
p4v: Practical Verification for Programmable Data Planes
Jed Liu

Barefoot Networks
Ithaca, NY, USA

William Hallahan
Yale University

New Haven, CT, USA

Cole Schlesinger
Barefoot Networks

Santa Clara, CA, USA

Milad Sharif
Barefoot Networks

Santa Clara, CA, USA

Jeongkeun Lee
Barefoot Networks

Santa Clara, CA, USA

Robert Soulé
University of Lugano
Lugano, Switzerland

Han Wang
Barefoot Networks

Santa Clara, CA, USA

Călin Caşcaval
Barefoot Networks

Santa Clara, CA, USA

Nick McKeown
Stanford University
Stanford, CA, USA

Nate Foster
Cornell University
Ithaca, NY, USA

ABSTRACT
We present the design and implementation of p4v, a prac-
tical tool for verifying data planes described using the P4
programming language. The design of p4v is based on clas-
sic verification techniques but adds several key innovations
including a novel mechanism for incorporating assumptions
about the control plane and domain-specific optimizations
which are needed to scale to large programs. We present case
studies showing that p4v verifies important properties and
finds bugs in real-world programs. We conduct experiments
to quantify the scalability of p4v on a wide range of addi-
tional examples. We show that with just a few hundred lines
of control-plane annotations, p4v is able to verify critical
safety properties for switch.p4, a program that implements
the functionality of on a modern data center switch, in under
three minutes.

CCS CONCEPTS
• Networks→ Programming interfaces; • Software and its
engineering → Software verification;

KEYWORDS
Programmable data planes, P4, verification.

ACM Reference Format:
Jed Liu,WilliamHallahan, Cole Schlesinger,Milad Sharif, Jeongkeun
Lee, Robert Soulé, Han Wang, Călin Caşcaval, Nick McKeown,
and Nate Foster. 2018. p4v: Practical Verification for Programmable
Data Planes. In SIGCOMM ’18: SIGCOMM 2018, August 20–25, 2018,
Budapest, Hungary. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3230543.3230582

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00
https://doi.org/10.1145/3230543.3230582

1 INTRODUCTION
Suppose you wanted to verify the correctness of a network
data plane. How would you do it? One approach, which
is widely used today, is to rely on exhaustive testing—i.e.,
generate a set of input packets and test whether the device
produces the expected outputs. Testing is expensive, since
modern devices handle dozens of different packet formats
and protocols, each requiring distinct test inputs. But with a
conventional device these costs are paid only once, because
its capabilities are “baked in” at manufacturing time and
cannot be changed by programmers.

Recently, the field has started to shift to more flexible plat-
forms in which data-plane functionality is not controlled
by vendors but can be defined by programmers. The idea
is that the programmer describes the functionality of the
device using a program in a domain-specific language such
as P4 [5, 44, 45], and the compiler generates an efficient im-
plementation for the underlying target device. This approach
not only facilitates rapid innovation, since new protocols can
be deployed without having to spin new hardware, it also
opens up opportunities for novel uses of the network—e.g., in-
band network telemetry [26] and in-network caching [28, 29]
to name a few. While increased programmability offers ben-
efits, it also creates challenges related to correctness.

Example. Consider a “bump in the wire” firewall that uses
acl and nat tables to filter and rewrite incoming packets
(Figure 1 gives an implementation in P4). Suppose we wish
to verify that if acl is populated with rules that drop packets
going to a given internal host, the host will be isolated from
the external network. Even for this simple property, several
complications can arise, illustrating the need for verification.
First, the behavior of the program that implements the

firewall may be undefined on certain kinds of packets since,
according to the P4 language specification [44], reading or
writing an invalid header produces an arbitrary result. In par-
ticular, although the acl table correctly matches and filters
away IPv4 packets sent by external hosts, it might incorrectly
forward other types of packets such as IPv6. Second, there
is potential for confusion between internal and external ad-
dresses. If the program executes the acl table before the nat
table, then the rules intended to filter away external traffic

https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

should match on external addresses, but if it executes the
tables in the opposite order, then the rules should match on
internal addresses instead. Confusing the ordering of tables
in a firewall may seem like a mistake that would be easily
caught, but it is not a hypothetical concern: Cisco changed
the order of these tables going from version 8.2 to 8.4 of their
Adaptive Security Appliance, invalidating numerous config-
urations and leaving networks vulnerable to attacks [31].

Verified data planes. After hearing about an example like
this one, a pessimist might conclude that an increase in bugs
is an inevitable side-effect of making data planes more pro-
grammable.We believe the opposite is actually true.Whereas
the behavior of a conventional device is largely unspecified
and must be discovered through testing, a P4 data plane has
a precise, bit-level description of how it processes packets in
a human-readable language. By providing developers with
powerful, language-based verification tools, we should be
able to decrease the prevalence of bugs that arise in prac-
tice. P4 is an ideal target for automated verification because
the language carefully excludes features such as loops and
pointer-based data structures, which typically require man-
ual annotation or complex analyses. Moreover, the potential
for impact for a P4 verification tool is high, as the language
is also being used to describe the behavior of conventional,
fixed-function devices [41].

Our vision of verified data planes is inspired in part by re-
cent successes in the formal methods community, which has
shown that it is feasible to verify a wide variety of complex
systems including compilers [38], operating systems [21],
databases [40], distributed systems [25], and network con-
trollers [22]. In addition, SAT and SMT solvers, which under-
pin many automated tools, have become very fast in recent
years and are now able to scale to extremely large problem
instances in many common cases [10]. With such tools at our
disposal, we embarked to demonstrate that it is possible to
build a practical tool for verifying programmable data planes.
We believe that such a tool would provide a foundation for
the many other network verification tools that have been
proposed in recent years [1, 3, 13, 17, 18, 20, 32, 34, 39, 46, 47,
50, 53, 55, 56] and might also serve as a catalyst for follow-on
efforts that target higher layers of the networking stack.

Contributions. This paper presents p4v, a practical verifi-
cation tool for P4, and makes the following contributions:

• We motivate the need for data-plane verification us-
ing real-world examples, and we identify classes of
common properties that arise in many P4 programs.
• We present a novel approach to data-plane verification
that incorporates symbolic control-plane interfaces.
• We develop a prototype implementation and domain-
specific optimizations that improve on naive approaches.

• Through case studies and experiments, we demon-
strate that p4v is effectively able to find bugs in real-
world programs and provides good performance.

Challenges. There are several challenges that arise when
building a practical P4 verification tool. One issue is that a P4
program is really only half of a program. The contents of the
match-action tables are not known until they are populated
by the control plane at run time. Some verification tasks
can be carried out by over-approximating the behavior of
the control plane—i.e., by non-deterministically executing
any of the actions listed in each table. However, real-world
control-plane programs are often carefully engineered to
coordinate rules installed across multiple tables, so many im-
portant data-plane properties cannot be established without
an understanding of the interactions with the control plane.
Our p4v tool allows the programmer to define a control-

plane interface that constrains the behavior of the data plane,
making it possible to verify that it will behave as specified
when combined with a control plane into a single program.
For example, in our running firewall example, the control-
plane interface might specify that the acl table must execute
the deny action on packets destined for the internal server, as
well as non-IPv4 packets. Under the hood, these constraints
can be incorporated into the data-plane program using sym-
bolic predicates on “ghost variables” that are automatically
inserted by p4v. It is worth noting that the control-plane
interface must currently be written by hand and is not veri-
fied. Automated synthesis of the control-plane interface from
examples is a promising direction for future work.

Another challenge concerns scalability. Although P4 pro-
grams are limited to simple data structures and control flow,
practical programs can be quite large, often running to tens of
thousands of lines of code. In addition, domain-specific con-
structs such as parser state machines andmatch-action tables
have dense conditional structure. This means that standard
software verification approaches, such as symbolic execu-
tion [7], which explicitly traverses all control flow paths in
the program, are unlikely to scale well, at least not out of the
box [30]. In contrast, p4v is based on symbolic techniques
that avoid explicit run-time traversals of the program source
code. In addition, we have incorporated domain-specific op-
timizations that enable p4v to scale to some of the largest
open-source programs that have been written to date.

