
Persistent
Storage

OverLog
Program

Persistent
Storage

In
Queue

Out
QueueOverLog

Program

Persistent
Storage

 In
Queue

Out
QueueOverLog

Program

 In
Queue

Out
Queue

alarm

alarm

Analysis

synInr1pktIn

• Compute the dependencies between
tuples on a per-rule basis.

r5

synIn

synackOut

ackIn

rstIn alarmr5

synIn

synackOut

ackIn

rstInr2pktIn

cpuSpike

r5

synIn

synackOut

ackIn

rstIn

r6

• Remove the next event from the external
event queue.

• Consult the concurrency table to compare
read and write sets for event and running
fixpoints.

Auto-Parallelization for Declarative Network Monitoring
Robert Soulé (NYU), Robert Grimm (NYU), and Petros Maniatis (Intel Research Berkeley)

1. Dependencies

• Support multiple internal event queues.
• Check if:
• WriteNew ∩ (ReadCurrent ∪ WriteCurrent) = ∅
• WriteCurrent ∩ (ReadNew ∪ WriteNew) = ∅
• If no conflict, enqueue event on its own internal

event queue and start execution.

• Perform a depth first search of the
 dependency graph.
• Start at the non-materialized tuple on

 the right hand side of a rule.
• Stop recursion at an external or materialized

tuple on the left of a rule.
• Mark tuples as read or write.

2. Transitive Closure 3. Conflict Analysis

4. Scheduling Execution

P2 System

• A single-event fixpoint is the program state
such that no further deductions can be made
before changing system state without the
introduction of a new event.

• A fixpoint is the local unit of atomicity.

• An alternative is to speculatively execute and
check for conflict afterwards.

• Best strategy depends on expected frequency
of conflict.

5. Speculative Scheduling

1. Source Code

r1 synIn(@LclAddr, SrcAddr, f_now()) :-
 pktIn(@LclAddr, SrcAddr, D),
 f_tcpSyn(D).

r2 rstIn(@LclAddr, SrcAddr, f_now()) :-
 pktIn(@LclAddr, SrcAddr, D),
 f_tcpRst(D).

r3 synackIn(@LclAddr, SrcAddr, f_now()) :-
 pktIn(@LclAddr, SrcAddr, D),
 f_tcpSynAck(D).

r4 ackIn(@LclAddr, SrcAddr, f_now()) :-
 pktIn(@LclAddr, SrcAddr, D),
 f_tcpSynAckAck(D).

r5 alarm(@LclAddr, SrcAddr, "CONNRST",
 f_now()) :-
 rstIn(@LclAddr, SrcAddr, TRST),
 synIn(@LclAddr, SrcAddr, TSYN),
 synackOut(@LclAddr, SrcAddr, TSYNACK),
 not ackIn(@LclAddr, SrcAddr, TACK),
 TACK > TSYNACK > TSYN,
 TRST > TSYNACK.

r6 alarm(@LclAddr, _, "SPIKE", f_now()) :-
 cpuSpike(@LclAddr, USAGE),
 USAGE > USEMAX.

Source Code
• Inter-fixpoint
• Multiple fixpoint computations may

proceed at the same time
• Compute the transitive closure of all

rules, partition tuples into read and
write sets

• Intra-fixpoint
• Rules within a fixpoint can execute in

parallel because the state is static
and language is single assignment

• Need to be careful with side effects
from function calls

• Data Parallelism
• Single instruction stream operating on

multiple data set (applying the same
operation on every item in a list)

• Requires runtime analysis (an
estimate of data set size and latency
of state transfer)

Types of Parallelism

• Declarative programming helps
• Higher level language abstracts away many details
• Not quite a complete solution
• Need to focus on scalability
• Static analysis identifies parallelism
• Scheduling decisions more accessible to the compiler
• Additional declarations inform scheduler
• Augmented code allows concurrent execution

• Network monitoring is too hard
• A variety of tasks in the same setting (signature matching, anomaly

detection, forensic analysis, etc.)
• Different operational patterns (local vs. distributed, long-running and

infrequent vs. interactive and one time, etc.)
• Deployed across different environments (single heavy-duty compute

server, large clusters of inexpensive machines, the internet, etc.)
• In many cases, computations may be interdependent

ApproachNetwork Monitoring Problem

