeric) timestamp  (string) blob     (collection)   tuple 

 (integral)  (floatingpoint)       (complex) string8 string16  list set map 

  (signed)   (unsigned)     (binary)           (decimal) 

-int8  -uint8 
-int16 -uint16 
-int32 -uint32  -float32  -decimal32  -complex32 
-int64 -uint64  -float64  -decimal64  -complex64 
                -float128 -decimal128 -complex128 

Figure 2: Hierarchy of Spade types.

2.1 Primitive Types

A primitive type, such as int32 or string8, is one that is not composed of other types. Spade supports
the following primitive types:

boolean true or false
enum user-defined enumeration of identifiers
intb signed b-bit integer, one of:
int8 (-128 to 127)
int16 (-32,768 to 32,767)
int32 (-2,147,483,648 to 2,147,483,647)
int64 (-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)

uintb unsigned b-bit integer, one of:
uint8 (0 to 255)
uint16 (0 to 65,535)
uint32 (0 to 4,294,967,295)
uint64 (0 to 18,446,744,073,709,551,615)

floatb IEEE 754 binary b-bit floating point number, one of:
float32 (single-precision, equivalent to float in Java)
float64 (double-precision, equivalent to double in Java)
float128 (same as binary128 in the IEEE 754-2008 standard)

decimalb IEEE 754 decimal b-bit floating point number, one of:
decimal32 (significand 7 decimal digits, exponents 10-95 to 1094)
decimal64 (significand 16 decimal digits, exponents 10-383 to 10384)
decimal128 (significand 34 decimal digits, exponents 10-6,143 to 106,144)

complexb 2b-bit complex number, one of:
complex32 (both real and imaginary part are float32)
complex64 (both real and imaginary part are float64)
complex128 (both real and imaginary part are float128)

timestamp point in time, with nanosecond precision
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string8 string of UTF-8 unicode characters, based on ICU library
string16 string of UTF-16 unicode characters, based on ICU library
blob sequence of raw bytes
string8[n] bounded-length string of at most n bytes worth of characters

Besides these primitive types, Spade also defines meta-types for compile-time entities in operator pa-
rameters, see Section 5.3.4.

An example for an enumeration is n

type LogLevel = enum { error, info, debug, trace };

Any of the identifiers error, ..., trace can be used where a value of enumeration LogLevel is expected.
The scope of the identifiers error, ..., trace is the same as the scope containing the type definition. Enu-
merations are ordered (they permit comparison with <, >, <=, and >=) but not numeric (they do not permit
arithmetic with +, -, *, etc.).

Like in C/Java, literals for int, uint, float, and decimal can have optional type suffixes. For example,
123 is signed (int32) whereas 123u is unsigned (uint32). One suffix indicates the kind of number:

s -> signed integer (default for integer literals)
u -> unsigned integer
f -> binary floating-point (default for floating point literals)
d -> decimal floating-point

Another suffix indicates the number of bits:

b (byte) -> 8-bit
h (half-word) -> 16-bit
w (word) -> 32-bit (default for integer literals)
l (long) -> 64-bit (default for floating point literals)
q (quad-word) -> 128-bit

Some more examples for literals with type suffix: 0.0005 (float64), 0.5e-3 (float64), 3.5d (decimal64),
3.5w (float32), 123d (decimal64), 123dq (decimal128),

String literals are written in double-quotes. A type suffix indicates the number of bits: b indicates
string8 and h indicates string16, the default (without suffix) being string8. Both string8 and string16
can contain any unicode characters, they differ only in their encoding (UTF8 vs. UTF16). String literals can
use escape sequences of the form \uhhhh, where the four hexadecimal digits hhhh specify a character. For
example, "Bu\u011fra" uses the escape \u011f to specify a ğ with a u-shaped accent on top in a string8.
Recall from Section 1.4 that Spade files are written in UTF-8, so letters such as ğ can also appear directly
in a string literal, without the escape sequence.

Strings may contain internal null characters, which, unlike in C, are not considered terminating. In other
words, the length of a string is independent from whether or not it contains characters whose encoding is
zero.

Literals for complex numbers are written by using the type as a function name, as in complex32(1.0, 2.0).
A timestamp stores TAI (International Atomic Time) with nanosecond precision. It uses a 128 bit repre-

sentation, where 64 bits store the seconds since the epoch as a signed integer, 32 bits store the nanoseconds,
and 32 bits store an optional identifier of the machine where the measurement was taken, which can be
useful for after-the-fact drift compensation. The Spade library provides various functions for manipulating
timestamps:

• Getting TAI on the local machine. Usually, this involves obtaining UTC from the operating system,
then adding the correct leap second offset.

• Converting back and forth between a TAI timestamp value and an ISO time string. An example for
an ISO time string is "1960-01-01T23:03:20".

6



• Converting back and forth between a TAI timestamp value and its second, nanosecond, and machine
identifier components represented as integers.

• Converting back and forth between TAI, UTC, and UT time values, by consulting the appropriate
conversion tables.

Many operators and functions are overloaded to work with different types. For example, the operator +
can add various types of numbers, but it can also concatenate strings. Likewise, the function length(x) is
overloaded to accept x of type string8 or string16.

Spade offers a bounded-size variant of some types. For example, string8[5] can store any strings
whose UTF-8 encoding occupies at most most 5 bytes. The compiler prohibits implicit conversions from
unbounded to bounded types, but the user can override that by explicit casts. Type bounds, whether in
variable declarations or in casts, must be compile-time constants. A cast from any string to a bounded string
truncates the value if it is too long. Spade limits all strings, bounded or unbounded, UTF-8 or UTF-16, to
at most 232 characters. Spade does not offer bounded UTF-16 strings.

Blobs are sequences of at most 264 raw bytes.
Implementation note: The language specification purposely does not specify a byte order, because users

are oblivious to these details within a Spade application. Compilers are expected to provide flags to choose,
for example, network byte order or native byte order. The on-the-wire format for the streaming middleware
will be specified in a separate forthcoming document. The internal representation of both bounded and
unbounded strings and blobs stores a separate length field. As with all types, the exact layout is implemen-
tation dependent and not exposed at the language level. Typically, bounded types would be padded in case
the length is lower than the bound, thus allowing subsequent attributes to be stored at a fixed offset in a
network packet. The implementation may also reduce the number of bits in the length field according to the
bound to save space.

Practical advice: Use the decimal floating point types in financial, commercial, and user-centric programs
to avoid losing decimal digits to binary rounding. Use TAI instead of UTC or UT wherever possible. For
unstructured data of bounded size, use a list<uint8>[n] instead of a blob, see Section 2.2.

Language design rationale: Spade has an unusually large zoo of primitive types, because in network
applications, users need a lot of control over the data representation to achieve performance. Tight represen-
tation is important both to keep the data on the wire small, and to reduce serialization and deserialization
overheads. The timestamp type is designed to allow a high degree of precision as well as avoid overflow
conditions (it can represent values ranging over billions of years) by following widely accepted standards.
The bounded types permit efficient marshaling and unmarshaling of network packets: if all parts have a
fixed size, then parts can be found at a fixed offset without decoding the whole. We considered using slicing
instead of casts to convert unbounded to bounded values, but decided against it because unlike type bounds,
slicing parameters are not necessarily compile-time constants, and slicing does not alter the type.

For Spade 1 users: Several primitive types are new in Spade 2, e.g., uint, string16, decimal, or
timestamp.

2.2 Composite Types

A composite type is the result of applying a type constructor to one or more type arguments. For example,
the composite type list<int32> is the result of applying the type constructor list<T> to the type argument
T=int32. For Spade 1 users: The only composite types in Spade 1 were matrix and list; Spade 2 drops
matrix, but introduces additional composite types tuple, set, and map. Also, in Spade 1, a list could only
contain primitive values; in Spade 2, composite types nest arbitrarily.

2.2.1 Collections

Spade has three built-in collections (list, set, and map) with the following type constructors:
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list<T> list (random-access zero-indexed sequence)
set<T> set (unordered collection without duplicates)
map<K,V > map (unordered mapping from key type K to value type V )
list<T>[n] like list<T>, but bounded-length
set<T>[n] like set<T>, but bounded-length
map<K,V >[n] like map<K,V >, but bounded-length

Like primitive strings, collection types have bounded-length variants, which follow the same rules. For
example, a list<int32>[2] can store at most two integers. It is legal to declare bounded-size types with
unbounded elements, such as list<string8>[3], though that obviously does not offer the same marshaling
optimization opportunities. Spade limits all collections, bounded or unbounded, to at most 232 elements.

The literal syntax for list, set, and map values is as follows:

listLiteral ::= ‘[’ expr*, ‘]’ # e.g. [1, 2, 3]
setLiteral ::= ‘{’ expr*, ‘}’ # e.g. { "IBM", "GOOG" }
mapLiteral ::= ‘{’ ( expr ‘:’ expr )*, ‘}’ # e.g. { "Mon": -1, "Fri": 1 }

List, set, and map types can be arbitrarily nested. In other words, their elements, and in the case of
maps even their keys, can be of any type, including other composite types.

As we will see in Section 3, composite types have their own operators. You can subscript a list or map with
l[i], check membership in a collection with “x in s”, iterate over a collection with “for(T x in s) ...”,
and so on. There are also various functions to work on collections; for example, setUnion(set1, set2) or
setIntersection(set1, set2). For lists and maps, the left operand of the in operator is the key. In other
words, "Oz" in m checks whether "Oz" is a key of the map m. Value (as opposed to key) membership tests
use functions, not the in operator.

Implementation note: Lists are implemented via arrays, but unlike C, the language uses static or dynamic
checks to protect against out-of-bounds accesses. Sets and maps are implemented via hash tables. They are
unordered and support constant-time lookup.

2.2.2 Tuples

A tuple is a set of attributes, and an attribute is a named value. For example, the tuple {sym="Fe", no=26}
consists of two attributes sym="Fe" and no=26. The type for this tuple is tuple<string8 sym, int32 no>.
Tuples are similar to database rows in that they have an unordered set of named and typed attributes.
Tuples differ from objects in Java or C++ in that they do not have methods.

Tuple types can extend other tuple types, for example:

type Loc2d = tuple<int32 x, int32 y>; // 1
Loc3d = Loc2d, tuple<int32 z>; // 2

The resulting type Loc3d is equivalent to tuple<int32 x, int32 y, int32 z>. In tuple extension, the
identifier may also be the name of a stream as a shorthand for the type of the tuples in that stream. For
example:

stream<int32 x, int32 y> LocStream = FileSource() {/*...*/} // 1
type LocWithId = LocStream, tuple<string8 id>; // 2

The resulting type Loc3d is equivalent to tuple<int32 x, int32 y, string8 id>. The syntax for
tuple types is:

8



tupleType ::= ‘tuple’ ‘<’ tupleBody ‘>’
tupleBody ::= attributeDecl+, # attributes

| ( ID | tupleType )+, # tuple type extension
attributeDecl ::= type ID

In other words, the body of the tuple type either consists of a comma-separated list of attribute decla-
rations, or a comma-separated list of tuple types, either by name or written in-place. Tuple types can be
arbitrarily nested. In other words, their attributes can be of any type, including other composite types, even
other tuple types. Here is an example:

type Loc2d = tuple<int32 x, int32 y>; // 1
Sensor = tuple<Loc2d loc, string8 color>; // 2

The resulting type Sensor is equivalent to tuple<tuple<int32 x, int32 y> loc, string8 color>.
For example, given a variable Sensor s, the expression s.loc.x accesses the x-coordinate.

As we will see in Section 5.1.2, the explicit tuple<...> type constructor can be omitted at the top level
of a type definition. That means that the previous example can also be written like this:

type Loc2d = int32 x, int32 y; // 1
Sensor = Loc2d loc, string8 color; // 2

The literal syntax for tuple values is as follows:

tupleLiteral ::= ‘{’ ( ID ‘=’ expr)*, ‘}’ # e.g. { x=1, y=2 }

You can access an attribute of a tuple with dot notation, e.g., myLocation.x.
Language design rationale: Attributes within a tuple are unordered for semantic consistency with rela-

tional databases. Users should treat tuples as a high-level concept, and not order fields in a misguided effort
to optimize the representation. Such an effort would be futile, because the runtime implementation uses a
canonical ordering of attributes anyway, and the representation is invisible to the user.

2.3 Value Semantics

All primitive and composite Spade types have value semantics, not reference semantics. That means that:

• An assignment (“=”) copies the contents, instead of aliasing the location.

• An equality comparison (“==”) compares the contents, instead of comparing the locations.

One consequence of value semantics is that modifying the original after an assignment does not change
any copies. Consider this example:

mutable map<string8, tuple<int32 x, int32 y>> places = { }; // 1
mutable tuple<int32 x, int32 y> here = { x=1, y=2 }; // 2
places["Hawthorne"] = here; // 3
here.y = 3; // 4

Line 3 initializes variable here with the value {x=1,y=2}. Line 4 assigns a copy of that value into the map
at key "Hawthorne". Line 5 modifies the version of the value in variable here, so variable here now contains
{x=1,y=3}. However, this does not affect the copy at places["Hawthorne"], which is still {x=1,y=2}.
Another consequence of the value semantics is that since there is no notion of a “reference”, there is no
notion of “null”, nor can there be any cyclic data structures in Spade.
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Language design rationale: We picked value semantics for Spade because it is more natural, and more
efficient, to treat streaming data as pure copies rather than having an identity in an address space. Disal-
lowing references also prevents null pointer errors, simplifies memory management, and prevents unintended
side effects of mutating a value stored in a collection or used as a map key.

Practical advice: If you need a more powerful type system than that provided by Spade, use Spade’s
extension mechanisms and implement your functionality in a low-level language such as C++ or Java.

2.4 Type Conversions

Spade is statically typed and strongly typed. The static typing is enforced by explicit type declarations
and compile-time type checking. The strong typing is enforced by providing almost no implicit conversions
between types. Instead of implicit conversions, Spade offers explicit conversions where it makes sense.
Explicit conversions look like function calls, e.g., int32(2.5) returns 2.

Spade allows explicit conversion from a tuple type WideT to a tuple type NarrowT if WideT has a superset
of the attributes of NarrowT. The conversion discards excess attributes and cannot be reverted.

Spade allows explicit conversion between enumerations and integers. In conversions, enumerations are
numbered from zero. For example, given type t = enum{a,b,c};, then int32(a) == 0, and t(1) == b.

Types in Spade are equivalent if they are the same primitive types, or if they are composed from
equivalent types using the same type constructor. For example, after the following:

type LocT1 = int32 x, int32 y; // 1
LocT2 = int32 y, int32 x; // different order, but same attributes // 2

variables of these two types can be assigned to each other:

LocT1 loc1 = { x=1, y=2 }; // 1
LocT2 loc2 = loc1; // this is legal // 2

As far as Spade is concerned, LocT1 and LocT2 are the same type; the fact that they have different names
and attribute orders is irrelevant, because a tuple is an unordered set of attributes. Therefore, the assignment
between variables loc1 and loc2 is legal, and does not constitute a type conversion. (For language experts:
Spade uses structural equivalence.)