Implementation and evaluation. We built an implementa-
tion of p4v in OCaml and evaluated its effectiveness and
scalability on a variety of real-world programs. To ensure
that p4v does not inherit bugs that might be present in the
open-source reference implementation of P4, we built an
independent front-end that includes a parser, type checker,
and a simple translation into Dijkstra’s guarded command
language [11] and tested our front-end against several other

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

/* Header Types */
header_type ethernet_t {
fields {
dst_addr :48;
src_addr :48;
ether_type :16;

}
}
header_type ipv4_t {
fields {
pre_ttl :64;
ttl:8;
protocol :8;
checksum :16;
src_addr :32;
dst_addr :32;

}
}
/* Instances */
header ethernet_t ethernet;
header ipv4_t ipv4;

/* Parsers */
parser start

extract(ethernet);
return select(ethernet.ether_type) {

0x800: parse_ipv4;
default: ingress;

}
}
parser parse_ipv4 {

extract(ipv4);
return ingress;

}
/* Actions */
action allow() { }
action deny() { drop(); }
action nop() { }
action rewrite(saddr ,daddr , port) {
modify_field(ipv4.src_addr , saddr);
modify_field(ipv4.dst_addr , daddr);
modify_field(standard_metadata.egress_spec , port);

}

/* Tables */
table acl {
reads {
ipv4.src_addr:lpm;
ipv4.dst_addr:lpm;

}
actions { allow; deny; }

}
table nat {
reads {
ipv4.src_addr:lpm;
ipv4.dst_addr:lpm;

}
actions { rewrite; nop; }

}
/* Controls */
control ingress {
apply(acl);
apply(nat);

}
control egress { }

Figure 1: Example program: firewall.p4.

implementations, including the P4 compiler and software
simulator for Barefoot’s Tofino chip [51].
The p4v back-end uses the Z3 [9] theorem prover to dis-

charge verification conditions and compute counter-example
traces that can be used for debugging. Using several hundreds
of lines of control-plane annotations, we successfully verified
a number of critical safety properties for switch.p4, a large
program that handles dozens of different packet formats and
protocols, in under three minutes. We have also used p4v to
validate common optimizations used by P4 compilers, and
to find bugs in existing open-source programs.

2 BACKGROUND ON P4
This section briefly reviews the main features of the P4 lan-
guage to set the stage for the design and implementation of
p4v, which is described in the following sections.

P4 [5, 44] is a domain-specific language organized around
packet-processing abstractions such as headers, parsers, ta-
bles, actions, and controls. The execution of a P4 program
follows a simple abstract forwarding model with five distinct
phases: parsing, ingress processing, replication and queuing,
egress processing, and deparsing [6]. The declarations in a
P4 program define the behavior of each of these phases. Dur-
ing execution, the state comprises the data extracted from
packet headers, metadata supplied by the device (e.g., the
ingress port that the packet arrived on) or computed by the
program, as well as mutable state in counters and registers.
Figure 1 gives the source code for a P4 program that im-

plements the firewall example discussed in the last section.
We illustrate the main features of P4 using this program. The
left part of the figure defines the types of the headers that are
manipulated by this program as well as instances of those
types, one for Ethernet and another for IPv4. These instances
are initially invalid, but can be made valid by the parser,
which is defined in the middle part of the figure. Instances

are statically allocated and globally accessible. In addition to
the instances explicitly defined by the programmer, there is
also an implicit instance for standard_metadata that keeps
track of information such as whether the packet should be
dropped, mirrored, or forwarded out a physical port. The
parser is defined in terms of a finite state machine, where
each state may extract bits out of the packet and copy them
into an instance before transitioning to another state.
The bulk of the actual packet processing occurs in the

ingress control, which executes the acl and nat tables in
sequence. The effect of executing these tables on a given
packet is not determined by the P4 program but rather by
the match-action rules that are installed by the control plane
at run time. Each action comprises an imperative block of
code that manipulates header and metadata instances using
built-in primitive actions such as modify_field and drop.
The trivial egress control does not modify any program
state. The deparser is constructed by the compiler from the
parser state machine, and emits each valid instance in order
of dependency—i.e., ethernet followed by ipv4.

3 DATA-PLANE PROPERTIES
At a high level, one can classify the properties that a P4 pro-
grammer might wish to verify into three categories: general
safety properties, architectural properties, and application-
specific properties. This section discusses each of these cate-
gories using concrete examples as motivation.

General safety properties. P4 abstracts away many device-
specific details, but the language makes trade-offs between
safety and performance to ensure that programs can be ex-
ecuted efficiently on a variety of hardware and software
targets. For example, a header instance can either be valid or
invalid, and reading or writing an invalid header produces

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

an undefined result. Some targets might guarantee that head-
ers are initialized with zeros, but the language specification
does not mandate this behavior as it has a non-trivial cost
on some devices. Rather, implementations are free to return
an arbitrary result—e.g., random bits or the value of the
same header from an earlier packet. While reading an in-
valid header seems innocuous, it can lead to serious bugs,
such as causing the wrong rules to be matched in a table or
leaking information from one packet to the next.

In our running example, reading invalid headers can lead
to violations of the intended access control policy for the
firewall. After the parser completes, the ipv4 header may
either be valid or invalid, depending on the value of the
ether_type field. In particular, when the acl table reads the
ipv4.src_addr and ipv4.dst_addr fields on a non-IPv4
packet, any outcome is possible. Even if the acl has been
carefully populated with “whitelist” rules and a catch-all
drop rule, other packets may be forwarded to internal hosts.

There are several ways we can repair the firewall to ensure
that it never reads or writes invalid headers. For example,
we can wrap the ingress control in a conditional:

if(valid(ipv4)) {
apply(acl);
apply(nat);

}

Alternatively, we can modify acl to read ether_type,
table acl {

reads {
ethernet.ether_type:exact;
ipv4.src_addr:lpm;
ipv4.dst_addr:lpm;

}
actions { allow; deny; }

}

and take care to populate the table with non-wildcard rules
only when ether_type is 0x800. We can capture this as-
sumption by introducing an annotation:

assume read(acl ,ethernet.ether_type) != 0x800
implies wildcard(acl ,ipv4.src_addr)

and wildcard(acl ,ipv4.dst_addr)

Such an annotation is part of the control-plane interface,
which p4v uses to constrain the rules that may be legally
installed in match-action tables. This idiom, where one of
the values read by the table “guards” other values, occurs
often in real-world programs. Control-plane interfaces may
also capture constraints that span multiple tables.

Beyond header validity, there are several other basic safety
properties that are critical for ensuring that programs have
consistent and portable behavior. These properties include
ensuring that header stacks are only ever accessed within
statically declared bounds, that arithmetic operations do not
overflow, and that the compiler-generated deparser emits
all headers that are valid at the end of the egress pipeline.
While these properties are straightforward to verify by hand

in small programs, they can quickly become unmanageable
in larger programs—imagine trying to reason about whether
a given header is valid in the middle of thousands of lines
of code that implement multiple layers of tunneling. Fortu-
nately, because these properties can be checked using simple,
local tests on program state, we can annotate programs with
suitable checks automatically and verify them using p4v.

