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Network Monitoring Problem Approach

* Network monitoring is too hard

 Avariety of tasks in the same setting (signature matching, anomaly
detection, forensic analysis, etc.)

- Different operational patterns (local vs. distributed, long-running and
infrequent vs. interactive and one time, etc.)

 Declarative programming helps

 Higher level language abstracts away many details
* Not quite a complete solution
* Need to focus on scalability

- Static analysis identifies parallelism

» Scheduling decisions more accessible to the compiler

- Additional declarations inform scheduler

» Augmented code allows concurrent execution

» Deployed across different environments (single heavy-duty compute
server, large clusters of inexpensive machines, the internet, etc.)
 In many cases, computations may be interdependent
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r6 alarm(@LclAddr, _, "SPIKE", f _now()) :- _ o _ o
CpuSp(ike(@LCIAddr, USAGE), ()) c A flxpomt IS the local unit of atom|C|ty. of state tranSfer)

USAGE > USEMAX.

Analysis

1. Dependencies 2. Transitive Closure 3. Conflict Analysis

- Compute the dependencies between
tuples on a per-rule basis.

- Perform a depth first search of the
dependency graph.

- Start at the non-materialized tuple on
the right hand side of a rule.

 Stop recursion at an external or materialized
pktin synin tuple on the left of a rule.
- Mark tuples as read or write.
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4. Scheduling Execution 5. Speculative Scheduling @

« Support multiple internal event queues.
 Check if:
» WriteNew n (ReadCurrent u WriteCurrent ) = &

* Remove the next event from the external
event queue.
« Consult the concurrency table to compare

read and write sets for event and running
fixpoints.
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» An alternative is to speculatively execute and
check for conflict afterwards.
 Best strategy depends on expected frequency

» WriteCurrent n (ReadNew u WriteNew ) = &

» If no conflict, enqueue event on its own internal
event queue and start execution.

of conflict.