Spade permits implicit conversions in two places: variable initializers and subscripts. For example,
the variable initializer int8 x = 3; implicitly converts from int32 to int8, as if it had been written
int8 x = int8(3);. (For language experts: Implicit conversion in initializers prevents what is known as
“type stuttering”, the unnecessary repetition of the type type in the initializer.)

The other place where Spade permits implicit conversions is in subscripts. For example, let v be a list.
Lists indices are always uint32, so the subscript v[9] implicitly converts from int32 to uint32, as if it had
been written v[uint32(9)]. An out-of-bounds subscript causes a runtime error, independently of whether or
not there was an implicit conversion involved. Not all subscripts are convertible. For example, subscripting
a list v with a string v["nine"] is a compiler error.

Unlike some other languages, Spade has no implicit conversion from int to string (no "num" + 1),
from int to float (no 1+2.0), or from int to boolean (no while(1)...). To perform these conversions,
you must make them explicit: string8(1) or float64(1). But not all combinations are supported; for
example, boolean(myInt) is illegal, because it is shorter and less ambiguous to use integer comparison such
as myInt!=0.

Language design rationale: Spade adopts a strong static type system, because it saves time for runtime
checks, and errors that are not prevented statically are difficult to track down in a distributed system. Spade
uses structural equivalence, because that facilitates converting data to and from external applications, files,
or databases that do not share the same type system. We acknowledge that structural equivalence can lead
to types being considered equivalent even when they were intended to differ, but we decided for structural
equivalence anyway to avoid adapter bloat, which can slow down programs and clutter up code.

For Spade 1 users: Both Spade 1 and Spade 2 are statically typed and strongly typed, with few implicit
conversions. The explicit conversion syntax of Spade 1 is more verbose than that of Spade 2.
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3 Expression Language

Though Spade is a streaming language, there are many places where it uses expressions found in tradi-
tional imperative or functional languages. Some expressions are evaluated at runtime: in operator output
assignments or operator parameters. Some expressions are evaluated purely at compile time, during code
generation: these include operator configurations and window clauses. And finally, there are places where
Spade accepts not only expressions, but even statements like those in traditional languages: this is the case
in operator logic, and in function definitions.

3.1 Expression Operators

Expression operators are used to compute values, e.g., with + or -. They are not to be confused with stream
operators, used to connect streams into a data flow graph. The Spade operator table looks more or less like
that of C or Java:

e(...) N Function call or type cast
e[...] N Map lookup, or subscript or slice into string / blob / list
e.id 1 Tuple attribute access
++ -- ! - ~ 1 Increment, decrement, prefix logical / arithmetic / bitwise negation
* / % 2 Multiplication, division, remainder
+ - 2 Addition, subtraction
<< >> 2 Bitwise shift left, right
< <= > >= != == 2 Comparison (value semantics)
& 2 Bitwise and
^ 2 Bitwise xor
| 2 Bitwise or
&& 2 Logical and (short-circuit)
|| 2 Logical or (short-circuit)
?: 3 Ternary conditional
in 2 Membership in list / map / set
= += -= *= . . . 2 Assignment (value semantics)

In this table, precedence goes from high (at the top) to low (at the bottom). Literals, such as strings,
maps, tuples, lists, etc., have higher precedence than the highest-precedence operator. The middle column
of the table indicates arity (the number of operands). All the binary operators (arity 2) are left-associative.

Besides the simple assignment operator (=), the following operators first perform a regular binary oper-
ation, and then an assignment: +=, -=, *=, /=, %=, <<=, >>=, &=, ^=, and |=.

As mentioned in Section 2.3, Spade uniformly uses value semantics. Hence, even in the case of composite
values, assignments always copy the contents, and comparisons always compare the contents, never the
location, of a value.

Side-effecting expressions are only allowed as top-level statements, not nested in other expressions, e.g.:

y = x++ + x++ ; //illegal, since "++" has side effect // 1
x++; //legal as top-level statement // 2
y = (x=x+1) + (x=x+1); //illegal, since "=" has side effect // 3
x = x + 1; //legal as top-level statement // 4
y = inc(x) + inc(x) ; //may be legal, if "inc" does not have side effects // 5
inc(x); //legal as top-level statement // 6

Restricting side-effects to top-level statements makes code more readable, prevents common programming
mistakes, and may lead to more optimization opportunities. The compiler checks whether a function such
as inc is side-effect free by checking that it is not stateful and none of its parameters are mutable (see
Section 3.4).

11



The right-shift operator (>>) behaves differently for signed and unsigned integers. For signed integers, it
fills in with the sign bit, whereas for unsigned integers, it fills in with zero. Use casts if you want to override
this behavior.

The ordered comparison operators <, >, <=, and >= work on all ordered types. That includes strings,
timestamps, enumerations, blobs, and all numeric types except complex numbers. Using <, >, <=, or >= on
complex numbers, containers, tuples, or booleans is a compiler error.

String, blob, and list subscripts can either retrieve a single element, or can perform slicing. Map subscripts
can only refer to one element, not a slice, since maps are unordered. All string, blob, and list indexing is
zero-based, and slices include their lower bound but exclude their upper bound. For example, if “a” is a list,
then a[2:5] is the same as the list [a[2],a[3],a[4]]. If the lower bound is omitted, the slice starts at
element zero; if the upper bound is omitted, the slice continues until the last element. For example, if the
last element of a has index 9, then a[7:] is the same as the list [a[7],a[8],a[9]]. Here is the syntax:

subscriptExpr ::= expr ‘[’ subscript ‘]’
subscript ::= expr | ( expr? ‘:’ expr? )

Invalid subscripts cause runtime errors. Section 4.6 explains what happens upon errors. A subscript
is invalid if it is out-of-bounds for its collection. For example, if list v has 3 elements, then only indices
0 ≤ i ≤ 2 are valid, and v[i] is a runtime error for all i ≥ 3. On the other hand, a slice x[lower:upper] is
valid even if lower or upper is out of bounds. Here are some examples:

list<string8> x = ["a", "b", "c"]; // 1
string8 s = x[4]; //runtime error: index out of bounds // 2
mutable list<string8> y; // 3
y = x[1 : 5]; // ["b", "c"] // 4
y = x[5 : 5]; // [ ] // 5
y = x[5 : 1]; // [ ] // 6
y = x[5 : ]; // [ ] // 7
y = x[0 : 2]; // ["a", "b"] // 8
y = x[ : 2]; // ["a", "b"] // 9
y = x[2 : 0]; // [ ] //10

Practical advice: If you are not certain whether a subscript is valid, guard it with a defensive membership
test, for example:

if ("Oz" in places) // 1
munchkinland = places["Oz"]; // 2

Language design rationale: The rules for subscripting with index or slice match the rules in the Python
language. They also match the rules in Spade 1, except that the upper bound of a slice is inclusive in
Spade 1 but exclusive in Spade 2.

3.2 Mapped Operators

Spade takes inspiration from Matlab and supports auto-vectorization (“mapping”) of expression operators
to work over lists and maps. There are two kinds of mapped operators: non-dotted and dotted. Non-dotted
binary operators such as *, +=, or - are mapped if one operand is a scalar and the other a list or map. Here
are some examples:

mutable list<int32> ls = [1, 2, 3]; // 1
ls = 2 * ls; // 2 * [1, 2, 3] == [2, 4, 6] // 2
ls += 2; // [2, 4, 6] + 2 == [4, 6, 8] // 3
ls = ls - 1; // [4, 6, 8] - 1 == [3, 5, 7] // 4
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mutable map<string8, int32> mp = {"x":1, "y":2}; // 5
mp = 2 * mp; // 2 * {"x":1, "y":2} == {"x":2, "y":4} // 6
mp += 2; // {"x":2, "y":4} + 2 == {"x":4, "y":6} // 7
mp = mp - 1; // {"x":4, "y":6} - 1 == {"x":3, "y":5} // 8

Spade also has dotted mapped operators such as .+ or .*. If both operands are equal-length lists or
maps with the same key set, the dotted operators work on corresponding pairs of elements at a time. For
example:

[3,2] .* [5,4] == [3*5, 2*4] == [15,8] // multiply two lists
{"x":4, "y":6} .- {"x":3, "y":1} == {"x":1, "y":5} // subtract two maps

Dotted operators have the same precedence as their non-dotted counterparts:

.* ./ .% Mapped multiplication, division, remainder

.+ .- Mapped addition, subtraction

.<< .>> Mapped bitwise shift left, right

.< .<= .> .>= .!= .== Mapped comparison

.& Mapped and

.^ Mapped xor

.| Mapped or

For Spade 1 users: Spade 1 implicitly mapped both expression operators and functions over lists.
Spade 2 does not provide implicitly mapped functions, because the user can achieve the same effect with an
explicit function and loops, and because doing it implicitly would cause confusion with side effects and with
Spade 2’s richer type system.

3.3 Statements

Statements are the traditional building blocks of imperative languages. As a streaming language, Spade does
not need statements most of the time, but they are permitted inside operator logic and function definitions.
Spade’s assortment of statements is deliberately simple; if you want to write sophisticated imperative code,
you should use Spade’s extension features and put it in a low-level language such as C++ or Java.

A local variable declaration consists of an optional mutable modifier and a type, followed by a comma-
separated list of declared identifiers with optional initializer expressions, followed by a semicolon:

localDecl ::= ‘mutable’? type ( ID ( ‘=’ expr )? )+, ‘;’

An example local variable declaration is mutable int32 i=2, j=3;. The syntax is similar to C or
Java, except that the type does not get tangled up with the variable. For example, Spade does not have
declarations like int32 x,y[],z;. Immutable local variables (without mutable modifier) must be initialized.

A block consists of zero or more statements or variable declarations, surrounded by curly braces:

blockStmt ::= ‘{’ stmt* ‘}’

An example block is { int32 i=0; foo(i, 2); }. Local variables declared in a block remain in scope
until the end of the block. Blocks are often used as bodies for control statements like if/while/for, or as
function bodies.

An expression statement consists of an expression followed by a semicolon:

exprStmt ::= expr ‘;’
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An example expression statement is foo(i, 2);. Obviously, the purpose of an expression statement is
its side-effect. The only operator that have non-error side-effects are assignments, certain function calls, and
increment/decrement (++/--) operators.

An if statement can have an optional else clause:

ifStmt ::= ‘if’ ‘(’ expr ‘)’ stmt ( ‘else’ stmt )?

Dangling else is resolved to the innermost if; you can override this with blocks. Spade does not have
a C-style switch statement.

A for statement loops over the elements of a list, set, or map:

forStmt ::= ‘for’ ‘(’ type ID ‘in’ expr ‘)’ stmt

Spade’s for loops are similar to “for (type ID : expr)” loops in Java 5, but use the Python-style in
instead of the colon (:). Spade does not have a C-style 3-part for loop.

A while statement looks just like in C or Java:

whileStmt ::= ‘while’ ‘(’ expr ‘)’ stmt

A break statement abruptly exists a while or for loop:

breakStmt ::= ‘break’ ‘;’

A continue statement abruptly jumps to the next iteration of a while or for loop:

continueStmt ::= ‘continue’ ‘;’

A return statement abruptly exits a function, optionally returning a value:

returnStmt ::= ‘return’ expr? ‘;’

To summarize, Spade supports the following assortment of statements:

stmt ::= localDecl | blockStmt | exprStmt
| ifStmt | forStmt | whileStmt
| breakStmt | continueStmt | returnStmt

For Spade 1 users: Spade 1 supported a similar assortment of statements in custom logic in Functor
operators.

Language design rationale: Strictly speaking, Spade does not really need statements, because the user
can put such logic in native (C++ or Java) code. We support statements anyway, because it is often easier to
write Spade statements than to go to a native language. Also, code written in pure Spade is more portable
across back-end languages, and offers more opportunities for front-end optimizations.

3.4 Functions

Spade functions are similar to C functions: they can take parameters, return a value or return void, and are
defined at the top level, nested in a namespace and in nothing else. Functions are called from expressions,
which can occur in many places in a Spade program. There are two kinds of functions: non-native functions
are written in Spade, whereas native functions are written in C/C++ or Java. Both kinds of functions can
be invoked from Spade with the same syntax, the caller is oblivious to the implementation language.
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3.4.1 Non-Native Functions

Non-native functions are written directly in Spade, not in a native language like C/C++ or Java. Here is
an example non-native function definition:

int32 twice(int32 x) { return x + x; }

A Spade function definition consists of a head and a block:

functionDef ::= functionHead blockStmt
functionHead ::= functionModifier* type ID ‘(’ functionFormal*, ‘)’
functionModifier ::= ‘public’ | ‘stateful’
functionFormal ::= ‘mutable’? type ID

The function head contains optional modifiers, the return type, identifier, and list of parameter definitions.
Functions can be overloaded. In other words, there can be multiple functions with the same name in
the same scope, as long as they have different parameter signatures. For example, there could be two
function definitions for print(int32) and print(string8), such that print(42) would call the former
and print("the answer") would call the latter. While Spade permits overloading on parameter types, it
forbids overloading on return value types. For example, declaring both int32 f() and string8 f() in the
same scope is a compiler error.

3.4.2 Native Functions

Native function prototypes are declared with Spade syntax in a special comment or an XML model file, but
native function implementations are defined in a native (C/C++ or Java) file. Here is an example native
function prototype:

<ordered T> T max (list<T>)

This declares a generic max function that works on lists of any ordered type T. An ordered type is a type
for which the ordered comparison operators (<, >, <=, and >=) are defined, including strings, timestamps,
enumerations, blobs, and all numeric types except complex numbers. Here is the syntax:

functionPrototype ::= genericFormals functionModifier* type ID ‘(’ protoFormal*, ‘)’
genericFormals ::= ( ‘<’ typeFormal+, ‘)’ )? ( ‘[’ boundsFormal+, ‘]’ )?

typeFormal ::= typeFormalMetaType ID
typeFormalMetaType ::= ‘any’ | ‘collection’ | ‘complex’ | ‘composite’ | ‘decimal’

| ‘enum’ | ‘floatingpoint’ | ‘integral’ | ‘list’ | ‘map’
| ‘numeric’ | ‘ordered’ | ‘primitive’ | ‘set’ | ‘string’ | ‘tuple’

boundsFormal ::= ID
protoFormal ::= formalModifier* type ID?

A generic type formal such as <ordered T> in the function prototype can match any actual parameter
type subject to two constraints: first, the actual parameter type must obey the typeFormalMetaType; and
second, the match must be the same even if it occurs in multiple parameters. Consider the following native
function prototype:

<list T> T concat (T vals1, T vals2)

In this case, the first constraint requires that the parameters must be of some list types, and the second
constraint requires that both parameters are of the same list type. For instance, the call concat([1,2],[3,4,5])
is correct, because both parameters are of type T==list<int32>.