Architectural properties. In the abstract forwarding model
used to execute P4 programs [5, 6], forwarding decisions
are communicated from the ingress phase to the queuing
and replication phase through standard metadata. For exam-
ple, to indicate that the packet should be forwarded out on
a particular physical port, the ingress control can set the
egress_spec field to the value of that port. The queuing and
replication engine takes the metadata and interprets it, per-
forming actions such as dropping the packet, creating a clone,
or moving the packet across to the egress control. However,
it is easy to make mistakes such as specifying conflicting
forwarding operations (e.g., drop and multicast), specifying
operations that are unimplementable (e.g., recirculating the
packet an excessive number of times), or forgetting to make
a forwarding decision at all, letting the target decide what
to do with the packet. There are also restrictions on certain
metadata fields—e.g., in the egress control, egress_port is
read-only and writes to it are silently ignored.
To ensure that P4 programs behave predictably and are

portable across different targets, it is important to ensure that
metadata is used correctly. For example, we typically want to
ensure that the ingress control either assigns a value to the
egress_spec field or invokes the drop primitive. However,
due to the large variety of packets that arise in practical
programs and the fact that tables are fundamentally non-
deterministic, it can be easy to forget to specify the behavior
on some control paths. For example, in the firewall program,
if we address the issues related to header validity by wrap-
ping both tables in a conditional statement, then packets
that lack a valid ipv4 header will not have a well-defined
forwarding behavior. More subtly, the same issue can arise
with packets that have an ipv4 header. Specifically, consider
what happens if the the packet misses in the acl table and
executes the nop action in the nat table. As should be clear,
we cannot address the problem in either case, without mak-
ing assumptions about the forwarding rules that the control
plane will eventually install in the match-action tables. For
example, we could insist that every packet not blocked by
the acl table must be rewritten by the nat table:

assume action(acl) != deny
implies action(nat) = rewrite

As with safety properties, the p4v tool can automatically
annotate programs with local tests that check for violations
of these and other architectural properties.

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Program-specific properties. Of course, there are also many
properties that are important for ensuring the correctness
of specific programs. For example, the designer of a switch
might want to check that broadcast traffic is handled cor-
rectly, while the designer of a router might want to check
that the IPv4 ttl field is correctly decremented on every
packet. Or, in the firewall example, as discussed previously,
we might want to prove that a given internal server is iso-
lated from the rest of the network. To do this, we can add
annotations to the ingress control in the program itself:

if (valid(ipv4)) {
@pragma assume ipv4.dst_addr == D
apply(acl);
apply(nat);
@pragma assert D == 10.0.0.99 implies drop

}

The first annotation records the value of the IPv4 destination
address using a “ghost variable” D. The p4v tool allows the
programmer to introduce logical variables that facilitate for-
mal reasoning, provided they do not affect the execution of
the program. In this case, D records the initial value of the des-
tination address, prior to possible modifications by the nat
table. The second annotation asserts that if the packet is des-
tined for the internal server (identified by 10.0.0.99), then
it will be dropped after both tables are executed. Again, this
property cannot be proven without making extra assump-
tions about the forwarding rules installed in those tables. For
example, we could stipulate that the appropriate forwarding
rule must be installed in the acl table:

assume reads(acl , ipv4.dst_addr) == 10.0.0.99
implies action(acl) = deny

This annotation, which mentions the particular host needed
to prove a program-specific property, is somewhat unusual.
More commonly the control-plane interface consists of sym-
bolic predicates that express generic constraints on the rules
that may be installed in match-action tables.

4 VERIFICATION METHODOLOGY
This section outlines the techniques we use to verify P4
programs. We closely follow Dijkstra’s classic approach to
program verification based on predicate transformer seman-
tics [11]. That is, we first build a first-order formula that cap-
tures the execution of the program in logic, leveraging the
fact that P4 programs denote functions on finite sequences
of bits (i.e., packets) parameterized on finite state (i.e., switch
registers), and then use an automated theorem prover to
check whether there exists an initial state that leads to a vio-
lation of one or more correctness properties. Although much
of this approach is standard (e.g., it also underpins modern
program verifiers such as Boogie [2] and Dafny [36]) we
review it here for the sake of completeness, and to provide

Variables x
Expressions e
Predicates P ::= e1 = e2 Equality

| P1 ∧ P2 Conjunction
| P1 ∨ P2 Disjunction
| P1 ⇒ P2 Implication
| ¬P Negation

Commands c ::= x := e Assignment
| c1; c2 Sequence
| c1 [] c2 Choice
| assume(P) Assumption
| assert(P) Assertion

Figure 2: Guarded Command Language (GCL).

background for the extensions to this approach, which are
discussed in later sections.
One of the key challenges we faced in building p4v is

that the P4 language lacks a formal semantics. The language
specification is generally well-written [44], but the precise
meaning of many constructs is not entirely clear. For exam-
ple, because P4 lacks a static type system, the meaning of
arithmetic operations is not always well-defined: depending
on its bit width, adding x to itself might either produce 2x
or a value less than x if the addition overflows. Worse, if x is
a parameter to an action, its width may be truly arbitrary.
To address this challenge, we defined a translation from

P4 programs to Guarded Command Language (GCL), an
imperative language with non-deterministic choice (see Fig-
ure 2) [11]. We chose to define the semantics of P4 by trans-
lation, rather than developing an operational semantics [33,
42], for several reasons. First, because our semantics is de-
fined by translation into a core language, it will be easy to
add support for extensions and even new language versions,
such as P416 [45]. To add support for a new language version,
we simply have to update the front-end. Second, using GCL
allows us to leverage decades of prior work on program ver-
ification, including optimizations that are critical for scaling
performance to large programs such as switch.p4.
Our translation is defined in terms of a compositional,

top-down traversal of the P4 program. It handles the full P4
language including parsers, controls, tables, and actions, as
well as parser exceptions, parser value sets, action profiles,
checksums, registers, and meters. The front-end works by
first allocating state for each header and metadata instance,
and then translating each parser, action, and control into a
top-level imperative procedure. Although P4 parsers may
contain loops, we unroll them, following the reference com-
piler, using a simple analysis to detect unproductive cycles
that do not extract any headers from the packet. We use
a variant of a standard type-inference algorithm to assign
types to expressions [48], inserting casts to convert between

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

wlp(x := e,Q) ≜ Q[e/x]
wlp(c1; c2,Q) ≜ wlp(c1,wlp(c2,Q))

wlp(c1 [] c2,Q) ≜ wlp(c1,Q) ∧ wlp(c2,Q)
wlp(assume(P),Q) ≜ P ⇒ Q
wlp(assert(P),Q) ≜ P ∧Q

Figure 3: Verification conditions for GCL.

boolean values and bit values and adjust widths and signs as
appropriate. Whenever we encountered a P4 construct with
unclear semantics, we discussed the intended behavior with
key members of the open-source community to ensure that
our interpretation was consistent with their expectations.
The most interesting aspect of the translation is the case

for match-action tables. As tables are populated by the con-
trol plane, we do not know which action (if any) will be
executed on the packet. Accordingly, we translate each table
application into a non-deterministic choice between the ac-
tions declared for the table and, if the table doesn’t declare
a default action, a “no-op” action for when the table misses.
For example, the translation of apply(acl) is the following:

assume(true) [] allow () [] deny ()

The first command encodes a “no-op” operation for the case
where the packet misses in the table.

We have successfully run our front-end on all the pro-
grams in the test suite distributed with the reference P4
compiler, among others. To ensure that the p4v front-end
captures the intended semantics of P4, we developed a tool
that symbolically executes the GCL code to generate input-
output tests. We ran these tests on the P4 compiler and soft-
ware simulator for Barefoot’s Tofino chip. Hence, we have
strong evidence that our “tested semantics” is consistent
with existing implementations of P4 [23].

To verify the GCL code, we first compute a formula that
captures the weakest constraints on the initial state that
are sufficient to ensure that no assertion will fail, and we
check whether the predicate is valid using the Z3 theorem
prover [9]. If the formula is not valid, Z3 gives us a counter-
example that we can convert into a concrete trace through
the program [37]. We have found these counter-example
traces invaluable when debugging large programs.

Figure 3 gives the formal definition of a function wlp (for
weakest liberal preconditions [11]) that computes verifica-
tion conditions for a GCL command c and postcondition
Q , which is initially true. Most of the cases are intuitive:
assignment substitutes the expression for the variable in
the postcondition, sequential composition threads the post-
condition through c2 then c1, and non-deterministic choice
computes the conjunction of the weakest preconditions for
c1 and c2. The cases for assumptions and assertions han-
dle annotations used in program-specific properties such as

Tables t
Actions a
Keys k
Expressions e ::= . . .

| reach(t) Reaches
| reads(t ,k) Reads
| wildcard (t ,k) Wildcarded
| hit (t) Hits
| miss(t) Misses
| action(t) Action
| action_data(t ,a,x) Action data

Figure 4: Expressions used in control-plane interfaces.

the firewall example. Assumptions produce an implication
from the assumed formula to the postcondition, while asser-
tions conjoin the asserted formula with the postcondition.
The verification conditions for a P4 program p are given by
wlp(c, true), where c is the translation of p into GCL.

5 CONTROL-PLANE INTERFACE
By itself, a P4 program does not fully specify the semantics of
a data plane, which makes it impossible to fully verify many
programs without additional knowledge of the control plane.
One way to work around this problem is to delay verification
until the forwarding rules are known. By combining the pro-
gram and the forwarding rules, one obtains a deterministic
program that can be verified. Indeed, a recently proposed
tool based on symbolic execution follows this approach [19].
However, this approach has several drawbacks: it changes
verification from a compile-time to a run-time task, and it re-
quires repeatedly verifying the program every time the rules
change, which would become expensive if done naively.
We follow a different approach in p4v: we constrain the

behavior of the control plane using symbolic constraints
in a control-plane interface. Figure 4 defines syntax for the
additional expressions that can be used to define the control-
plane interface. The expression reach(t) is set to 1 if the exe-
cution reaches an application of t . The expression reads(t ,k)
is set to the data-plane value read by t identified by k . Sim-
ilarly, wildcard (t ,k) evaluates to 1 if the value identified
by k is matched against an all-wildcard pattern. The ex-
pressions hit (t) and miss(t) evaluate to 1 if executing the
table hits and misses respectively. Finally, the expression
action_data(t ,a,x) returns the value of the action data for
parameter x in action a of table t .
Note that the control-plane interface is formulated using

symbolic constraints on the data-plane execution—i.e., we do
not need to specify the exact values of the forwarding rules
that will be installed into the match-action tables at run time.
In fact, we can go a step further and write down constraints
that involve multiple tables. For example, we can stipulate

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

[Result]	Passed																													

GCL Program

Control-Plane
Interface

Source
Program

Inlined

Passivized

Optimized

Verification
Conditions

Instrumented

[Result]	Failed
[Counterexample]
[Parser]	start
[Parser]	_parse_ethernet
[Packet]	ethernet.dst_addr	=	0x000000000000
[Packet]	ethernet.src_addr	=	0x000000000000
[Packet]	ethernet.ether_type	=	0xf7ff
[Assert]	(not	(=	ipv4.valid	1w0))

✘

✔

Annotated

Figure 5: p4v system architecture.

that if table t hits, then table u must also hit, or that if table
t executes action a, then table u must execute action b or
action c . We used such multi-table assumptions in verifying
properties of switch.p4—e.g., to rule out cases where an
IPv4 packet processed by a table early in the pipeline is then
processed using actions for IPv6 packets later in the pipeline.

A natural question to ask at this point is how these control-
plane assumptions are integrated into the program. The next
section presents the implementation in detail, but the high-
level idea is as follows: we instrument the program with
ghost variables to keep track of which tables and actions
are executed, we translate the control-plane interface into a
logical formula involving those ghost variables, and finally
we predicate every assertion in the program on this formula.

A limitation of our approach is that we require program-
mers to write control-plane interfaces by hand. While it is
likely that many interfaces could be automatically inferred,
the tool does not currently provide this functionality. In ad-
dition, the control-plane interface is unverified code: overly
constraining the control plane may ease data-plane verifica-
tion but make it difficult or even impossible to implement
the control plane. One way to guard against this situation
is to statically check that the control-plane interface can be
satisfied, and dynamically check that it is compatible with
the rules actually installed at run time. For the latter task,
we can use p4v itself, by combining the P4 program and the
forwarding rules into a deterministic program as described
earlier. In the future, we plan to explore more sophisticated
approaches such as building an efficient run-time monitor
or even statically verifying the control-plane code itself.

6 IMPLEMENTATION
This section discusses our p4v implementation, which com-
prises approximately 17,500 lines of OCaml code. Figure 5

shows the overall architecture, with each of the intermediate
representations produced during verification of a program.

Parsing and type checking. The first phase of the p4v front-
end parses and type-checks the P4 program. This phase is
mostly standard, although some care is needed when infer-
ring types—P414 is an untyped language, and yet the seman-
tics of many arithmetic operations depends on the types of
the operands. Our tool uses a standard algorithm to generate
and solve type constraints [48]. We resolved ambiguities in
the language specification by consulting with the developers
of the open-source reference implementation of P4.
To gain further confidence in our semantics, we tested it

using Barefoot’s proprietary P4 compiler. We built a sym-
bolic executor for GCL and combined it with Z3 to create
a tool for generating packet tests and table configurations,
similar to p4pktgen [43]. Some modifications to the GCL
translation were required to model Tofino-specific features
and primitives. We then used this tool to generate tests for a
variety of programs, including a Tofino-specific variant of
switch.p4. We ran the generated tests on a software model
of the Tofino chip and checked that they passed.

Instrumentation. The next phase of the front-end instru-
ments the program with “zombie” state that keeps track of
information about the execution of tables and actions at
run time.1 The zombie state for each table records: whether
the table was reached, which values were read by the table,
whether the packet hit or missed, which action was exe-
cuted, and which action data was supplied to the action. For
example, given the following source program,

action a(x) { modify_field(m.g, x); }
table t {
reads { m.f:exact; }
actions { a; }

}
...
apply(t);

p4v generates the following instrumented program:

_p4v_zombie.reach_t := 1;
_p4v_zombie.reads_t := m.f;
{ /* Code for miss */

_p4v_zombie.hit_t := 0; }
[]
{ /* Code for hit with action a */

_p4v_zombie.hit_t := 1;
_p4v_zombie.t_a_x := <?>;
_p4v_zombie.action_t := 1;
m.g := _p4v_zombie.t_a_x }

Here, <?> denotes an arbitrary “havoc” value, as the action
parameter is supplied by the control plane and is unknown.

1We call this extra state “zombie” state because it is ghost state for the
control plane, which is the “brains” of the network.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

Inlining. The next phase uses a standard inlining algorithm
to eliminate procedure calls and generate a GCL command
that captures the semantics of the original P4 program. Inlin-
ing enables other optimizations and simplifies verification-
condition generation but it can dramatically increase the size
of the program, since it expands each procedure call into
its body. Fortunately, by taking advantage of the domain-
specific structure of P4 programs, we can avoid this blowup
in some important cases. Recall the parser for the firewall
example in Figure 1, which handles Ethernet and IPv4. If
we naively inline the calls to ingress, we will end up with
two copies of the code for the rest of the program. However,
because the last statement in every parser state is a tran-
sition to another state (or an error handler), we can place
one copy of the ingress code at the end of the start state,
and allow the other paths to simply “fall through” to this
code. This optimization significantly improves performance
in programs with complex parsers.

Annotation. The next program transformation weaves the
control-plane interface into the P4 program. The main chal-
lenge in doing this is overcoming the mismatch between
the control plane’s global, table-oriented perspective, and
data plane’s local, packet-oriented perspective. In particular,
because the control-plane interface may contain constraints
that involve multiple tables, weaving the constraints into
the program is non-trivial. The p4v tool first converts the
control-plane interface into a logical formula, using the ghost
variables inserted during an earlier phase, and then predi-
cates every assertion in the program on the resulting formula.
For example, if I is the formula corresponding to the control-
plane interface, then the translation maps an occurrence of
assertion assert(P) to assert(I ⇒ P). The effect is to treat the
control-plane interface as being in force at every program
point. It follows that the programmer must not write con-
straints that are only valid at specific program points. This
is not difficult to do in practice—e.g., we can predicate the
constraint action(t) == a on the assumption reach(t).