Besides generic type formals, a native function prototype also has optional generic bounds formals. For
example, here is a prototype that overloads the max function for bounded lists:
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<ordered T>[N] T max (list<T>[N])

Again, if the bounds-formal appears multiple times in the prototype, then all the matching bounds from
actual parameter types must be identical. If there are ambiguous overloaded versions of the same generic
native function in the same scope, the compiler flags an error.

For language experts: Native function call resolution, type checking, and overload conflict detection uses
a standard unification algorithm, augmented with constraint checks for the metatypes of type formals.

Practical advice: Use the following guidelines to decide whether to write your functions in Spade or as
native (C/C++ or Java) code. Write a Spade function if you want to avoid the burden of going to a different
file or language, or if you want the portability of code that can be generated in either C/C++ or Java, or
you want the compiler to check statelessness for you. Write a native function if you want to reuse existing
native code, or if you need generics, or if the native language permits a more natural implementation, or if
the native function is significantly faster than one written in Spade.

For Spade 1 users: All functions in Spade 1 were native.

3.4.3 Function Parameters

By default, all parameters are deeply immutable. In other words, the function body can not modify the
parameter itself or any part of it. For example:

void f(list<string8> s) { // 1
s = ["hi", "there"]; //error: parameter s is not mutable // 2
s[0] = "hello"; //error: parameter s is not mutable // 3

} // 4

The previous example would cause compiler errors. Parameters can only be modified if they are declared
with the mutable modifier. The following example is legal:

void f(mutable list<string8> s) { // 1
s = ["hi", "there"]; //legal: s is mutable // 2
s[0] = "hello"; //legal: s is mutable // 3

} // 4

A stateful function is a function that is non-deterministic or has side-effects. A function is non-determi-
nistic if it does not consistently yield the same result each time it is called with the same inputs. A function
has side-effects if it modifies state observable outside the function. For the purposes of this definition,
“state observable outside the function” includes global variables in native code, files, the network, etc.,
but excludes mutable parameters. By default, functions are stateless unless annotated with the stateful
modifier. Native functions are also stateless by default, and the Spade compiler is aware of which native
functions are explicitly marked as stateful. (For language experts: functions that are stateless and have no
mutable parameters are pure.)

All parameters (mutable or immutable, primitive or composite) are passed by-reference. In other words,
the formal parameter in the callee is an alias of the actual parameter in the caller. Note that this is a marked
difference from assignments, which have deep-copy semantics (Section 2.3). Function parameters have by-
reference semantics (like “T &v” in C++), because copying large data into a function would be inefficient
when operating only on a small part of that data. The following example illustrates Spade’s parameter
passing semantics:

void callee(mutable list<int32> x, mutable list<int32> y) { // 1
x[0] = 1; // 2
y = [3,4]; // 3

} // 4
void caller() { // 5
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mutable list<int32> a = [0,0], b = [0,0,0]; // 6
callee(a, b); // 7

} // 8

The assignment x[0]=1 in the callee yields a[0]==1 in the caller. And the assignment y=[3,4] in the
callee yields b==[3,4] in the caller. If the caller passes a computed value that does not have a storage
location, then the callee stores it in a temporary, but modifications have no side effect on the caller. If
you prefer by-value semantics for parameters, you can easily emulate them by copying the by-reference
parameters into local variables.

Functions themselves can be passed as parameters to operators, because an operator invocation is fully
resolved at compile time. But Spade does not permit passing functions to other functions, or storing them
in variables, because it makes code harder to understand for the user, and it is harder to optimize indirect
invocations in a static compiler. (For language experts: Spade provides neither first-class functions nor
higher-order functions.)

Practical advice: Try to write and call stateless functions whenever possible. If you use mostly stateless
functions, you are less likely to write buggy code, and the compiler is more likely to be able to optimize your
code, for example, by parallelizing it, or by partially evaluating it at compile time.

Language design rationale: When designing Spade, we considered to categorically outlaw stateful func-
tions. However, we found that this was hard to enforce for native functions, and that some stateful functions
are useful, for example, functions that interact with external resources such as databases. Furthermore,
stateful functions can yield better performance through memoization or when they make a small modifica-
tion to a large data structure. Therefore, we decided to permit them in Spade, but the language design
encourages mostly writing stateless functions. Unfortunately, it is impractical to statically check stateless-
ness for native functions, so library vendors must be careful to declare native functions stateful when they
read or write outside state.

4 Streams

The purpose of Spade is to allow users to create streams of data, which are connected and manipulated by
operator invocations. Spade programs are designed to be deployed on distributed hardware for scaling [1].
The main goals of Spade are scalability (exploiting distributed hardware), extensibility (encapsulating low-
level code in high-level operators), and usability (easing the writing of scalable and extensible code).

A stream is an infinite sequence of tuples. As we saw in Section 2, a tuple is simply an instance of a
tuple type, consisting of named attributes. Each stream is the result of an operator invocation. An operator
invocation consumes zero or more input streams and defines zero or more output streams. Each time a
tuple arrives on one of the input streams, the operator fires, and can produce tuples on output streams.
An operator invocation in Spade returns streams, analogously to how a function invocation in a traditional
language returns values. However, given that a stream is an infinite sequence of tuples, each operator
invocation is active for the duration of the program execution. This section shows how to define streams of
tuples by invoking operators.

4.1 Operator Invocation Head

An operator invocation invokes an operator on input streams and defines output streams. Each operator
invocation has a head and a body. The head lists the connected streams and the operator used to process
these streams. The body elaborates on how the operator is to be invoked. The BNF syntax is:

opInvoke ::= opInvokeHead opInvokeBody

The head of an operator invocation lists the output and input streams and the name of the operator
that processes the data. Figure 3 shows a contrived operator invocation that illustrates multiple output and
input streams as well as aliases. The Spade code for this example is as follows:
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MyOperator

SomeLongNameForAnOutputStream

C D

A B

AnotherLongNameForAnOutputStream

SomeLongNameForAnInputStream
FirstStreamInSecondPort
SecondStreamInSecondPort

Figure 3: Graphical representation of the information in an operator invocation head.

( stream<int32 a1, int32 a2> SomeLongNameForAnOutputStream as A; // 1
stream<float64 b> AnotherLongNameForAnOutputStream as B // 2

) = MyOperator( // 3
SomeLongNameForAnInputStream as C; // 4
stream<float64 i> FirstStreamInSecondPort, SecondStreamInSecondPort as D // 5

) { // 6
output A: a1=1, a2=max(n); // 7

B: b = C.i + D.i; // 8
} // 9

Lines 1 and 2 show the two output streams defined by this operator invocation, separated by a semicolon.
Each has a type, a name, and an optional alias (as A and as B). The type lists the attributes of tuples on
the stream; the name can be used as input to other operator invocations; and the alias can be used internally
in this stream’s body. Line 3 shows the name of the operator to invoke, in this case, MyOperator. Finally,
Lines 4 and 5 show two input ports, separated by a semicolon. Each has an optional type, one or more
stream names separated by commas, and an optional alias (as C and as D). Port D combines two input
streams, FirstStreamInSecondPort and SecondStreamInSecondPort, separated by commas. The general
syntax is:

opInvokeHead ::= opOutputs ( ‘as’ ID )? ‘=’ ID opInputs
opOutputs ::= opOutput | ‘(’ opOutput*; ‘)’
opOutput ::= streamType ID ( ‘as’ ID )?

opInputs ::= ‘(’ portInputs*; ‘)’
portInputs ::= streamType? ID+, ( ‘as’ ID )?

A port is a point at which streams connect to an operator invocation. Figure 3 shows ports as little
black rectangles. Each output port produces exactly one output stream, but an input port can combine
more than one input stream. When there is exactly one output port, the parentheses around the outputs
can be omitted. When there are zero output ports, the empty parentheses and the operator instance name
are mandatory, e.g., () as A = B() {}. When there are multiple streams on the same input port, tuples
coming from different streams are interleaved. The order of the interleaving is non-deterministic in the sense
that no particular order is imposed by the runtime. The as-alias notation assigns short names to ports; it is
optional, and is useful to keep code readable in the presence of long stream names.

Output ports carry a mandatory stream type, and input ports carry an optional stream type. A stream
type just consists of a tuple body:

streamType ::= ‘stream’ ‘<’ tupleBody ‘>’

If there are multiple input streams on the same port, they must all have the same type. If the type of
an input port is explicitly specified, it must be equivalent to the type of the stream(s) connecting to it. The
tupleBody component of the stream type may be either a list of attributes, or a list of tuple types (extension),
where identifiers can refer to types of other streams by their stream names. For details, see the description
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of tuple types in Section 2.2.2.
Practical advice: Instead of using the as alias notation, we encourage using short stream names in the

first place. Stream names that are too long indicate that it might be time to decompose the program into
composite operators, see Section 5.1.

Language design rationale: By putting just the connected streams and the operator name in the head,
we make it possible for users to quickly scan an program’s topology. A folding editor can even hide the
stream bodies while the user looks at the stream heads. Types on input streams are redundant, because
they also occur when those streams are defined, as outputs of other operator invocations. Nevertheless, we
allow users to optionally specify these types when they feel that they make code more readable. This can
also lead to more understandable compiler error messages when there is a type mismatch.

For Spade 1 users: Spade 1 solved the problem of long stream names by referring to streams positionally
($1, $2, etc.); Spade 2 uses aliases instead. Spade 1 also allowed additional information in stream heads,
such as import/export modifiers; Spade 2 replaces them by Import/Export operators (see Section 6.3).

4.2 Operator Invocation Body

The body of an operator invocation specifies how the operator is to be customized. Spade supports a wide
variety of operators with the default toolkits shipped with the compiler, and furthermore, developers can
extend Spade with new operators. Each operator can be customized and reused in different places in a
data flow graph. To support this customization, Spade supports a versatile customization syntax. All the
configuration happens in the operator invocation body, to avoid tangling it with the data flow specification
in the operator invocation head. The following example illustrates all possible operator invocation body
clauses:

stream<string8 buyer, string8 seller, string8 item, int64 id> Sale // 1
= Join(Bid; Quote) // 2

{ // 3
logic state : mutable uint64 n = 0; // 4

Bid : n++; // 5
window Bid : sliding, time(30); // 6

Quote : sliding, count(50); // 7
param match : Bid.item == Quote.item && Bid.price >= Quote.price; // 8
output Sale : item = Bid.item, id = n; // 9
config wrapper : gdb; //10

} //11

An operator invocation body can have five clauses:

• The logic clause consists of local state that persists over the whole program execution, and statements
that execute when a tuple arrives on an input port (see Section 4.3).

• The window clause specifies how many previously received tuples of each port to remember for later
processing by stateful operators such as Join, Sort, or Aggregate (see Section 4.5).

• The param clause contains code snippets, such as expressions, supplied to the operator at invocation
time; at runtime, the operator executes them whenever needed for its behavior (see Section 4.2.2).

• The output clause assigns values to attributes in output tuples each time the operator submits data
to an output stream (see Section 4.2.1).

• The config clause gives directives and hints that influence how the compiler builds this operator
invocation, or how the runtime system executes it (see Section 4.2.3).
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Each clause is optional, and in fact, most operator invocations only use few clauses. The syntax is:

opInvokeBody ::= ‘{’
( ‘logic’ opInvokeLogic+ )?

( ‘window’ opInvokeWindow+ )?

( ‘param’ opInvokeActual+ )?

( ‘output’ opInvokeOutput+ )?

( ‘config’ configuration+ )?

‘}’
opInvokeLogic ::= ( ID | ‘state’ ) ‘:’ stmt
opInvokeWindow ::= ID ‘:’ expr+, ‘;’
opInvokeActual ::= ID ‘:’ opActual ‘;’
opInvokeOutput ::= ID ‘:’ ( ID ‘=’ expr )+, ‘;’

Note that although the clauses do not have exactly the same syntax, most of them are special cases of
comma-separated expression lists. Also note that the compiler will, in addition to these syntactic constraints,
enforce semantic constraints on each clause. For example, only the windows described in Section 4.5 are
legal in the window clause.

Language design rationale: Spade separates the body of operator invocations into clauses to make them
easy to read. Clause order follows execution order: when a tuple arrives, logic executes first, followed by
storing history in windows, executing parameter expressions, and finally assigning output attributes when
the operator submits a tuple. Since the user rarely needs to see configuration options to understand what the
code does, they have their own clause at the bottom of the operator invocation body. An IDE can facilitate
writing structured operator invocation bodies, and can facilitate reading them by selectively folding clauses
out of sight.

For Spade 1 users: In Spade 1, logic was written in angle brackets (<...>) after a Functor stream head.
Windows were specified between angle brackets as part of the input stream list. Parameters were written
between square brackets ([...]), and, depending on whether the operator was built-in or user-defined, could
be named or unnamed. Output assignments were written between curly braces ({...}) after the parameter
section. Configuration options were written after an arrow (->...) at the end of an operator invocation. Here
is the operator invocation defining stream Sale in Spade 1:

stream Sale(buyer: String, seller: String, item: String) := Join # 1
#* omitted: Spade 1 only allows logic in Functors *# # logic # 2
( Bid <time(30)>; Quote <count(50)> ) # windows # 3
[ $1.item = $2.item & $1.price >= $2.price ] # parameters # 4
{ item := $1.item } # outputs # 5

-> wrapper = gdb # configs # 6

4.2.1 Output Clause

The output clause assigns values to attributes in output tuples each time the operator submits data to
an output stream. For example, “output Sale: item = Bid.item, id = n;” assigns values to attributes
item and id in output stream Sale. The label, such as Sale, is an output stream name or alias, and opens
the scope of that stream similarly to a Pascal “with” statement. The right-hand side is a comma-separated
list of assignments to attributes.

For most operators, any attribute in the output stream that is not assigned by the output clause is
implicitly copied from an attribute with the same name defined on an input stream. If there is not exactly
one input attribute to copy, the compiler flags an error. Certain operators may have different forwarding
behavior, specified by their operator model (operator models are described in Section 5.6.2).

Practical advice: Avoid calling stateful functions in the output clause.
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4.2.2 Stream Parameters

The param clause contains code snippets supplied to the operator at invocation time. For example, the clause
“param match: Bid.item == Quote.item && Bid.price >= Quote.price;” supplies a boolean expres-
sion as the match parameter to an operator, such as Join. At runtime, the operator executes the expression
whenever needed for its behavior. For each time the operator fires, the expression might execute zero, one,
or multiple times depending on the operator; but if it executes, it executes after the logic clause and before
the output clause. Expressions are just one of a total of five kinds of parameter: (i) a comma-separated list
of stream attribute names, (ii) a comma-separated list of expressions, (iii) a function name, (iv) an operator
name, or (v) a type. The documentation of an operator specifies which parameters it expects, and the
compiler checks that the right kind of entity is passed as a parameter. Primitive operators can only accept
parameters of the forms (i) and (ii), composite operators can also accept parameters of the forms (iii), (iv),
and (v).

4.2.3 Stream Configuration

The config clause specifies hints and directives that influence how the compiler builds this operator invoca-
tion, or how the runtime system executes it. Configuration options include deployment directives, debugging
support, or high-availability and fault-tolerance configurations. For example, the config wrapper: gdb di-
rects the runtime to invoke the operator through a wrapper program, in this case, gdb (the GNU debugger).
The wrapper is a program that launches another program; in this case, gdb launches the execution container
containing the operator instance. The IDE and tools for Spade will also provide external ways to specify
configuration options without editing the source code. In that case, config clauses embedded in the source
code specify a default, and external configuration options override it.

Practical advice: Embedded config clauses are useful during testing and development, but if you want
your code to be reused on different infrastructure, avoid hard-wiring anything that is specific to your local
infrastructure.

Language design rationale: We considered disallowing embedded configuration options altogether, but
decided against that, because they were popular among Spade 1 users.

4.3 Stream Logic

The logic clause consists of local operator state that persists over the whole program execution, and
statements that execute when a tuple arrives on an input port. For example:

stream<float64 runningAvg> FStr = Functor(IStr) { // 1
logic state : { mutable float64 avg = 0.0, alpha = 0.1; // 2

mutable int64 no = 0; } // 3
IStr : { //code executed when tuple arrives on IStr // 4

if (no == 0l) { // 5
avg = sample; //that’s IStr.sample // 6

} else { // 7
float64 beta = 1.0 - alpha; // 8
avg = alpha * sample + beta * avg; // 9

} //10
no++; //11

} //12
param filter: true; //13
output FStr : runningAvg = avg; //14

} //15

The state: label introduces variable declarations. In this case, there is only one input port IStr, and
the IStr: label introduces code to be executed each time a tuple arrives on that stream. It opens up the
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scope of the input stream, so attributes can be accessed without qualifiers. Spade supports custom logic
on each port and the state variables are shared among them. The code itself is typically a block, but
can be any Spade statement, as described in Section 3.3. Access to operator invocation state is implicitly
synchronized. The Spade compiler inserts the necessary locks to ensure that no two threads experience race
conditions from concurrent access to state variables in the stream logic clause.

For Spade 1 users: Spade 1 supports custom logic only in invocations of the Functor operator; Spade 2
supports it on invocations of all operators. Here is the Spade 1 version of the example:

stream FStr(runningAvg: Double) := Functor(IStr) # 1
< Double $avg := 0d; Double $alpha := 0.1d; Long $no := 0l; > # 2
< #code executed when tuple arrives on IStr # 3
if($no = 0l) { # 4
$avg := sample; # that’s IStr.sample # 5

} else { # 6
Double $beta := 1.0d - $alpha; # 7
$avg := $alpha * sample + $beta * $avg; # 8

} # 9
$no := $no + 1; #10

> #11
[ true ] { runningAvg := $avg } #12

The first angle-bracket delimited section (<...>) in Spade 1 corresponds to the state: section in Spade 2,
and the second angle-bracket delimited section in Spade 1 corresponds to the portName: section in Spade 2.
Spade 2 supports multiple logic sections in the same operator, one per port, which can all refer to the same
state, e.g., to count tuples from either port.

4.4 Punctuation

A punctuation is a control signal that appears interleaved with the tuples in a stream. Spade supports two
kinds of streams: a punctuation-free stream is an infinite sequence of tuples, whereas a punctuated stream is
an infinite sequence of tuples interleaved with punctuations. A punctuation separates groups of consecutive
tuples on a stream to create window boundaries. For example, consider an invocation of an Aggregate
operator with a punctuation-based window. Each time this operator invocation receives a punctuation, it
aggregates the accumulated tuples since the last punctuation.

An output port of an operator invocation can either generate, remove, or preserve punctuation markers.
Examples for punctuation-generating ports include the output from the Join, Aggregate, and Punctor
operators. Punctuation-free ports guarantee that their output stream is not punctuated, and punctuation-
preserving ports will forward punctuations, but only if there is a unique punctuated input stream.

An input port of an operator invocation can either be punctuation-oblivious or punctuation-expecting.
Ports are oblivious to punctuation if there is no window or any window other than punctuation-based
windows. Ports with punctuation-based windows expect that the input stream be punctuated. Punctuation-
expecting ports must be connected to exactly one input stream. The compiler enforces these rules of punc-
tuation by reporting errors when they are violated.

4.5 Windows

A window is a logical container for tuples recently received by an input port of an operator. Some relational
operators rely on windows for their operation; for example, in Join(A;B), when a tuple arrives on port A,
Spade updates the window on port A and matches the new tuple against each tuple in the window on port B.
The following example illustrates different kinds of windows on different input ports; see later subsections
for an exhaustive description.
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stream<float32 c> A = MyOperator(C; X, Y as D) { // 1
window C : sliding, time(10), count(5); // 2

D : tumbling, delta(i, 10); // 3
} // 4

Port C uses a time-based sliding window over the last 10 seconds, which triggers the operator’s logic after
every 5 tuples. Port D, which interleaves tuples from streams X and Y, uses an attribute-delta based tumbling
window, where attribute i in the oldest and newest tuple differs by no more than 10. Attribute names are
scoped by the port label in the window clause: for example, i corresponds to D.i. All expressions in windows
must be compile-time constants. The following subsections describe available windowing mechanisms in
detail.

For Spade 1 users: In Spade 1, the example would look like this:

stream A(c : Float) # 1
:= MyOperator(C <time(10), count(5)>; X, Y <attrib(i, 10)>) # 2

[] {} # 3

Spade 1 keeps window specifications in the operator invocation head next to the input streams, Spade 2
keeps them in the body. Another difference is that Spade 1 window support was not uniform over all
operators.

4.5.1 Tumbling Windows

A tumbling window stores incoming tuples until the window is full, then executes the operator logic, and
finally flushes all stored tuples, before starting over from scratch. A tumbling window is specified by providing
just an expiration policy, in other words, the window size, which determines when the window is “full”.
Spade offers four expiration policies:

• count(n): Count-based window, storing n tuples.

• time(n): Time-based window, storing tuples arriving over a period of n seconds.

• delta(a, n): Attribute-delta based window, storing tuples until the difference between attribute a
of the oldest and the newest tuple exceeds n. The attribute is typically monotonically increasing, and
is often a timestamp. That way, an attribute-delta based window can emulate a time-based window,
but instead of using current time on the local machine, it uses a time attribute streamed along with
the data.

• punct(): Punctuation-based window, storing tuples until the next punctuation arrives. An upstream
operator can generate punctuations, and a downstream operator can use them for windowing.

4.5.2 Sliding Windows

A sliding window is specified by providing both an expiration policy and a trigger mechanism. For example,
sliding, time(10), count(5) means the expiration policy keeps the window size to 10 seconds, and the
trigger mechanism executes the operator logic after every 5 tuples. A sliding window expels the oldest tuples
to maintain the window size when new tuples are coming in, and it executes the operator logic each time
it reaches a trigger. Unlike for tumbling windows, the expiration policy and trigger mechanism for sliding
windows are independent from each other, so an old tuple can still be in the window if the logic of the operator
gets triggered again before the tuple expires. The available expiration policies and trigger mechanisms are
count-based, time-based, and attribute-delta based, but not punctuation-based. In other words, the window
can use one of three expiration policies and one of three trigger mechanism, yielding a total of 9 combinations.
If the trigger mechanism is omitted, it defaults to count(1); for example, “sliding, count(3)” is equivalent
to “sliding, count(3), count(1)”.
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4.5.3 Grouping

The operator parameter param perGroup: true specifies that instead of maintaining just one window per
port, the operator invocation maintains one window per port per group. A group is a set of tuples that have
the same values for grouping attributes. For example, with the parameter param groupBy: x, y, tuples
belong to different groups if they differ in either attribute x or y. When a new tuple arrives on a port,
it is routed to the window for its own group. Each group window uses an expiration policy and trigger
mechanism as described above for tumbling and sliding windows. Grouping is frequently used in conjunction
with aggregation; Section 5.4 gives a concrete example. The perGroup and groupBy parameters are not a
language feature. They are operator-specific, but by convention, most operators implement them to follow
the guidelines described here.

4.5.4 History

Expressions in parameters or output assignments of operator invocations can refer directly to tuples received
in the past. History access conceptually treats a window as a list of tuples, which can be subscripted by
using the input port name. For example, in

stream<int32 id, int32 diff, string8 name> Out = Functor(In) { // 1
window In : sliding, count(2); // 2
param filter : name != In[1].name; // 3
output Out : diff = id - In[1].id; // 4

} // 5

the expression In[1].name refers to a historical tuple on port In, 1 tuple in the past, and extracts the
name attribute from it. The current tuple is at index 0, so the above filter parameter could also have been
written as In[0].name != In[1].name. History access does not support slicing.

For Spade 1 users: Spade 1 used the hat (^) notation for history access. Here is the Spade 1 version of
the example:

stream Out(id: Integer, diff: Integer, name: String) # 1
:= Functor(In) # 2

[ name != ^1.name ] # 3
{ diff := id - ^1.id } # 4

4.6 Error Semantics

Even though Spade has been designed to perform most of its error checking at compile time, runtime errors
can still happen in some cases. This includes an invalid subscript for a list, blob, string, or map; a size
mismatch in the operands of mapped expression operators; division by zero; or exceptions in libraries (such
as C++ or Java exceptions).

When any of these occur, the entire partition (execution container) enclosing the operator invocation
dies, writes the error to a log file, and stops accepting new tuples. The Spade distribution may come with
additional tools and options, such as a debugging tool, or a “resilient” option where the partition just logs
the error and ignores one tuple, but then continues executing.

To help the user with error handling, Spade provides APIs for assertions and logging. Assertions look
like calls to an assert function with the following signature:

stateful void assert(boolean condition, string8 message) { /*native*/ } // 1
stateful void assert(boolean condition) { /*native*/ } // 2

They are marked stateful, since logging or halting is a side effect. However, unlike regular function calls,
and like assertions in C or Java, Spade assertions can be disabled. When a Spade program is compiled with
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assertions disabled, their parameter expressions are not evaluated, saving time and possibly preventing side
effects.

Besides assertions, Spade also provides two other features to help testing and error handling. One is a
log function, with the following signature:

stateful void log(enum{error,info,debug,trace} logLevel, // 1
string8 message, string8 aspect) { /*native*/ } // 2

The value error means that the log is unmaskable, whereas the values info, debug, and trace mean
that logging should be performed when the user requested least verbose, more verbose, or most verbose
logging, respectively.

Besides assertions and logging, Spade also provides an abort() function, which unconditionally termi-
nates the application instance, even when compiled with assertions disabled.

Language design rationale: We considered adding full-fledged exception handling to Spade, with try/-
catch/finally statements. But we decided against that because if the user anticipates the exception, it is
easy to check with if-statements, whereas if the exception is unanticipated, the logging functionality that
Spade provides is probably more helpful than exception handlers a user could write.

5 Operators

A stream operator can be invoked to transform input streams to output streams. Spade supports two kinds
of operators: primitive operators and composite operators. A composite operator contains a reusable stream
subgraph. A Spade application can be viewed as a hierarchy of operator invocations, where the leaves are
primitive operators, each level groups graphs of operators into composite operators, and the root is a main
operator to be deployed as an application instance on the streaming middleware. All operator invocations
follow the syntax described in Section 4, irrespective of whether they invoke primitive or composite operators.

This section is about how to define new operators that can then be invoked to define streams. Most
streaming languages are tailored towards a single application domain. For example, StreamSQL targets the
stream-relational domain [2]. Spade, on the other hand, is designed to address a diverse set of domains.
Key to this diversity is that Spade users can define their own operators, either in Spade itself or by reusing
legacy code written in C++ or Java.

For Spade 1 users: Spade 1 only supported primitive operators, no composite operators.

5.1 Composite Operators

A composite operator contains a reusable stream subgraph, which can itself be invoked to define streams.
Each composite operator definition has a head and a body. The head lists input and output ports, and the
body specifies the graph and its parameters. The syntax is:

compositeDef ::= compositeHead compositeBody

The head of a composite operator definition names the operator and lists its ports. For example:

composite M (output K, L; input G, H) { // 1
/*...*/ // 2

} // 3

The composite operator M has two output ports, K and L, and two input ports, G and H. The syntax is:

compositeHead ::= ‘composite’ ID ( ‘(’ compositeInOut+; ‘)’ )?

compositeInOut ::= ( ‘input’ | ‘output’ ) ( streamType? ID )+,

streamType ::= ‘stream’ ‘<’ tupleBody ‘>’
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The body of a composite operator definition specifies what kind of parameters it accepts, and contains a
stream graph. Besides these two clauses (param and graph), the body can also contain a type clause with
type definitions, a var clause with shared variable definitions, and a config clause with compiler hints and
directives. All five clauses are optional. Here is the syntax:

compositeBody ::= ‘{’
( ‘param’ compositeFormal+ )? # Section 5.3
( ‘type’ typeDef + )? # Section 5.1.2
( ‘var’ sharedVarDef + )? # Section 5.5
( ‘graph’ opInvoke+ )? # Section 5.1.1
( ‘config’ configuration+ )? # Section 5.1.3
‘}’

Practical advice: We encourage you to use composite operators whenever you write a large program,
because it becomes easier to understand when you break it down into smaller subgraphs. We also encourage
you to make your composite operators reusable, and put them into libraries, so they can be invoked in
different programs. Finally, you can use parameterizable composite operators to implement distributed
computing patterns such as map-reduce.

Language design rationale: Besides the obvious structuring and reuse advantages, composite operators
help visualizing both static and dynamic views of programs. And composite operators serve as a foundation
for higher-level stream programming, for example, with ontology-based planning. The syntax for composite
operators separates the head from the body, to make it easy to see port connections, and splits the body
into multiple clauses, to make it easier to read and enable folding editors.

5.1.1 Graph Clause

The graph clause of a composite operator describes a stream data flow subgraph, which can then be expanded
in different contexts when the operator is invoked. Here is an example:

composite M (output K, L; input G, H) { // 1
graph stream<int32 x> I = O(G) { } // 2

stream<int32 x> J = P(H) { } // 3
stream<int32 x> K = Q(I; J) { } // 4
stream<int32 x> L = R(J) { } // 5

} // 6
(stream<int32 x> C; stream<int32 x> D) = M(A; B) { } // 7
(stream<int32 x> E; stream<int32 x> F) = M(A; B) { } // 8

Figure 4 illustrates the graph topology in this example. The original graph contains two invocations
using composite operator M: once to transform A and B into C and D, and the other time to transform A and
B into E and F. The head of the composite operator definition (output K, L; input G, H) defines input
and output ports. When the composite operator gets used, actual input and output streams are bound to
these ports; for example, for the first invocation, the bindings are G=A, H=B, K=C, and L=D. In the expanded
graph, intermediate streams such as I and J in the example are duplicated and renamed C.I, C.J, E.I,
and E.J. Section 5.2 elaborates on Spade’s stream naming scheme. (For language experts: The compile-
time expansion of composite operators behaves similarly to macros, but is “hygienic”, since it generates new
names to prevent unintended name capture.)