Passivization. Careful readers may have noticed that the
algorithm for generating verification conditions shown in
Figure 3 is exponential in the worst case. The blowup re-
sults from the cases for assignment, which substitutes an
expression for each copy of a variable in the predicate, and
for choice, which contains two copies of the postcondition.
A seminal paper by Flanagan and Saxe [16] developed an
alternate algorithm that generates predicates that are only
quadratic in the size of the program. The key insight behind
their algorithm is to convert programs into “passive form,”
similar to single-static assignment, where every assignment
is replaced with an assumption about the state of the pro-
gram at that point. We rely on their efficient algorithm in
p4v—indeed, it is critical to scale up to large programs.

Optimizations. The next phase implements several stan-
dard compiler optimizations, such as constant propagation
and dead code elimination, to shrink the size of the program,
and ultimately the size of the formula that must be passed to
the SMT solver. These optimizations are key for improving
the overall performance of p4v—e.g., checking header valid-
ity for switch.p4 with these optimizations disabled did not
terminate after 10 minutes. Note, however, that like the rest
of the p4v front-end, these optimizations must be trusted—a
bug could cause the tool to produce an incorrect result.

Verification conditions. The next phase takes the optimized,
passive program and uses the Flanagan-Saxe algorithm to
generate verification conditions, producing a single logical
formula that we hand off to the Z3 theorem prover. To check
whether the formula is valid, we ask Z3 if its negation is sat-
isfiable. If not, then the program is guaranteed to be correct,
because the weakest preconditions are valid. On the other
hand, if it is satisfiable, then Z3 returns a model that provides
a counter-example to the property being checked.

Counter-example generation. In the case where verification
fails, the final step is to convert the model produced by Z3
back into a human-readable trace [37]. We use depth-first
search on the program to find some assertion whose formula
evaluates to false in the model, and then trace our steps back-
wards to populate the rest of the trace. We report the initial
value of the packet headers, and the sequence of parser states
and tables executed to reach the failed assertion. Figure 5
gives an example of a counter-example trace.

7 CASE STUDIES
This section presents our experiences verifying a variety of
properties on a range of real-world programs using p4v.

7.1 Header validity for switch.p4
In the first case study, we verified that switch.p4 never
accesses a field of an invalid header. As discussed previously,
this general safety property should hold in every program to
avoid undefined behavior. It is also an interesting property
to study because it requires reasoning about nearly every
line of code in the program.
As background, switch.p4 is a large program that con-

sists of roughly 5600 lines of code and implements essentially
all of the functionality found on a modern data center switch,
including L2 switching, L3 routing, multicast, LAG, ECMP,
tunneling, ACLs, MPLS, multi-device fabrics, and mirror-
ing. These features can be selectively enabled or disabled to
save resources, allowing for sets of feature configurations.
We conducted our case study using the default configura-
tion with in-band network telemetry disabled. This modified
configuration has 58 parse states and 120 tables in total.

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

We used p4v to automatically insert an assertion before
each read or write of a header field that checks whether the
corresponding header instance is valid at that program point.
For example, just before the following P4 statement,

modify_field(mpls [0].bos , 0x1);

p4v would insert the annotation,
assert valid(mpls [0]. valid)

which checks that mpls[0] is valid at the point of access.
Verification took 2 minutes 48 seconds on an Intel Core i7-

7500U laptop with 23GiB RAM and required a control-plane
interface with 143 distinct clauses (769 lines of code), along
with 38 single-line pragmas to specify ghost variables for
representing the validity of various headers at key points in
the program. The annotations can be categorized as follows:
• Default actions: switch.p4 does not assign default ac-
tions to many tables, but the control plane initializes
all tables with a default action. Annotations describing
default actions were needed for 31 of 120 tables.
• Inter-device fabric traffic: switch.p4 assumes that inter-
device fabric traffic is well-formed—e.g., if the packet
has been classified as ordinary unicast, then none of
the tunnel headers should be valid. 14 annotations
express these well-formedness properties.
• Table actions: A P4 table supports all combinations of
matches and actions, but the control plane rarely in-
tends to use all combinations. 66 annotations explicitly
disallow specific nonsensical action combinations.
• Table reads: Some tables match on the validity of a
header while at the same time performing a ternary
match on one of its fields. This could result in an un-
defined read unless the ternary match has “don’t care”
bits in every rule where validity is false. 10 annota-
tions fall in this category.
• Action data: 14 annotations stipulate that only certain
values will be supplied as parameters to actions.

The remaining annotations correspond to bugs in switch.p4,
where each additional annotation is akin to an XFAIL, de-
scribing known bad behavior. In total, we found 10 bugs in
switch.p4. Two were parser bugs, which parsed packets
that were not supported by the rest of the pipeline. For exam-
ple, the parser allowed L3 Geneve tunnels (which do not have
an inner Ethernet header), whereas the tunnel-decapsulation
code assumed L2 Geneve tunnels only and unconditionally
copied the inner_ethernet header. One bug was an order-
of-operations error, in which fields were modified in a header
before the header was added. Two bugs were in tables that
incorrectly permitted the nop action to be taken. Another
bug was in the actions for terminating L3 MPLS tunnels,
which erroneously read the inner_ethernet header. Three
bugs correspond to multi-table constraints that the designers
of switch.p4 believe hold, but do not see how to enforce

using the control plane. The final bug was found in which a
table read invalid state in its match key.

Overall, the control-plane interface for switch was devel-
oped by a single programmer working for approximately
three days in aggregate, spread over two weeks. All told, we
found the annotation burden reasonable. The annotations
total roughly 14% of the lines of P4 code, but this represents
only a very small fraction of the tens of thousands of lines
of code that make up the control plane. Moreover, two p4v
features greatly eased the burden: fast verification times and
intuitive counterexample traces, which quickly pointed the
way to identifying missing control-plane assumptions.

7.2 NetCache parser roundtripping
In the second case study, we attempted to verify an important
architectural property for NetCache, a program that imple-
ments an in-network key-value store on a P4-programmable
target [29]. Many P4 targets, including PISA [5, 6], deparse
the headers into a byte stream at the end of the ingress
pipeline, and then reparse the byte stream back into headers
after replication and queuing and before executing the code
in the egress pipeline. To prevent data from being corrupted
or lost, it is important that the programmer-specified parser
and compiler-generated deparser compose to the identity
function. For example, if the IPv4 header is removed in the
ingress pipeline, but the programmer neglects to set the
EtherType field to a new value, then the egress parser will
attempt to populate the IPv4 header using bits from another
header or the packet payload, producing a mangled result.
We used p4v to automatically insert assertions into Net-

Cache to check that the information in each header is cor-
rectly preserved when processed using the deparser and the
parser. For example, at the end of the ingress pipeline, p4v
inserts assumptions to record the validity of the Ethernet
header and the values of its fields as ghost variables:

assume _p4v_roundtrip.ethernet.valid
iff valid(ethernet);

assume _p4v_roundtrip.ethernet.dst_addr ==
ethernet.dst_addr;

assume _p4v_roundtrip.ethernet.src_addr ==
ethernet.src_addr;

assume _p4v_roundtrip.ethernet.ether_type ==
ethernet.ether_type;

At the start of the egress pipeline, it inserts the following
assertions to check that the Ethernet header is preserved on
the round-trip through the deparser and the parser.

assert valid(ethernet)
iff _p4v_roundtrip.ethernet.valid == 1;

assert valid(ethernet)
implies _p4v_roundtrip.ethernet.dst_addr ==

ethernet.dst_addr
and _p4v_roundtrip.ethernet.src_addr ==

ethernet.src_addr
and _p4v_roundtrip.ethernet.ether_type ==

ethernet.ether_type;

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

action set_mirror_bd(bd) {
modify_field(egress_metadata.bd, bd);

}
table mirror {
reads { i2e_metadata.mirror_session_id : exact; }
actions {
nop;
set_mirror_nhop;
set_mirror_bd;

}
}
action outer_replica_from_rid(bd, ...) {

modify_field(egress_metadata.bd, bd); ...
}
action inner_replica_from_rid(bd, ...) {
modify_field(egress_metadata.bd, bd); ...