5.1.2 Type Clause

A type definition gives a name to a type. For example:

composite Comp ( /*...*/ ) { // 1
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Figure 4: Composite operator expansion example.

type IntegerList = list<int32>; // 2
MySchema = string8 x, IntegerList y; // 3

graph /* ... */ // 4
stream<MySchema, tuple<int32 z>> SenSource = FileSource() { // 5
param fileName : "SenSource.dat"; format: csv, noDelays; // 6
config placement : host(SourcePool[0]); // 7

} // 8
} // 9

The type MySchema is defined as a tuple, leaving out the optional constructor tuple<...>. The type
can be used in operator invocations. In this case, it is used in “MySchema, tuple<int32 z>”, which
extends MySchema by adding another attribute “int32 z”. Tuples on stream SenSource have the type
tuple<string8 x, list<int32> y, int32 z>, in other words, all attributes of MySchema, plus the ad-
ditional z attribute. Spade also allows using the name of a stream to refer to its type. For exam-
ple, if there is a stream A, then stream<A> B declares a stream B with the same type as stream A, and
stream<A, tuple<int32 i>> C declares a stream C with tuples that extends A by an extra attribute i.

The syntax of a type definition is:

typeDef ::= ‘public’? ID ‘=’ ( type | tupleBody ) ‘;’

Public type definitions (with the public modifier) may be used from anywhere in the program, whereas
private type definitions (without public modifier) are only visible in the same composite operator body that
defines them. Public type definitions must not depend on any operator parameters. To access a type from
a different composite operator, qualify it with its operator, e.g., my.nameSpace::MyOperator.MyType.

For Spade 1 users: Here is the same example in Spade 1:

[Typedefs] # 1
typedef Integers IntegerList # 2
[Program] # 3
vstream MySchema( # 4
sx : String, dx : Double, fx : Float, lx : Long, # 5
ix : Integer, iy : Integer, bx : Boolean ) # 6

stream SenSource(schemaFor(MySchema), id: Integer) # 7
:= Source() ["file:///SenSource.dat", nodelays, csvformat]{} # 8
-> node(SourcePool, 0) # 9
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Spade 1 supported two different kinds of type definitions. Tuple types were defined in the [Program]
clause with the vstream keyword, whereas all other types were defined in the [Typedefs] clause with the
typedef keyword. Spade 2 unifies the two. Also, in Spade 1, you can use the schemaFor function to get
the type of a stream, whereas in Spade 2, you can simply use the name of a stream to stand for its type.

5.1.3 Composite Operator Configuration

In Spade, a configuration option gives a directive or a hint to the compiler, for example, to specify de-
ployment, debugging support, or transport mechanisms. As we saw in Section 4.2.3, configurations can be
embedded in the source code, or externally at the IDE level. This section describes the config clause of a
composite operator, which configures all operator invocations in its graph at once. For example:

type T = int32 i; // 1
stream<T> S1 = Op1(S0) { } // 2
composite Comp(output Out; input In) { // 3
graph stream<T> S2 = Op2(In) { } // 4

stream<T> S3 = Op3(S2) { } // 5
stream<T> Out = Op4(S3) { } // 6

config wrapper : gdb; // 7
} // 8
stream<T> S4 = Comp(S1) { } // 9
stream<T> S5 = Op5(S4) { } //10

The config wrapper: gdb directs the runtime to invoke all operators used in the graph Comp using gdb
(the GNU debugger) as a wrapper program.

(For Spade 1 users: Spade 1 specifies configuration options after -> in operator invocations. Since
Spade 1 has no composite operators, you have to specify the configuration repeatedly on each individual
operator invocation:

vstream T(i : Integer) # 1
stream S1(schemaFor(T)) := Op1(S0) [ ] { } # 2
stream S2(schemaFor(T)) := Op2(S1) [ ] { } -> wrapper=gdb # 3
stream S3(schemaFor(T)) := Op3(S2) [ ] { } -> wrapper=gdb # 4
stream S4(schemaFor(T)) := Op4(S3) [ ] { } -> wrapper=gdb # 5
stream S5(schemaFor(T)) := Op5(S4) [ ] { } # 6

Specifying configuration options separately on each operator invocation is still allowed in Spade 2, but
doing it at the composite operator level can prevent repetitive code.)

When there are configuration options both on the definition and the invocation of a composite operator,
the invocation config overrides the definition config. Consider this example:

namespace com.ibm.spade.MyNs; // 1
composite MyOp(output V; input U) { // 2
graph // 3
stream<int32 i> V = Functor(U) { // com.ibm.spade.relational.Functor // 4
config // 5
wrapper: sdb; // instance config, rank 1 // 6

} // 7
config // 8
wrapper: gdb; // definition config, rank 3 // 9

} //10
composite Main { //11
graph //12
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stream<int32 i> X = FileSource() { /*...*/ } //13
stream<int32 i> Y = MyOp(X) { //14
config //15
wrapper: console; // instance config, rank 2 //16

} //17
config //18
wrapper: valgrind; // definition config, rank 4 //19

} //20

The operator instance Y.V has the config wrapper: sdb. In general, a config for a primitive operator
instance is resolved by first going up in the operator instance hierarchy and checking for configs attached
to operator instances, then going up in the operator instance hierarchy and checking for configs attached to
composite operator definitions.

Practical advice: While this section illustrates the config clause with some examples, these examples are
not themselves part of the language specification. Configuration options, along with other runtime behaviors,
will be defined in separate documents (for example, the InfoSphere Streams “Spade Config Reference”).

5.2 Stream and Operator Instance Names

Spade has rules for giving names to operators, operator instances, streams, and ports. For example:

(stream<T> Stream1 as S1; stream<T> Stream2 as S2) as OpInstance // 1
= MyOp(Stream3 as S3; Stream4 as S4) { /*body of opInvoke*/ } // 2

The name MyOp identifies the invoked operator, whereas the name OpInstance identifies the operator
instance. Names Stream1, Stream2, Stream3, and Stream4 identify streams, whereas names S1, S2, S3, and
S4 identify ports and can only be used in the body of the operator invocation.

If the as-clause with the explicit operator instance name (as OpInstance in the example) is missing, then
the output stream names serve as operator instance name. For example, in stream<T> A = Foo1(I){ },
the name A identifies both a stream and the operator instance. If there are multiple output streams, then all of
them are synonyms for the operator instance. For example, in (stream<T> A; stream<T> B) = Foo2(I){ },
both names A and B identify different streams but the same operator instance. If there are zero output
streams, then the operator instance name is mandatory. For example, () = Foo0(I){ } is a syntax error,
whereas () as FooInstance = Foo0(I){ } is valid.

The above rules describe simple names for streams and operator instances in the main composite operator;
streams and operator instances nested in other composite operators are identified by qualified names. (The
difference between a simple name and a qualified name is that a qualified name has qualifier tokens “.”
or “::”). Spade uses an outside-in naming scheme: given a stream with the simple name Z in a composite
operator instance with the name X.Y, the qualified stream name is X.Y.Z. The streams C.I, C.J, E.I, and
E.J in Figure 4 are good examples for this outside-in naming scheme. Qualified stream or operator instance
names are used in dynamic application composition and in external tooling, such as the IDE or the debugger.

5.3 Operator Parameters

Different invocations of the same operator can yield different expansions, by providing actual parameter
values for formal parameter placeholders declared in the operator definition.

5.3.1 Operators as Parameters to Composite Operators

A composite operator encapsulates a subgraph and some of the operators in that subgraph can be given
to the composite operator as parameters at the time of invocation. Thus, composite operators can act as
generic graph stencils, which are useful for implementing high-level distributed well-structured computation
paradigms such as map-reduce [3]. The following code is a parametric version of the composite operator M
defined earlier:
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composite M (output K, L; input G, H) { // 1
param operator $Q; //operator (primitive or composite) // 2
graph stream<int32 x> I = O(G) { } // 3

stream<int32 x> J = P(H) { } // 4
stream<int32 x> K = $Q(I; J) { } // 5
stream<int32 x> L = R(J) { } // 6

} // 7
(stream<int32 x> C; stream<int32 x> D) = M(A; B) { param Q: S; } // 8
(stream<int32 x> E; stream<int32 x> F) = M(A; B) { param Q: T; } // 9
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Figure 5: Composite operator parameter example.

Figure 5 illustrates how the composite operator and its parameter get expanded. The first expansion,
on the left, replaces the placeholder parameter $Q by the actual operator S. The second expansion, on the
right, replaces the placeholder parameter $Q by the actual operator T.

5.3.2 Other Operator Parameters

Both composite and primitive operators can be customized by parameters such as the name of an attribute
in a connected stream, or an expression to be used to filter data. The following example illustrates this for
a composite operator Mogrifier:

composite Mogrifier(output Out; input In) { // 1
param attribute $attr; // 2

expression $expr; // 3
graph stream<In> Out = Functor(In) { // 4

param filter: $attr < $expr; // 5
output Out : $attr = $attr + 1; // 6

} // 7
} // 8
stream<int32 i, int32 j> A = FileSource() { /*...*/ } // 9
stream<int32 i, int32 j> B = Mogrifier(A) { //10
param attr: i; //11

expr: 2 * j; //12
} //13

Binding the actual attribute i to placeholder $attr and the actual expression 2*j to placeholder $expr
yields the following expansion:
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stream<int32 i, int32 j> A = FileSource() { /*...*/ } // 1
stream<int32 i, int32 j> B = Functor(A) { // 2
param filter: i < 2 * j; // 3
output B : i = i + 1; // 4

} // 5

5.3.3 Operator Parameter Passing Semantics

Operator parameters in Spade behave similarly to macro expansion, but the semantics are designed to
prevent macro mistakes common in languages like C. In particular, Spade defines a name resolution rule to
prevent accidental name capture and a syntactic confinement rule to prevent unintended re-association.

The name resolution rule for names in actual parameters is that the Spade compiler resolves them
in the context of the operator invocation, not in the context of the operator definition. As we will see in
Section 5.5, you can define variables in the var clause of a composite operator. The following example
illustrates how Spade resolves names when there are multiple choices:

composite Comp1(output O1; input I1) { // 1
var int32 s_t = 1; // 2
graph stream<int32 x> O1 = Comp2(stream<int32 x> I1) { param cond: x < s_t; } // 3

} // 4
composite Comp2(output O2; input I2) { // 5
param expression $cond; // 6
var int32 s_t = 2; // 7
graph stream<I2> O2 = Functor(stream<int32 x> I2) { param filter: $cond; } // 8

} // 9

The actual value for parameter cond in Line 3 is x < s t, which contains two names x and s t. The names
are resolved in the context of the operator invocation in Line 3, where x is I1.x and s t is Comp1.s t, which
is 1. If the names were resolved in the context of the operator definition, then, since $cond is used in Line 8,
x would be I2.x and s t would be Comp2.s t, which is 2. This would make no difference for x, because
I1.x and I2.x are the same, but it would make a difference for s t, because Comp1.s t and Comp2.s t
differ. By resolving s t to Comp1.s t, the language shields the author of Comp1 from implementation details
of Comp2. The rule “resolve names in the invocation, not the definition” supports encapsulation, because
it hides implementation details of the operator, rather than allowing them to leak out by capturing names.
(For language experts: Spade operator parameters have “call-by-name” semantics. But note that they are
used with partial evaluation: everything is expanded at build time. If the expanded expression only uses
build-time values, it is fully evaluated at build time. On the other hand, if the expanded expression also
involves runtime values, only the build-time subexpressions are partially evaluated, and the rest is evaluated
at runtime.)

The syntactic confinement rule for Spade operator parameters is that argument expressions are
implicitly parenthesized. The implicit parentheses “confine” them from associating in unexpected ways when
they get used. A corollary of this rule is that you cannot pass something that does not start out confined;
for example, an incomplete expression like “x +” is not valid as an actual parameter to an operator. The
following example illustrates the syntactic confinement rule:

composite M(output Out; input In) { // 1
param expression<int32> $q; // 2
graph stream<float32 percent> Out = Functor(In) { // 3

output Out: percent = float32(100 * $q); // 4
} // 5

} // 6
stream<float32 x> A = FileSource() { /*...*/ } // 7
stream<float32 percent> B = M(A) { param q: x - 1; } // 8
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The actual parameter x - 1 on Line 8 is substituted for the parameter $q on Line 4. Because of the
syntactic confinement rule, 100 * $q associates like 100 * (x - 1), not like (100 * x) - 1. As with the
name resolution rule, the syntactic confinement rule leads to better encapsulation: when invoking a operator,
you need not worry about precedence context in the operator definition. This prevents unintended results.
(For language experts: Parameter expressions yield a subtree in the AST and will not spill out of this subtree
during expansion.)

Language design rationale: We chose this approach for operator customization, because it makes uses of
operators concise, provides flexible typing, and naturally generalizes to primitive operators. It also simplifies
the implementation, since certain entities (operator, type, and function parameters) are fully resolved at
compile time, and need not be treated as first-class values at runtime.

5.3.4 Operator Parameter Types and Default Values

A parameter declaration in a composite operator definition must specify a meta-type, and can optionally
specify a default value. For example:

composite ThresholdFilter(output Filtered; input Unfiltered) { // 1
param expression<float32> $threshold : 5.0; // 2
graph stream<float32 x> Filtered = Functor(Unfiltered) { // 3

param filter : x > $threshold; // 4
} // 5

} // 6

The declared type of parameter $threshold is expression<float32>. This type serves as documentation
and helps produce better error message. For example, if the composite operator is used with the wrong type:

stream<float32 x> B = ThresholdFilter(A) { param threshold: "abc"; }

then the Spade compiler gives the error message:

type mismatch: $threshold expects a float32, but "abc" is a string8

Besides the meta-type expression<T>, where T is a concrete runtime type, a parameter type can also
be just expression without a type parameter, indicating that an expression of any type works as long
as the expansion type-checks. In addition to expression, parameter type declarations can also use other
meta-types:

metaType ::= ‘attribute’
| ‘expression’ typeArgs?

| ‘function’ typeArgs?

| ‘operator’
| ‘type’

typeArgs ::= ‘<’ type+, ‘>’

For example, attribute is the name of one or more attributes in an input stream, and operator is a
primitive or composite operator. The meta-type function also has optional type parameters. For example,
function<void,int32,int32> accepts any function returning void with two formals of type int32.

Still using the same example, the declared default value of parameter $threshold is 5.0. This default
value makes it easier to use the composite operator, because the user can omit the parameter. For example,
the following invocation is short yet complete:

stream<float32 x> B = ThresholdFilter(A) { }
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This is equivalent to providing the default. Besides making operators more reusable, default values also
serve as documentation, because they give an example for the kind of value expected by a parameter.

The syntax for composite operator parameter declarations is:

compositeFormal ::= metaType ID ( ‘:’ opActual )? ‘;’

5.3.5 Example for Composite Operator with Logic

Section 4.3 describes the logic clause in an operator invocation, which is an expressive mechanism for writing
imperative code in Spade without having to write native (Java or C++) code. Section 5.1 describes com-
posite operators, which are a mechanism for creating reusable operators in Spade. This subsection does not
introduce any new language features, it merely points out that by combining logic with composite operators,
you can write expressive and reusable operators in Spade without native code. Here is an example:

composite KeyedMapper(output Output; input Mappings, Queries) { // 1
param type $MapType; // 2

attribute $key; // 3
attribute $val; // 4

graph stream<Output> Output = Custom(Mappings; Queries) { // 5
logic // 6
state : mutable $MapType m = { }; // 7
Mappings : m[$key] = $val; // 8
Queries : if ($key in m) // 9

submit(Output, {key=$key, val=m[$key]}); //10
} //11

} //12
stream<string8 key, int32 val> Lights = KeyedMapper(Sensors; Queries) { //13
param MapType : map<string8, int32>; //14

key : color; //15
val : intensity; //16

} //17

The state clause (Line 7) declares a map variable used by the per-port logic. There are two input ports:
Mappings and Queries. The Mappings port logic (Line 8) records or overwrites a key-value pair in the map
and does not produce any output. The Queries port logic (Lines 9+10) answers queries by consulting the
most recent value for that key, as recorded by the Mappings logic. The Queries port logic sends its outputs,
if any, to the Output stream by calling the submit function. The submit function is available in the Custom
operator, which can receive and send any number of streams, and does not do anything by itself. Custom
offers a blank slate for customization. For example, it also offers API functions for generating punctuation.

5.4 Domain Toolkits

Spade groups operators in namespaces (see Section 6). A toolkit is a set of namespaces that logically
organize a collection of operators belonging to the same application domain. For example, the stream-
relational toolkit groups operators for the stream-relational domain, similarly to StreamSQL [2]. Operators
in the stream-relational toolkit include Aggregate, Join, Sort, Functor (which subsumes filter and project),
and others. Another Spade toolkit is responsible for I/O adaptation, i.e., ingesting and externalizing data,
with operators like FileSource, FileSink, Import, and Export.

An example for an operator from the relational domain is Aggregate. It supports aggregating values
from a window using aggregators like Any, Min, Sum, etc. Here is an example invocation of Aggregate:

stream<string8 ticker, string8 exchange, // 1
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decimal64 minprice, decimal64 maxprice, decimal64 avgprice, // 2
decimal64 sumvolume, decimal64 vwap> // 3

PreVwap = Aggregate(TradeFilter) // 4
{ // 5
window TradeFilter : sliding, count(4), count(1); // 6
param groupBy : ticker, exchange; // 7

perGroup : true; // 8
output PreVwap : ticker = Any(ticker), exchange = Any(exchange), // 9

minprice = Min(price), maxprice = Max(price), //10
avgprice = Avg(price), sumvolume = Sum(volume), //11
vwap = Sum(price * volume); //12

} //13

The Aggregate operator requires a window, and has a boolean parameter perGroup that specifies
whether the window and the aggregation occur separately for each attribute in the groupBy parameter. Sec-
tion 4.5 describes windows in Spade. In this example, perGroup is true and groupBy is ticker/exchange,
which means that each incoming tuple is added to the window corresponding to its own ticker and
exchange value, and triggers an output tuple that aggregates that window. Since all tuples in the win-
dow have, by definition, the same values for ticker and exchange, aggregation with Any in Line 9 yields
unique values for that pair of attributes. All other outputs must also be aggregated. As the output
assignment vwap = Sum(price * volume) illustrates, the argument to an aggregator can be an expres-
sion, which can involve more than one input attribute. In fact, the argument can even involve a function
call, such as y = Avg(pow(x, 3)). When aggregators and functions can have the same name, such as
y = Max(Max(i, j)), Spade treats the outer call as an aggregator and the inner call as a function. To
make the code more readable, the user can disambiguate them by explicit qualifiers, e.g., y = Aggre-
gate::Max(MathLib::Max(i, j)). But we encourage avoiding such name collisions in the first place
by starting function names with lower-case letters and aggregator names names with upper-case, e.g.,
y = Max(max(i, j)).

Practical advice: The semantics of aggregation and groupBy are defined by the library, not by the
language. A separate document will describe the library APIs in more detail.

Language design rationale: The Aggregate operator’s groupBy parameter is a declarative description of
functionality that other languages might achieve in a more imperative way. We picked the declarative style
because it is familiar to people who know SQL.

For Spade 1 users: Spade 1 had BIOPs (built-in operators); Spade 2 replaces BIOPs by operators in
the standard library. Some operators in the Spade 2 library will be composite operators, others will be
primitive operators, but since they are invoked in the same way, that distinction should be transparent to
the user. Besides the Spade 1 BIOPs, Spade 2 also introduces a few new operators, e.g., Import, Export,
and Custom. Other operators will be improved in Spade 2. For example, Spade 2 has more general support
for expressions inside aggregations than Spade 1.

5.5 Shared Variables

The design of shared variables in Spade is preliminary. The description in this section is a sketch, details
are likely to change.

Shared variables contain state that is shared between multiple operators, which can even belong to
multiple jobs or be exposed on a dashboard for a user to monitor an application instance. Note that sharing
data in a distributed system incurs a high cost and can make synchronization difficult. That said, when used
responsibly, this feature is very powerful. For example, shared variables can store control state in adaptive
applications, or classifier models in learning applications, or distributed data in map-reduce applications [3].

The syntax for a shared variable definition is:
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sharedVarDef ::= sharedVarModifier* type ID ( ‘=’ expr )? sharedVarConfigs
sharedVarModifier ::= ‘public’ | ‘static’ | ‘mutable’
sharedVarConfigs ::= ‘;’ | ‘{’ ‘config’ configuration+ ‘}’

Static shared variables (with the static modifier) have only one instance per application scope, whereas
instance shared variables (without static modifier) are instantiated separately each time their operator is
invoked. Since static variables do not belong to any particular operator invocation, they can not depend on
operator parameters. Instance variables, on the other hand, can depend on parameters of their operator’s
invocation.

Public shared variables (with the public modifier) may be used from anywhere in the system, whereas
private shared variables (without public modifier) are only visible in the same composite operator body
that defines them. Only static variables may be public, all instance variables are private. To access a
shared variable from a different composite operator, qualify it with its operator, e.g., com.ibm.someName-
Space::DefiningOp.s var.

Mutable shared variables (with the mutable modifier) can be written or modified, whereas immutable
shared variables (without mutable modifier) never change throughout the program execution. Immutable
variables of composite types (such as a list) are deeply immutable: all of the contents of the variable
(including, for example, list elements) are constant.

Shared variables can optionally have an initializer. For immutable shared variables, the initializer is
mandatory. If there is a circular dependency between variable initializers, the compiler produces an error
message.

The following example illustrates two shared variables, s thresh and s m:

composite CompositeWithStateKeepers(output Out; input In) { // 1
var int32 s_thresh = 10; // 2

public static mutable map<string8, int32> s_m { // 3
config lifetime : eternal; // 4

consistency : causal; // 5
sizeHint : 128 * 1024 * 1024; // 128 MB // 6
writesPerSecond : 5; // 7
readsPerSecond : 500; // 8

} // 9
graph stream<In> Tmp = Classifier(In) { param usingMap : s_m; } //10

stream<In> Out = Functor(Tmp) { param filter : x > s_thresh; } //11
} //12

Shared variables can optionally be annotated with a number of configuration options. The example
illustrates directives for consistency (atomic > causal > loose) and lifetime (eternal > transient), and
hints for size and access load, which the runtime system uses to pick an appropriate implementation and
to allocate resources to implement necessary system support for the shared variables. The exact set of
configuration options will be decided as the implementation progresses.

Spade statically enforces some limitations on shared variable usage to help the user and the compiler
reason about consistency. To access a shared variable from a different composite operator than the one that
defines it, it must be public and static. To access a shared variable from a primitive operator, the operator
model must mention that the operator is stateful, and the operator invocation must mention the variable as
part of a parameter expression. And finally, to access a shared variable from a function, it must be passed
as a parameter; in a function body, shared variables are not in scope under any other name. Note that
functions can only modify parameters that are declared mutable (see Section 3.4).

The implementation of shared variables in the middleware is called state keepers. While the language
itself does not provide locks or synchronization primitives, the library will expose an API for distributed
mutex and condition variables in the state keeper implementation.
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Practical advice: Shared variables pose performance and consistency challenges. Therefore, you should
use shared variables only when absolutely necessary. If you do use them, you should only declare them public
or mutable when you have to. In this language reference, all shared variable names start with “s ” to make
them stand out in the source code. While this naming convention is optional, we encourage you to follow it
in your code as well.

Language design rationale: Given their performance and consistency challenges, we debated whether to
support shared variables in Spade at all. We decided to put them in because there are several compelling
use cases for them. If we had omitted the language feature, people would have emulated it by hand, and
each such work-around would have been hard for other users to understand and for tools to reason about.

5.6 Primitive Operators

The result of expanding all composite operators is a stream graph where each vertex is a primitive operator
instance. Primitive operators are written in a native language (C++ or Java), taking advantage of the
performance and productivity of traditional languages for straight-line code. The runtime system calls the
primitive operator to process input tuple, and the primitive operator calls the runtime system to submit out-
put tuples. In operator invocations, primitive operators behave the same as composite operators, attaching
streams to ports, passing parameters, defining windows, and so on (Section 4).

Although all primitive operators behave the same on the invocation side, they can follow different styles on
the implementation side: with or without runtime reflection, and with or without compile-time specialization.
These styles give the authors of primitive operators choices for trading off performance, generality, and
usability. In particular, runtime reflection improves the generality of an operator by allowing it to work
in different circumstances. Compile-time specialization also improves generality, and also leads to higher
performance than runtime reflection, because the code is customized once statically instead of repeatedly
checking a condition dynamically. Finally, an operator that uses neither runtime reflection nor compile-time
customization is easiest to write, gaining usability at the cost of generality and possibly performance.

For Spade 1 users: Spade 1 had different kinds of primitive operators that were invoked and implemented
differently. Spade 2 redesigned them so all primitive operators are invoked in the same way, and implemented
in a more similar fashion, although Spade 2 still supports different implementation styles for primitive
operators. Spade 1 primitive operator kinds correspond to Spade 2 as follows:

• Spade 1 built-in operators (BIOPs): Spade 2 has no built-in operators. Instead, Spade 2 provides a
default toolkit, with many of the operators that were built into Spade 1. They are written without
reflection and with compile-time specialization.

• Spade 1 user-defined operators (UDOPs): Spade 1 UDOPs correspond to Spade 2 operators without
compile-time specialization. They may or may not use runtime reflection.

• Spade 1 raw UDOPs: these operators in Spade 1 skipped tuple serialization and deserialization,
operating on the raw network representation of tuples instead. Spade 2’s type system is designed to
permit faster serialization and deserialization, obviating the need for raw UDOPs.

• Spade 1 user-defined built-in operators (UBOPs): Spade 1 UDOPs correspond to Spade 2 operators
with compile-time specialization. They may or may not use runtime reflection.

5.6.1 Runtime APIs

Primitive operator provide native process functions for input tuples. In the non-reflective style, there is
one function for each input port:

void process0(IPort0& tuple) { ... }
void process1(IPort1& tuple) { ... }
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The types IPort0, IPort0, etc. are defined to be exactly the types of the tuples that can arrive on the
input streams. In the reflective style, on the other hand, there is only one function, whose tuple parameter
belongs to an erased supertype:

void process(uint32 port, Tuple& tuple) {
//can inspect actual tuple type at runtime
//can reflectively forward attributes from input to output

}

Primitive operators call native submit functions for output tuples. In the non-reflective style, there is one
function for each output port:

submit0(tuple0);
submit1(tuple1);

In the reflective style, on the other hand, there is only one function, which takes an extra integer parameter
for the output port number:

submit(port, tuple);

5.6.2 Compile-Time APIs

The author of a primitive operator can optionally specialize the operator at compile time to optimize for
statically known information. To do that, they write the operator in mixed-mode (MM), which is a mix
of Perl and the native language (Java or C++). The Perl code executes at compile-time, and generates
pure native-language code, which executes at runtime. Each primitive operator is described by an “operator
model”, which specifies what constitutes a legal operator invocation. For example, the operator model
specifies the number of ports and what kinds of streams they support, and specifies the names and meta-
types for parameters. As another example, the operator model specifies whether the operator modifies tuple
attributes, and if it does not, the compiler checks that parameter expressions do not call functions that can
modify tuple attributes.

Primitive operator
(Perl/native)

Operator model
(XML)

Code generator
(Perl)

Application
(Spade)

Application
(native)

Operator context
(Perl)

Operator instance
(native)

Job
(Object files)

Figure 6: Build process for primitive operators.

Figure 6 shows how primitive operators are compiled. When the Spade compiler encounters an operator
invocation, it uses a lookup path to find a definition of either a composite operator or a primitive operator.
Suppose it finds a primitive operator. The compiler first consults the operator model, which consists of
XML, typically generated by wizards in the IDE. If the operator invocation violates the model, the compiler
reports error messages to the user. Otherwise, it combines the operator model with the information from
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the operator invocation into an operator context, which is a Perl object supplied to the Perl code generator.
The primitive operator is written as a mix of Perl snippets (the code generator) and native code (code to be
generated), hence the name “mixed”-mode. The Perl code is embedded in the native code using ASP-style
tags (<% ... %> or <%= ... %>), similar to how PHP or JSP code is embedded in HTML code using
tags. At code generation time, the Perl code uses a Perl API to access the operator context. In the end,
both the Spade code and the primtive operators turn into native code, which gets compiled into object files
to be deployed as an application instance.

Practical advice: When writing your own primitive operators with mixed-mode, keep in mind that param-
eters expressions may be expensive or cause side effects. Parameters with side effects are bad practice, but
not prohibited. You should program your code generator defensively by maintaining a predictable execution
order, and documenting that to the user so they know what to expect when invoking your operator.