}
table rid {
reads { intrinsic_metadata.egress_rid: exact; }
actions {
nop;
outer_replica_from_rid;
inner_replica_from_rid;

}
}

Figure 6: Action dependency between tables.

We wrote a control-plane interface with 93 annotations
that specify the default actions of tables. This interface,
which was derived in a few minutes from the static control-
plane provided with NetCache, was sufficiently strong to
establish header validity, with one exception. It turns out the
NetCache header may be invalid after parsing, but is always
accessed at the start of the ingress pipeline. We added an
extra annotation to limit verification to packets with a valid
NetCache header.
Unfortunately, the round-tripping property fails to hold

for NetCache. It took p4v 3 minutes 35 seconds to discover
this and print a counter-example on an Intel Core i7-7500U
laptop with 23GiB RAM. NetCache uses a packet format
with standard Ethernet, IPv4, and UDP headers, followed
by a custom header containing an op-code and key, and
finally an optional header containing a value. Together, these
headers encode operations such as get(k) and put(k,v). The
root of the bug is in the P4 implementation of the put(k,v)
operation: the code correctly writes the value v into stateful
registers and invalidates the optional header but it fails to
update the op-code. Hence, the egress parser attempts to re-
parse the optional value header. If the packet is sufficiently
long then it will extract the required bits from the payload,
but if it is not, then the parser will transition to an error state
and the packet will be dropped. We reported this issue to the
NetCache developers who confirmed it is indeed a bug.

7.3 NetPaxos bug
In the third case study, we analyzed an application-specific
property of NetPaxos [8], a P4 implementation of the Paxos
consensus protocol [35]. As originally discovered by the de-
velopers of P4-Assert [19], the published P4 implementation

of NetPaxos contains a serious bug: the action that compares
the round number from the arriving packet with the round
number stored at the switch sets the drop flag of the arriv-
ing packet by default, under the assumption that the packet
should be dropped. However, the code does not reset the drop
flag if the round number in the packet is greater than the
stored round number. As a result, consensus is not reached.

We were able to identify the root cause of this bug adding
an assumption and assertion that, together, state that if the
Paxos header is valid, and the round number of the packet is
greater than the round number at the switch, then the packet
should not be dropped.

assume valid(paxos)
implies local_metadata.round <= paxos.rnd

assert valid(paxos)
implies local_metadata.set_drop == 0

On an Intel Core i7-7500U laptop with 23GiB RAM, it took
p4v 159 milliseconds to produce a counter-example trace
that exercises the bug. We also confirmed that the bug is
present by inverting the assertion:

assert valid(paxos)
implies local_metadata.set_drop == 1

This case study illustrates another use case for p4v: assert-
style debugging. Hardware targets don’t typically come with
debuggers, making it difficult to diagnose the root causes of
observed anomalies. By adding an assertion that captures
the correct (non-anomalous) behavior of a program with a
bug, we can use p4v to generate a counterexample trace. In
the case of NetPaxos, the first counterexample returned by
p4v indicated a missing control-plane annotation, and the
second counterexample identified the actual bug.

7.4 Enabling compiler optimizations
In the fourth case study, we explored how p4v can be used to
enable compiler optimizations that would be difficult or im-
possible to implement using traditional analysis techniques.
Table placement is one of the key tasks performed by a P4
compiler, which attempts to maximize parallelism while re-
specting data dependencies. However, since the compiler
lacks information about how the tables will be populated
with rules by the control plane, it is often difficult to deter-
mine which dependencies are genuine and which are spu-
rious. Using p4v and a suitable control-plane interface, we
can verify that certain apparent dependencies are spurious.
To illustrate, consider Figure 6, which is based on code

from switch.p4. The mirror and rid tables each contain
an action that modifies metadata for the L2 bridge domain
(egress_metadata.bd). In the absence of a control-plane
interface, the compiler conservatively assumes that the ta-
bles may execute any of their actions, and allocates them in
different stages. But assuming these tables are configured so

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Total No CP interface Control-plane interface
header Memory Memory

Parse length Uses Time (MiB) Time (MiB)
Program LOC states Tables (bytes) state (mm:ss.s) p4v z3 # Lines (mm:ss.s) p4v z3

simple_router 63 3 1 34 ✗ 0.05 30 15 0 0 — — —
calc 304 3 1 30 ✗ 0.06 31 15 0 0 — — —

easyroute 53 3 1 13 ✗ 0.06 30 16 1 2 0.06 30 15
flowlet_switching 246 4 7 54 ✓ 0.06 31 15 0 0 — — —

dead_drop 469 3 2 32 ✓ 0.07 32 15 0 0 — — —
paxos 205 5 4 90 ✓ 0.07 32 18 0 0 — — —

fox_fastflow 498 4 2 42 ✓ 0.07 33 16 1 1 0.11 33 20
vpc 272 6 10 68 ✗ 0.08 31 17 4 9 0.08 31 17
axon 99 6 2 29 ✗ 0.15 32 24 3 9 0.09 32 16
tor 456 10 13 96 ✓ 0.18 34 23 10 50 0.15 34 19

fox_2110 506 6 1 62 ✓ 0.19 34 29 1 1 0.20 34 29
netcache 538 17 96 187 ✓ 0.20 36 25 9 17 0.20 36 19
stful 1,167 10 27 58 ✓ 0.21 37 32 0 0 — — —

linear_road 846 14 24 59 ✓ 0.23 34 43 1 5 0.19 34 40
nat 293 5 6 65 ✗ 0.50 32 115 3 9 0.43 32 102

prog1 530 28 1 124 ✗ 3.41 129 43 0 0 — — —
ndn 495 31 7 2,357 ✓ 3.42 246 15 0 0 — — —

tlv_parsing 189 8 1 92 ✗ 6.49 174 89 3 8 6.42 190 90
prog2 536 7 10 78 ✗ 16.77 42 370 2 13 35.15 42 377
dapper 605 11 17 78 ✓ 49.35 1,051 527 2 3 49.34 1,051 522
switch 5,599 58 120 182 ✓ 2:36.11 444 2,761 143 769 2:47.51 576 1,521
prog3 929 33 5 140 ✗ 19:09.03 488 2,688 — — — — —

hyperp4 11,173 16 537 100 ✗ — 179 (OOM) — — — — —

Figure 7: Experimental results conducted on an Intel Core i7-7500U laptop with 23GiB RAM. The standard error
for each result is within 5% of the reported mean.

that replication and mirroring are only applied to L3 packets
simultaneously, it is safe to place them in the same stage.

Formally, we can capture the absence of an action depen-
dency as follows:

assert not
((action(rid) == inner_replica_from_rid or

action(rid) == outer_replica_from_rid) and
action(mirror) == set_mirror_bd)

Intuitively, this assertion states that no packet may be pro-
cessed using actions from rid and mirror that modify the
same L2 bridge domain metadata. Next, we annotate the pro-
gramwith ghost variables to record the values of egress_rid
and mirror_session_id at the start of the egress pipeline:

assume
R == intrinsic_metadata.egress_rid and
M == i2e_metadata.mirror_session_id

Finally, we add a constraint stipulating that the mirror table
must not apply its L2 action (set_mirror_bd) to packets
that are both replicated and mirrored—i.e., to L3 packets:

assume
(R != 0 and
M == reads(mirror ,

i2e_metadata.mirror_session_id))
implies

not(action(mirror) == set_mirror_bd)

With these annotations, p4v can verify that the actions are
disjoint, allowing it to optimize the placement of the tables.
We plan to integrate p4v with the P4 compiler to optimize
resources such as storage for header instances in future work.