Language design rationale: Mixing C++ and Perl code into each other sounds intimidating. However, we
argue that this complexity is inherent rather than accidental. Library developers for Spade need a mechanism
that supports flexibility, performance, and reuse of legacy code. To achieve flexibility and performance, we
need a code generator framework, where compile-time customization provides flexibility without impacting
runtime performance. And to achieve performance and reuse of legacy code, the generated code must be
native, since a lot of code already exists in native languages, and native languages provide more traditional
imperative programming features than Spade aspires to support. Note that users can choose to forgo the
flexibility of mixed-mode by authoring primitive operators without Perl, thus avoiding the complexity of
code generation.

For Spade 1 users: Spade 1 referred to the operator model as “restrictions”. Spade 2’s primitive oper-
ators with mixed-mode use the same mechanism as Spade 1 UBOPs, for “User-defined Built-in OPerators”,
named so because they have the performance and ease-of-use of operators that are hardwired and built into
other streaming languages. Compared to Spade 1, restrictions will be improved. For example, Spade 2
operator models can specify that two input streams must have the same schema; that a parameter must
be a number between 0 and 9; or that an operator parameter requires an enumeration, such as the Source
format, which can take the enumeration constant csv for comma-separated values.

5.6.3 Extending Operators

An operator parameter can specify executable code, perhaps compiled from another language such as C++
or Java, to be plugged into the operator’s logic, e.g.:

stream<int32 linecount, int32 wordcount, int32 charcount> PerLine // 1
= FileSource() // 2

{ // 3
param fileName : "/tmp/my_input_file"; // 4

udfTxtFormat : "WCParser"; // 5
eolMarker : "\n"; // 6

} // 7

The parameter udftxtformat specifies a user-defined text format for data read from the file. In this
case, the value "WCParser", or word-count parser, specifies a parser inside the FileSource operator.

For Spade 1 users: Spade 1 used the same mechanism, for example:

stream PerLine(linecount:Integer, wordcount:Integer, charcount:Integer) # 1
:= Source() # 2

[ "file:////tmp/my_input_file", # 3
udftxtformat = "WCParser", eolmarker = "\n" ] # 4

{ } # 5
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6 Program Structure

Section 6.1 describes the Spade source code artifacts, whereas Section 6.2 describes how they map into an
application instance that runs on the streaming middleware. Section 6.3 shows how multiple jobs on the
same middleware communicate with each other, and Section 6.4 describes how the source code communicates
with other static tools.

6.1 Compile-Time Entities

 Toolkit (directory) 
 Namespace (subdirectory) 

 Compilation unit (SPADE file) 

Composite operator definition 

“var” clause 

“type” clause 

 SPADE function definition 

 Primitive operator model (XML file) 
 Native functions model (XML file) 

Type definition 

Shared variable definition 

 SPADEPath (application set) 

“graph” clause 
Operator invocation 

Figure 7: Compile-time entities.

The following example illustrates the various compile-time entities in a Spade file.

namespace com.ibm.samples.myNameSpace; // 1
use com.ibm.anotherNameSpace::*; // 2
int32 mySpadeFunction(int32 x) { return 2 * x; } // 3
stateful void myOtherFunction(mutable list<int32> a) { a = [99]; } // 4
composite SourceSink { // 5
type MyType = int32 i, int32 j; // 6
var int32 s_mySharedVar = 10; // 7
graph stream<MyType> B = FileSource() { param fileName: "a.dat"; } // 8

stream<B> C = SomeOperator(B) { param someParam: foo(i) + bar(j); } // 9
config logLevel : trace; //10

} //11

Each Spade file belongs to a namespace (Line 1). The use directive makes entities from other namespaces
available under a simple name (Line 2). For example, instead of com.ibm.anotherNameSpace::SomeOpera-
tor, the user can simply write SomeOperator (Line 9). A Spade file contains function definitions (Lines
3-4) and composite operator definitions (Lines 5-11). A composite operator can contain clauses with type
definitions (Line 6) and shared variable definitions (Line 7). The graph clause of a composite operator
contains operator invocations that define streams (Lines 8-9). Figure 7 shows how all these compile-time
entities fit together. The start symbol for parsing a Spade file is the compilation unit:

compilationUnit ::= namespace? useDirective* ( compositeDef | functionDef )+

namespace ::= ‘namespace’ ID+. ‘;’
useDirective ::= ‘use’ ID+. ‘::’ ( ‘*’ | ID ) ‘;’
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A namespace contains all the operators and functions defined in files belonging to the namespace. Thus,
a namespace in Spade is similar to a package in Java. A namespace can also contain primitive operators
or native functions. They are not defined in Spade, but can be invoked from Spade. For example, Line 9
invokes an operator SomeOperator, which could either be a composite operator from another Spade file, or
a primitive operator declared in an XML model. Similarly, Line 9 invokes two functions foo and bar, which
could either be non-native functions from another Spade file, or native functions declared in an XML model
file.

Functions and operators are available under their simple name if they are either part of the same name-
space, or made available by a use directive. Examples for simple names include FileSource (Line 8),
SomeOperator (Line 9), and foo (Line 9) above. The use directive comes in two forms (similar to Java): it
can either refer to a single entity by name, or all entities in a namespace using the wildcard *. For example:

use com.ibm.yourNameSpace::YourOperator; // 1
use com.ibm.yourNameSpace::yourFunction; // 2
use com.ibm.yourNameSpace::*; // 3
composite F { } // 4

Practical advice: If a composite operator is used across files, it is good style, though not mandatory, to
declare it in a file with the same name. For example, an operator MyOp should be defined in MyOp.spade if
it gets used from other files.

Language design rationale: We picked :: instead of . for namespace qualifiers to distinguish them from
attribute access, e.g.: com.ibm.myNameSpace::myOperator.myVariable.someAttribute.

For Spade 1 users: Here is the same example program written in Spade 1.

[Application] # 1
SourceSink trace # 2
[Program] # 3
#include "com.ibm.anotherNameSpace/otherSpadeFile.din" # 4
use com.ibm.anotherNameSpace.SomeOperator # 5
vstream MyType(i : Integer, j : Integer) # 6
#* no shared variables in Spade 1, omitted s_mySharedVar *# # 7
stream B(schemaFor(MyType)) := Source() [ "file:///a.dat" ] {} # 8
stream C(schemaFor(B)) := SomeOperator(B) [ someParam: foo(i) + bar(j) ] {} # 9

Spade 1 has no composite operators and no function definitions in the Spade file. Those features are
new in Spade 2.

There are a few program-level Spade 1 features that have been removed from Spade 2. Spade 1 had two
preprocessors: one preprocessor with features such as for loops, and another mixed-mode (Perl embedded
in Spade) preprocessor. Spade 2 drops the first preprocessor altogether, and will, at some unspecified time
in the future, evolve to incorporate all the other needed scripting capabilities, at which point it drops the
second preprocessor too. Note that this is unrelated to mixed-mode operators; there is no plan to drop those
from Spade 2. Besides the preprocessors, Spade 2 drops bundles. Bundles were in the Spade 1 language
to make the preprocessor, and then mixed-mode, easier to use, but can be easily emulated by attaching
multiple streams to the same port in Spade 2.

6.2 Compilation and Deployment

To turn the compile-time entities from Section 6.1 into runtime entities, they must be compiled and deployed
as an application instance. To instantiate an application, the user specifies two things: a main operator and
an application scope. The main operator can be any composite operator that has no input or output ports,
in other words, any composite operator whose connections clause is empty. The application scope is a
runtime concept, consisting of a set of application instances, and serves for naming communication partners
in dynamic application composition (see below). Figure 8 illustrates how all the runtime entities fit together.
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Figure 8: Runtime entities.

At the outermost level, there is an instance of the streaming middleware. The streaming middleware hosts
one or more application sets, and each application set consists of one or more application instances. Each
application instance has a main composite operator. To create each application instance, the compiler
starts from main, and expands all operator invocations in the graph clause: it expands primitive operator
invocations by running their code generator, and it expands composite operator invocations by expanding
their graph clause. The end result is a directed graph where vertices are primitive operator instances and
edges are streams. There can be multiple operator instances corresponding to a single operator invocation
in the source code; this happens if the composite operator containing the operator invocation is expanded
multiple times, as is the case in Figure 4. All expansion happens at compile time. The compiler may fuse
multiple operator instances in the flow graph into units called partitions. The execution container for a
partition is a processing element (PE). At runtime, there is a one-to-one correspondence between partitions
and PEs, since each partition runs in exactly one PE.

The compilation typically involves source code in multiple files. It starts from a Spade file with the main
operator, but must discover other source files when expanding operator or function invocations. This file
lookup follows the SpadePath shown in Figure 7, an ordered list of root directories or toolkit manifests from
which to start lookup. A typical implementation of Spade supports SpadePath specifications with compiler
options. For example, if SpadePath contains /first/root/dir/, the compiler looks for files implementing
namespace com.ibm.my.nameSpace starting at the directory /first/root/dir/com.ibm.my.nameSpace/.
This directory contains Spade files with functions and composite operators, as well as native source files with
native functions and primitive operators. To be more accurate, the implementation of a primitive operator
has its own directory, with at least one generic subdirectory for code that should work on all platforms,
and possibly also platform-specific directories. As of now, Spade assumes homogeneous hardware on the
hosts employed by the streaming middleware.

While configuration options can appear in many places in the code (see Sections 4.2.3 and 5.1.3), certain
configurations typically only appear in a composite operator that is intended as the “main” composite
operator in an application instance. These include the debug level (one of error, info, debug, or trace)
and host pool declarations (which can be referenced from configuration options in stream or composite
operator definitions, where they serve as deployment directives). The following example shows some of those
configuration options:

composite SourceSink { // main // 1
graph // 2
stream<int32 i> A = FileSource() { param fileName: "a.dat"; } // 3
() as Sink = FileSink(A) { param fileName: "b.dat"; } // 4

config // 5
logLevel : trace; // 6
hostPool : SourcePool = ["localhost", "10.8.5.6"], // 7

ComputingPool[15] = []; // 8
defaultPool : compileTime, size(5); // 9

} //10

For Spade 1 users: Here is the same compilation unit written in Spade 1.
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[Application] # 1
SourceSink trace # 2
[Libdefs] # 3
incpath "/inc1" "/inc2" # UDOP include path # 4
libpath "/lib1" "/lib2" # UDOP linking path # 5
libs "mylib" "yourlib" # UDOP linked libraries # 6
package "pk1.h" "pk2.h" # user-defined functions # 7
[Nodepools] # 8
nodepool SourcePool[] := ("localhost", "10.8.5.6") # 9
nodepool ComputingPool[15] := () #10
defaultpool roundrobin #11
[Program] #12
stream A(i : Integer) := Source() ["file:///a.dat"] {} #13
Nil := Sink(A) ["file:///b.dat"] {} #14

Spade 1 divided the compilation unit into sections labeled with square brackets ([...]). Spade 1
[Libdefs] become Spade 2 compiler options; [Nodepools] become Spade 2 composite operator config-
uration options; and the Spade 1 [Program] becomes the topology of the Spade 2 main operator.

6.3 Dynamic Application Composition

When a composite operator in the source code is intended as the main operator in a compiled application,
its graph clause typically invokes operators for I/O. In particular, it uses various source and sink operators
for I/O to URLs, files, databases, etc.; and it uses the operators Import and Export for I/O to other jobs
on the same streaming middleware. Another way for multiple jobs to communicate with each other is via
shared variables, see Section 5.5.

Streaming applications commonly run for long periods of time. Streams generated by one application
often serve as inputs to another, and the second application may be deployed when the first is already running.
The Import and Export operators support dynamic application composition, where one application exports
a stream, another application imports the stream, but both applications are instantiated separately and may
even be mutually anonymous. For example, the streaming middleware may host one or more long-running
backbone applications that carry out the bulk of the data processing. Here is an example of exporting a
stream to any applications that may be interested:

() as ExportOp = Export(E) { // 1
param howPublished : x="baz", y=[5,6,7]; // 2

} // 3

The howpublished parameter specifies properties of the stream as name-value pairs. Users can then
launch transient applications that import streams, for example, to visualize results in a dashboard. Here is
an example of importing a stream from a different application instance:

stream<int32 z> I1 = Import() { // 1
param subscription : x == "baz" && y[0] < 10; // 2

} // 3

The middleware connects the Import and Export streams if the subscription predicate matches the export
properties. If the import predicate matches multiple streams exported by jobs running in the middleware,
they are all connected. If there are no matching streams, nothing arrives on the Import operator.

Besides this property-based anonymous connection, Spade also supports connecting streams across ap-
plication instances by name. This means that the Export operator invocation does not need a howpublished
parameter:
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composite A(output O; input E) { // 1
graph () as Invoke3 = Export(E) { } // 2

stream<E> O = Functor(E) { } // 3
} // 4
composite B(output Invoke2; input F) { // 5
graph stream<SomeTupleType> Invoke2 = A(F) { } // 6

} // 7
composite Main { // 8
graph stream<SomeTupleType> G = SomeSourceOp() { } // 9

stream<SomeTupleType> Invoke1 = B(G) { } //10
} //11

The importing application instance again uses the Import operator, but this time with a different set of
parameters:

stream<SomeTupleType> I2 = Import() { // 1
param applicationScope : "myApplicationScope"; // 2

//application scope selected when exporting application launched // 3
application : some.nameSpace::MainOp; // 4
//main operator selected when exporting application launched // 5

subscription : streamId == "Invoke1.Invoke2.E"; // 6
//outside-in name in case of nested composite invokes // 7

} // 8

Section 5.2 describes the outside-in naming scheme for streams. If the explicit applicationScope is
omitted, it is implicitly bound to the scope in which the current application was launched. An explicit
applicationScope can be used equally with predicate-based and name-based subscription. Note that there
may be multiple instances of the same application in one application scope. If they export a stream, and
an Import operator subscribes to that stream by name, the Import produces a merge of all the exported
streams.

Practical advice: When streams are exported and imported across jobs, there may be a “dual mainte-
nance” problem: the developer must keep both schemas in sync. Therefore, we recommend that you define
the schema as a public static tuple type in a separate composite operator. This operator can then be used
from both jobs to obtain stream types. There may also be unintended circles of imported and exported
streams, so look out to avoid those.

Implementation note: In the current implementation, the Spade compiler represents howPublished pa-
rameters internally as XML and represents subscription parameters internally as XPath. As a result,
only a restricted set of Spade expressions are valid for these two parameters, and the compiler will emit
error messages if others are used. Dynamic optimization in the transport fabric ensures that the bandwidth
for dynamic application composition connections is only used when a connection is actually in place. As a
rule of thumb, it is more efficient to establish a by-name subscription than a predicate-based anonymous
subscription, though once the connections are established, they perform equally well.