8 EVALUATION
To evaluate the performance of p4v, we conducted exper-
iments on a diverse collection of open-source and propri-
etary programs that vary in size and complexity. These pro-
grams implement a wide range of functionality, including
conventional forwarding, source routing, data center routing,
content-based networking, performance monitoring, com-
plex packet parsing, and in-network processing. We devel-
oped a control-plane interface for all but two programs, and
verified the header validity property—i.e., during every exe-
cution of the program, is every header valid when it is read
or written. We believe that header validity is a good prop-
erty for benchmarking as it is a global property that requires
reasoning about nearly all control-flow paths.
The results of our experiments are given in Figure 7. We

report running times and memory usage with and without
control-plane interfaces, along with statistics about the pro-
grams: lines of code, parser states, match-action tables, total
header lengths, use of stateful features, and total annotations

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

pr
og

1

nd
n

tlv
_p

ar
si

ng

tlv
_p

ar
si

ng
+i

fa
ce

pr
og

2

pr
og

2+
ifa

ce

da
pp

er

da
pp

er
+i

fa
ce

sw
itc

h

sw
itc

h+
ifa

ce

pr
og

3

0%

20%

40%

60%

80%

100%

Z3
VCGen
Passivize
Optimize
Type
Inline
Translate

Figure 8: Performance breakdown by phase of verification for benchmark programs that required more than one
second of running time to complete.

and lines of code in control-plane interfaces. All tests were
done on an Intel Core i7-7500U laptop with 23GiB RAM.
Each experiment consisted of ten trials, and the results have
standard error within 5% of the reported means.
The first point to notice is that most programs can be

checked in under a minute—and in well under a second for
many. For those programs that took more than a second,
Figure 8 depicts the performance breakdown by each phase
of verification. The programs with the longest running times
are switch, dapper, and prog3, each of which are large and
have complex state and control-flow. Another observation is
that adding annotations can increase verification time. We
believe there are two main reasons for this: (i) adding anno-
tations increases the size of the program, and hence the size
of the formula passed to Z3, and (ii) showing that a formula
is unsatisfiable generally takes longer than showing that it is
satisfiable—the former requires considering all possible mod-
els, while the latter only requires finding a single model of
the formula. Finally, we note that our current p4v prototype
does have some limitations: the tool failed to complete on
HyperP4 [24], a complex program that implements virtual
data planes, as Z3 ran out of memory.
Overall, these results show that p4v scales to real-world

programs and provides a sufficiently high level of perfor-
mance that it could be used in everyday work.

9 RELATEDWORK
There are now more than 50 years of research on software
verification. Hence, we are truly “standing on the shoulders

of giants” such as Hoare [27] and Dijkstra [11], as well as
recent tools such as ESC-Java [15], Boogie [2], andDafny [36].
The main conceptual innovation in our tool is the use of
zombie state to track assumptions about the control-plane
interface to a P4 program. This approach can be seen as an
instance of more general techniques for reasoning about
unknown behavior in program analysis tools (e.g., see the
article by Dillig et al. [12] for an overview), but we exploit
the fact that P4 programs are loop-free.

Early work by Xie et al. [54] proposed the idea of network
verification and developed techniques based on computing
the transitive closure of transfer functions to statically ana-
lyzing device configurations to check reachability properties.
HSA [32] and Veriflow [34] later applied this methodology
to software-defined networking data planes, and developed
optimized data structures to represent transfer functions to
enable verification to scale. NetKAT [1] emerged from an
earlier effort to develop a machine-verified implementation
of the language in Coq [22] but added a sound and complete
decision axiomatization and a decision procedure based on
an automata representation [18]. Recent work in the area has
focused on optimizations based on clever data structures [4],
atomic predicates [55], and exploiting symmetry [47].
Control-plane verification is fundamentally more diffi-

cult than data-plane verification. Intuitively, a control plane
can be thought of as generating a sequence of data planes,
each of which must be verified. In addition, control-plane
protocols typically have complex policies to facilitate inter-
actions between multiple autonomous systems. Early work

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

on RCC [14] focused on finding bugs in BGP configurations
but was neither sound nor complete. Recent tools such as
Batfish [17], ARC [20], and Minesweeper [3] have developed
efficient heuristics and abstract representations of control
plane that allow verification to scale to much larger problems.
Bagpipe [53] developed a mechanized semantics of BGP.
Middlebox verification is fundamentally more difficult

than data-plane verification due to the pervasive use of state.
The problem is undecidable in the general case butmany com-
mon topologies and network functions remain tractable [52].
Recent work has focused on scaling verification using tech-
niques such as abstract interpretation [13, 46, 50, 56]. P4 pro-
grams have bounded state, which keeps verification tractable.

Several other recent projects propose semantics and veri-
fication techniques for P4 programs. Early work by Lopes et
al. developed an operational semantics for P4 and developed
a tool based on Datalog for automatically verifying safety
properties and checking program equivalence [42]. Subse-
quent work by Kheradmand and Rosu developed a complete
operational semantics for P4 in the the K framework and
proposed applications including a symbolic model checker
and deductive verification tool [33]. Nötzli et al. developed
p4pktgen, a tool that uses symbolic execution to generate
an exhaustive set of input-output tests for a P4 program [43].
Freire et al. developed p4-assert, which translates P4 to
a C-like representation and then uses Klee to symbolically
execute the resulting program [19]. Finally, Stoenescu et al.
developed Vera [49], which uses SymNet [50] a symbolic
execution framework that uses network-specific algorithms
and data structures, to verify P4 programs efficiently. A re-
cent empirical study found that symbolic execution often
outperforms tools based on verification condition generation,
except when the program being verified is “branchy” [30].
P4 programs typically have dense conditional structure.

10 CONCLUSION
This paper presented p4v, a practical tool for verifying P4
data plane programs. It demonstrated that p4v scales to large
programs and finds bugs in real-world implementations. In
the future, we plan to investigate a number of follow-on
questions. We would like to extend the P4 language with
domain-specific constructs for specifying control-plane in-
terfaces. Such constructs might provide intuitive abstraction
for specifying properties such as “these tables are accessed
by disjoint sets of packets” or even “these applications never
generate conflicting rules.” We are also interested in explor-
ing applications of program synthesis—e.g., automatically
generating control-plane interfaces from example traces. Fi-
nally, we are interested in exploring questions lower down
the stack, building verified compilers for P4 and even veri-
fied hardware, as well as higher up the stack, investigating

whether we can effectively map down to verified P4 imple-
mentations from high-level descriptions of network behavior,
such as state machines and message sequence diagrams.

ACKNOWLEDGMENTS
We thank Michael Attig, Antonin Bas, Chris Dodd, Vladimir
Gurevich, Theo Jepsen, Changhoon Kim, Prathima Kotikala-
pudi, Ramkumar Krishnamoorthy, Xin Jin, and Dan Lenoski
for productive discussions related to the design of p4v and
for assistance with the P4 compiler and Tofino software
simulator. We thank Amin Vadhat, Steffen Smolka, George
Varghese, participants at IFIP WG 2.8 Asilomar, the anony-
mous SIGCOMM reviewers, and our shepherd Costin Raicu
for many helpful suggestions.

REFERENCES
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-

nin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
Semantic Foundations for Networks. In POPL. 113–126.

[2] Mike Barnett, Bor-Yuh Evan Chang, Robert Deline, Bart Jacobs, and
K. RustanM. Leino. 2005. Boogie: Amodular Reusable ProgramVerifier
for Object-Oriented Programs. In Formal Methods for Components and
Objects. 364–387.

[3] Ryan Becket, Aarti Gupta, Ratul Mahajan, and David Walker. 2017.
A General Approach to Network Configuration Verification. In SIG-
COMM. 155–168.

[4] Nikolaj Bjørner, Garvit Juniwal, Ratul Mahajan, Sanjit A. Seshia, and
George Varghese. 2016. ddNF: An Efficient Data Structure for Header
Spaces. In Haifa Verification Conference. 49–64.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
Independent Packet Processors. SIGCOMM CCR 44, 3 (July 2014),
87–95.

[6] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-Action Processing
in Hardware for SDN. In SIGCOMM. 99–110.

[7] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-
sisted and Automatic Generation of High-coverage Tests for Complex
Systems Programs. In OSDI. 209–224.

[8] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé.
2016. Paxos Made Switch-y. SIGCOMM CCR 46, 2 (May 2016), 18–24.

[9] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of
Systems. 337–340.

[10] Leonardo de Moura and Nikolaj Bjørner. 2011. Satisfiability modulo
theories: Introduction and applications. CACM 54, 9 (2011), 69–77.

[11] Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy, and
Formal Derivation of Programs. CACM 18, 8 (1975), 453–457.

[12] Isil Dillig, Thomas Dillig, and Alex Aiken. 2010. Reasoning About the
Unknown in Static Analysis. CACM 53, 8 (2010), 115–123.

[13] Mihai Dobrescu and Katerina Argyraki. 2015. Software Dataplane
Verification. CACM 58, 11 (2015), 113–121.

[14] Nick Feamster and Hari Balakrishnan. 2005. Detecting BGP configura-
tion faults with static analysis. In NSDI. 43–56.

[15] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. 2002. Extended Static Checking for

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

Java. In PLDI. 234–245.
[16] Cormac Flanagan and James B. Saxe. 2001. Avoiding Exponential

Explosion: Generating Compact Verification Conditions. In POPL. 193–
205. https://doi.org/10.1145/360204.360220

[17] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R.
Mahajan, and T. Millstein. 2015. A General Approach to Network
Configuration Analysis. In NSDI. 469–483.

[18] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and
Laure Thompson. 2015. A Coalgebraic Decision Procedure for NetKAT.
In POPL. 343–355.

[19] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto
Schaeffer-Filho, and Marinho Barcellos. 2018. Uncovering Bugs in P4
Programs with Assertion-based Verification. In SOSR. 4:1–4:7.

[20] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and
Ratul Mahajan. 2016. Fast Control Plane Analysis Using an Abstract
Representation. In SIGCOMM. 300–313.

[21] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung
Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An Ex-
tensible Architecture for Building Certified Concurrent OS Kernels. In
OSDI. 653–669.

[22] Arjun Guha, Mark Reitblatt, and Nate Foster. 2013. Machine-Verified
Network Controllers. In PLDI. 483–494.

[23] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The
essence of JavaScript. In ECOOP. 126–150.

[24] David Hancock and Jacobus Van der Merwe. 2016. HyPer4: Using P4
to Virtualize the Programmable Data Plane. In CoNEXT. 507–508.

[25] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan
Parno, Michael L Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving practical distributed systems correct. In SOSP. 1–17.

[26] MukeshHira and LJWobker. 2015. Improving NetworkMonitoring and
Management with Programmable Data Planes. P4 Language Consor-
tium Blog. Available at https://p4.org/p4/inband-network-telemetry/.

[27] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming.
CACM 12, 10 (1969), 576–580.

[28] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free
Sub-RTT Coordination. In NSDI. 35–49.

[29] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In SOSP. 121–136.

[30] Ioannis T. Kassios, Peter Müller, and Malte Schwerhoff. 2012. Compar-
ing Verification Condition Generation with Symbolic Execution: An
Experience Report. In VSTTE. 196–208.

[31] Peyman Kazemian. 2017. Network path not found? Forward Networks
Blog. Available at https://bit.ly/2FzpEEZ.

[32] Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Header Space Analysis: Static Checking for Networks. In NSDI. 113–
126.

[33] Ali Kheradmand and Grigore Rosu. 2018. P4K: A Formal Semantics of
P4 and Applications. https://arxiv.org/abs/1804.01468.

[34] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. 2013. VeriFlow: Verifying Network-Wide Invari-
ants in Real Time. In NSDI. 15–29.

[35] Leslie Lamport. 1998. The Part-time Parliament. TOCS 16, 2 (1998),
133–169.

[36] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for
Functional Correctness. In Logic for Programming, Artifical Intelligence,
and Reasoning. 348–370.

[37] K Rustan M Leino, Todd Millstein, and James B Saxe. 2005. Generating
error traces from verification-condition counterexamples. Science of
Computer Programming 55, 1-3 (2005), 209–226.

[38] Xavier Leroy. 2009. A formally verified compiler back-end. Journal of
Automated Reasoning 43, 4 (2009), 363–446.

[39] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. 2011. Debugging the
Data Plane with Anteater. In SIGCOMM. 290–301.

[40] Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wis-
nesky. 2010. Toward a verified relational database management system.
In POPL. 237–248.

[41] Nick McKeown, Timon Sloane, and Jim Wanderer. 2017. P4 Runtime–
Putting the Control Plane in Charge of the Forwarding Plane. Available
at http://bit.ly/2It6Ecn.

[42] Nick McKeown, Dan Talayco, George Varghese, Nuno Lopes, Niko-
laj Bjorner, and Andrey Rybalchenko. 2016. Automatically verifying
reachability and well-formedness in P4 Networks. Technical Report.
Microsoft Research. http://bit.ly/2lxFVSW

[43] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and
Peter Athanas. 2018. p4pktgen: Automated Test Case Generation for
P4 Programs. In SOSR. 5:1–5:7.

[44] P4 Language Consortium. 2017. P4 Language Specification, Version
1.0.4. Available at https://p4.org/specs/.

[45] P4 Language Consortium. 2017. P416 Language Specification. https:
//p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html.

[46] Aurojit Panda, Ori Lahav, Katerina J Argyraki, Mooly Sagiv, and Scott
Shenker. 2017. Verifying Reachability in Networks with Mutable Data-
paths.. In NSDI. 699–718.

[47] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Ry-
balchenko, and George Varghese. 2016. Scaling network verification
using symmetry and surgery. In POPL. 69–83.

[48] François Pottier and Didier Rémy. 2005. Advaned Topis in Types and
Programming Languages. MIT Press, Chapter The Essence of ML Type
Inference, 389–489.

[49] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negre-
anu, and Costin Raiciu. 2018. Debugging P4 programs with Vera. In
SIGCOMM.

[50] Radu Stonescu, Matei Popovici, Lirina Negranu, and Costin Raiciu.
2016. SymNet: Scalable Symbolic Execution for Modern Networks. In
SIGCOMM. 314–327.

[51] tofino 2015. Barefoot Tofino. https://www.barefootnetworks.com/
products/brief-tofino/.

[52] Yaron Velner, Kalev Alpernas, Aurojit Panda, Alexander Rabinovich,
Mooly Sagiv, Scott Shenker, and Sharon Shoham. 2016. Some Complex-
ity Results for Stateful Network Verification. In Tools and Algorithms
for the Construction and Analysis of Systems. 811–830.

[53] Konstanin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind
Krishnamurthy, and Zachary Tatlock. 2016. Scalable Verification of
Border Gateway Protocol Configurations With an SMT Solver. In
OOPSLA. 765–780.

[54] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert G.
Greenberg, Gísli Hjálmtýsson, and Jennifer Rexford. 2005. On static
reachability analysis of IP networks. In IEEE INFOCOM. 2170–2183.

[55] Hongkun Yang and Simon S. Lam. 2013. Real-time Verification of
Network Properties Using Atomic Predicates. In IEEE ICNP.

[56] Arseniy Zaostrovnykh, Solal Pirelli, Luis David Pedrosa, Katerina Ar-
gyraki, and George Candea. 2017. A Formally Verified NAT. SIGCOMM
(2017), 141–154.

https://doi.org/10.1145/360204.360220
https://p4.org/p4/inband-network-telemetry/
https://bit.ly/2FzpEEZ
https://arxiv.org/abs/1804.01468
http://bit.ly/2It6Ecn
http://bit.ly/2lxFVSW
https://p4.org/specs/
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/

	Abstract
	1 Introduction
	2 Background on P4
	3 Data-Plane Properties
	4 Verification Methodology
	5 Control-Plane Interface
	6 Implementation
	7 Case Studies
	7.1 Header validity for switch.p4
	7.2 NetCache parser roundtripping
	7.3 NetPaxos bug
	7.4 Enabling compiler optimizations

	8 Evaluation
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