For Spade 1 users: In Spade 1, import/export were not stand-alone operators, but rather, were an
optional part of every stream definition. For example, the exporting application instance could have a
stream like this:

export properties [x: "baz"; y: 5, 6, 7] stream E(z : Integer) # 1
:= Functor(A) [ ] { } # 2

Spade 1 translates properties [x: "baz"; y: 5, 6, 7] into XML like this:

<stream>
<x>baz</x>
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<y>
<member>5</member>
<member>6</member>
<member>7</member>

</y>
</stream>

Spade 1 expressed import predicates as XPath expressions. Bearing in mind that XPath indexing is
1-based, the Spade 1 code corresponding to our earlier Spade 2 example looks like this:

import stream I2(z : Integer) tapping "stream[x=’baz’ and y/member[1]<10]"

6.4 Embedded Documentation

Implementation note: SpadeDoc comments are a special form of delimited comments (see Section 1.4) that
contain an extra asterisk (*) in the opening tag. In other words, SpadeDoc comments start with /** and
end with */. They are a form of embedded documentation, similar to doxygen (C), docstrings (Python), or
javadoc (Java). Here is an example SpadeDoc comment on a composite operator definition:

/** Short sentence describing what the composite operator does. // 1
Longer description of the operator’s functionality and purpose. // 2

@input G description of input stream G // 3
@input H description of input stream H // 4
@param Q description of parameter Q // 5
@output K description of output stream K // 6
@output L description of output stream L // 7
@tags G IBM HPQ // 8
@tags H ?x // 9
@tags Q TickerAggregationOperator UserDefinedParameter //10
@tags K ?x GOOG //11
@tags L IBM "some multi-word free-flow tag" ?x //12
@tagfile "http://mariotagserver.gov/FinanceTags.xml" //13
@tagvar Company ?x //14

*/ //15
composite M (output K, L; input G, H) { //16
param operator $Q; //17
graph stream<int32 x> I = O(G) { } //18

stream<int32 x> J = P(H) { } //19
stream<int32 x> K = $Q(I; J) { } //20
stream<int32 x> L = R(J) { } //21

} //22

The comment is semi-structured into optional clauses with labels such as “@input G” or “@tags K”. These
clauses can be consumed by other Spade-related tools. For example, the IDE (integrated development
environment) uses the @input, @param, and @output clauses to display documentation on a composite
operator’s interface. The inquiry services tool uses the @inq clauses to automatically assemble programs
from end-user specifications.

Here is an example SpadeDoc comment on an operator invocation:

/** Split into streams of low and high values. // 1
The threshold value is 100: values under 100 are considered // 2
low, values of 100 or above are considered high. // 3

@input I stream with all values, including both low and high // 4
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@output Lo stream with values below 100 only // 5
@output Hi stream with values above 100 only // 6

*/ // 7
(stream<int32 x> Lo; stream<int32 x> Hi) = LoHiSplitter(I) { // 8
param loFilter : x < 100; // 9

hiFilter : x >= 100; //10
} //11

A VWAP Example

VWAP, or “volume-weighted average price”, is a common calculation in financial trading. Below is an
example that uses VWAP to illustrate Spade features.

composite VWAP { // 1
param // 2
expression<set<string8>> $monitoredTickers : { "IBM", "GOOG", "MSFT" }; // 3

// 4
type // 5
TradeInfoT = decimal64 price, decimal64 volume; // 6
QuoteInfoT = decimal64 bidprice, decimal64 askprice, decimal64 asksize; // 7
TradeQuoteT = TradeInfoT, QuoteInfoT, // 8

tuple<string8 ticker, string8 dayAndTime, string8 ttype>; // 9
TradeFilterT= TradeInfoT, tuple<timestamp ts, string8 ticker>; //10
QuoteFilterT= QuoteInfoT, tuple<timestamp ts, string8 ticker>; //11
VwapT = string8 ticker, decimal64 minprice, decimal64 maxprice, //12

decimal64 avgprice, decimal64 vwap; //13
//14

graph //15
stream<TradeQuoteT> TradeQuote = FileSource() { //16
param fileName : "TradesAndQuotes.csv.gz"; //17

format : csv, compressed, noDelays; //18
columns : irange(1,3), 5, irange(7,9), [11, 15, 16]; //19

} //20
//21

stream<TradeFilterT> TradeFilter = Functor(TradeQuote) { //22
param filter : ttype=="Trade" && (ticker in $monitoredTickers); //23
output TradeFilter : ts = timeStringToTimestamp(dayAndTime); //24

} //25
//26

stream<QuoteFilterT> QuoteFilter = Functor(TradeQuote) { //27
param filter : ttype=="Quote" && (ticker in $monitoredTickers); //28

} //29
//30

stream<VwapT, tuple<decimal64 sumvolume>> PreVwap = Aggregate(TradeFilter) { //31
window TradeFilter : sliding, count(4), count(1); //32
param groupBy : ticker; //33

perGroup : true; //34
output PreVwap : ticker = Any(ticker), vwap = Sum(price*volume), //35

minprice = Min(price), maxprice = Max(price), //36
avgprice = Avg(price), sumvolume = Sum(volume); //37

} //38
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//39
stream<VwapT> Vwap = Functor(PreVwap) { //40
output Vwap : vwap = vwap / sumvolume; //41

} //42
//43

stream<timestamp ts, decimal64 index> //44
BargainIndex = Join(Vwap as V; QuoteFilter as Q) //45

{ //46
window V : sliding, count(1); //47

Q : sliding, count(0); //empty window (one-sided join) //48
param equalityLHS : V.ticker; // can also be written as nested loop join: //49

equalityRHS : Q.ticker; // "condition : V.ticker == Q.ticker" //50
perGroupLHS : true; //51

output BargainIndex : //52
index = vwap > askprice*100.0 ? asksize*exp(vwap-askprice*100.0) : 0.0; //53

} //54
//55

() as Sink = PerfSink(BargainIndex) { } //56
//57

config //58
logLevel: trace; //59

} //60

B Grammar Overview

This appendix surveys the Spade syntax top-down, with references to the sections that discuss the semantics.
Refer to Section 1.4 for the lexical syntax, and Section 1.3 for the grammar notation.
The compilation unit is the start symbol of the Spade grammar.

compilationUnit ::= namespace? useDirective* # Section 6.1
( compositeDef | functionDef )+

namespace ::= ‘namespace’ ID+. ‘;’
useDirective ::= ‘use’ ID+. ‘::’ ( ‘*’ | ID ) ‘;’

Composite operators are defined at the top-level in a namespace.
compositeDef ::= compositeHead compositeBody # Section 5.1
compositeHead ::= ‘composite’ ID ( ‘(’ compositeInOut+; ‘)’ )?

compositeInOut ::= ( ‘input’ | ‘output’ ) ( streamType? ID )+,

streamType ::= ‘stream’ ‘<’ tupleBody ‘>’
compositeBody ::= ‘{’

( ‘param’ compositeFormal+ )?

( ‘type’ typeDef + )?

( ‘var’ sharedVarDef + )?

( ‘graph’ opInvoke+ )?

( ‘config’ configuration+ )?

‘}’
compositeFormal ::= metaType ID ( ‘:’ opActual )? ‘;’ # Section 5.3.4
opInvokeActual ::= ID ‘:’ opActual ‘;’
opActual ::= type | expr+,

configuration ::= ID ‘:’ expr+, ‘;’ # Sections 4.2.3 and 5.1.3
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Streams are defined in a composite operator’s graph clause.
opInvoke ::= opInvokeHead opInvokeBody # Section 4
opInvokeHead ::= opOutputs ( ‘as’ ID )? ‘=’ ID opInputs # Section 4.1
opOutputs ::= opOutput | ‘(’ opOutput*; ‘)’
opOutput ::= streamType ID ( ‘as’ ID )?

opInputs ::= ‘(’ portInputs*; ‘)’
portInputs ::= streamType? ID+, ( ‘as’ ID )?

opInvokeBody ::= ‘{’ # Section 4.2
( ‘logic’ opInvokeLogic+ )?

( ‘window’ opInvokeWindow+ )?

( ‘param’ opInvokeActual+ )?

( ‘output’ opInvokeOutput+ )?

( ‘config’ configuration+ )?

‘}’
opInvokeLogic ::= ( ID | ‘state’ ) ‘:’ stmt # Section 4.3
opInvokeWindow ::= ID ‘:’ expr+, ‘;’ # Section 4.5
opInvokeOutput ::= ID ‘:’ ( ID ‘=’ expr )+, ‘;’ # Section 4.2.1

Functions are defined at the top-level in a namespace.
functionDef ::= functionHead blockStmt # Section 3.4
functionHead ::= functionModifier* type ID ‘(’ functionFormal*, ‘)’
functionModifier ::= ‘public’ | ‘stateful’
functionFormal ::= ‘mutable’? type ID

Shared variables are defined in a composite operator’s var clause.

sharedVarDef ::= sharedVarModifier* type ID # Section 5.5
( ‘=’ expr )? sharedVarConfigs

sharedVarModifier ::= ‘public’ | ‘static’ | ‘mutable’
sharedVarConfigs ::= ‘;’ | ‘{’ ‘config’ configuration+ ‘}’

Imperative statements can appear in function bodies or the logic clause of an operator invocation.
stmt ::= localDecl | blockStmt | exprStmt # Section 3.3

| ifStmt | forStmt | whileStmt
| breakStmt | continueStmt | returnStmt

localDecl ::= ‘mutable’? type ( ID ( ‘=’ expr )? )+, ‘;’
blockStmt ::= ‘{’ stmt* ‘}’
exprStmt ::= expr ‘;’
ifStmt ::= ‘if’ ‘(’ expr ‘)’ stmt ( ‘else’ stmt )?

forStmt ::= ‘for’ ‘(’ type ID ‘in’ expr ‘)’ stmt
whileStmt ::= ‘while’ ‘(’ expr ‘)’ stmt
breakStmt ::= ‘break’ ‘;’
continueStmt ::= ‘continue’ ‘;’
returnStmt ::= ‘return’ expr? ‘;’
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Expressions can appear in many places in the grammar. For precedence and associativity, see Section 3.1.
expr ::= prefixExpr | infixExpr | postfixExpr # Section 3

| conditionalExpr | ‘(’ expr ‘)’ | ID | literal
prefixExpr ::= prefixOp expr
prefixOp ::= ‘!’ | ‘-’ | ‘~’ | ‘++’ | ‘--’
infixExpr ::= expr ( infixOp | mappedOp | assignOp ) expr
infixOp ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’ | ‘<<’ | ‘>>’ | ‘&’ | ‘^’ | ‘|’

| ‘&&’ | ‘||’ | ‘in’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘!=’ | ‘==’
mappedOp ::= ‘.+’ | ‘.-’ | ‘.*’ | ‘./’ | ‘.%’ | ‘.<<’ | ‘.>>’ | ‘.&’

| ‘.^’ | ‘.|’ | ‘.<’ | ‘.<=’ | ‘.>’ | ‘.>=’ | ‘.!=’ | ‘.==’
assignOp ::= ‘=’ | ‘+=’ | ‘-=’ | ‘*=’ | ‘/=’ | ‘%=’ | ‘<<=’ | ‘>>=’

| ‘&=’ | ‘^=’ | ‘|=’
postfixExpr ::= ID ‘(’ expr*, ‘)’

| type ‘(’ expr ‘)’
| expr ‘[’ subscript ‘]’
| expr ‘.’ ID
| expr postfixOp

subscript ::= expr | ( expr? ‘:’ expr? )
postfixOp ::= ‘++’ | ‘--’
conditionalExpr ::= expr ‘?’ expr ‘:’ expr

Literals are the highest-precedence expressions denoting values.
literal ::= primitiveLiteral | listLiteral | setLiteral # Section 3

| mapLiteral | tupleLiteral
listLiteral ::= ‘[’ expr*, ‘]’ # Section 2.2.1
setLiteral ::= ‘{’ expr*, ‘}’
mapLiteral ::= ‘{’ ( expr ‘:’ expr )*, ‘}’
tupleLiteral ::= ‘{’ ( ID ‘=’ expr)*, ‘}’ # Section 2.2.2
primitiveLiteral ::= ‘true’ | ‘false’ | STRING | FLOAT | INT # Section 2.1;

Types are defined in a composite operator’s type clause.
typeDef ::= ‘public’? ID ‘=’ ( type | tupleBody ) ‘;’ # Section 5.1.2
metaType ::= ‘attribute’ | ‘expression’ typeArgs? # Section 5.3.4

| ‘function’ typeArgs? | ‘operator’ | ‘type’
type ::= ID | ‘void’ | primitiveType | compositeType # Section 2
typeArgs ::= ‘<’ type+, ‘>’
typeDims ::= ‘[’ expr ‘]’
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Primitive types are types without other types as arguments.
primitiveType ::= ‘boolean’ # Section 2.1

| ‘enum’ ‘{’ ID*, ‘}’
| ‘int8’ | ‘int16’ | ‘int32’ | ‘int64’ | ‘int128’
| ‘uint8’ | ‘uint16’ | ‘uint32’ | ‘uint64’ | ‘uint128’
| ‘float32’ | ‘float64’ | ‘float128’
| ‘decimal32’ | ‘decimal64’ | ‘decimal128’
| ‘complex32’ | ‘complex64’ | ‘complex128’
| ‘timestamp’
| ‘blob’
| ‘string8’ typeDims?

| ‘string16’

Composite types are type constructors for composing new types out of other types.
compositeType ::= tupleType # Section 2.2

| ‘list’ typeArgs typeDims?

| ‘map’ typeArgs typeDims?

| ‘set’ typeArgs typeDims?

tupleType ::= ‘tuple’ ‘<’ tupleBody ‘>’ # Section 2.2.2
tupleBody ::= attributeDecl+,

| ( ID | tupleType )+,

attributeDecl ::= type ID

Native function prototype declarations come from XML files, not regular Spade files.

functionPrototype ::= genericFormals functionModifier* # Section 3.4.2
type ID ‘(’ protoFormal*, ‘)’

genericFormals ::= ( ‘<’ typeFormal+, ‘)’ )? ( ‘[’ boundsFormal+, ‘]’ )?

typeFormal ::= typeFormalMetaType ID
typeFormalMetaType ::= ‘any’ | ‘collection’ | ‘complex’ | ‘composite’

| ‘decimal’ | ‘enum’ | ‘floatingpoint’ | ‘integral’
| ‘list’ | ‘map’ | ‘numeric’ | ‘ordered’
| ‘primitive’ | ‘set’ | ‘string’ | ‘tuple’

boundsFormal ::= ID
protoFormal ::= formalModifier* type ID?
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stream, 17
stream name, 29
stream type, 18
string, 6
syntax, 4

TAI, 6
tapping, 44
time-based window, 23
timestamp, 5, 6
toolkit, 33
topology, 26
trigger mechanism, 23
tumbling window, 23
tuple, 8, 18
type definition, 26
type hierarchy, 5
type suffix, 6

UBOP, 36, 38
UDOP, 36
uint, 5
unicode, 6
use, 39
ustring, 6
UTC, 6

value semantics, 9

window, 22
window size, 23
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