Auto-Parallelization for Declarative Network Monitoring
Robert Soule (NYU), Robert Grimm (NYU), and Petros Maniatis (Intel Research Berkeley)

Network Monitoring Problem Approach

* Network monitoring is too hard

 Avariety of tasks in the same setting (signature matching, anomaly
detection, forensic analysis, etc.)

- Different operational patterns (local vs. distributed, long-running and
infrequent vs. interactive and one time, etc.)

 Declarative programming helps

 Higher level language abstracts away many details
* Not quite a complete solution
* Need to focus on scalability

- Static analysis identifies parallelism

» Scheduling decisions more accessible to the compiler

- Additional declarations inform scheduler

» Augmented code allows concurrent execution

» Deployed across different environments (single heavy-duty compute
server, large clusters of inexpensive machines, the internet, etc.)
 In many cases, computations may be interdependent

Source Code P2 System Types of Parallelism

r1 synin(@LclAddr, SrcAddr, f_now()) :- . |nter-fixpoint

pktin(@LclAddr, SrcAddr, D), 000 = el w0 : : : :
f_tcpSyn(D). | o o o (i » Multiple fixpoint computations may

proceed at the same time
r2 rstin(@LclAddr, SrcAddr, f_now()) :- (OverLog j - Compute the transitive closure of all

\ >

~tepRst(D). T write sets
b OOOO 2 3333333i31||||||||||||||| @O | 0 0 d

r3 synackin(@LclAddr, SrcAddr, f_now()) :- E Péiiiitge:*
pktin(@LclAddr, SrcAddr, D),

* Intra-fixpoint

f tcpSynAck(D). oy . . .
—psY ®) & 000 & el w0 4 | Program T * Rules within a fixpoint can execute in
r4 ackin(@LclAddr, SrcAddr, f_now()) :- ° ° ° ° / T parallel because the state is static
pktin(@LclAddr, SrcAddr, D), Quone (j E T - and language is single assignment
OverLog

f_tcpSynAckAck(D). — Program Storage * Need to be careful with side effects

T from function calls

>

r5 alarm(@LclAddr, SrcAddr, "CONNRST",

f_now()) :- Persistent _
rstin(@LclAddr, SrcAddr, TRST), E Storage j ! Data Parallelism

synin(@LclAddr, SrcAddr, TSYN),
gyygc(kOut(@LclAddr o 1S T)SYNACK) » Single instruction stream operating on
’ ’) multiple data set (applying the same

not ackin(@LclAddr, SrcAddr, TACK), - A single-event fixpoint is the program state

TACK > TSYNAGK =TSN, such that no further deductions can be made operation on every item in a list)

TRST > TSYNACK. before changing system state without the » Requires runtime analysis (an
estimate of data set size and latency

Introduction of a new event.
r6 alarm(@LclAddr, _, "SPIKE", f _now()) :- _ o _ o
CpuSp(ike(@LCIAddr, USAGE), ()) c A flxpomt IS the local unit of atom|C|ty. of state tranSfer)

USAGE > USEMAX.

Analysis

1. Dependencies 2. Transitive Closure 3. Conflict Analysis

- Compute the dependencies between
tuples on a per-rule basis.

- Perform a depth first search of the
dependency graph.

- Start at the non-materialized tuple on
the right hand side of a rule.

 Stop recursion at an external or materialized
pktin synin tuple on the left of a rule.
- Mark tuples as read or write.
synackOut

. synackOut synin l l
synin l «*\ o 7 —
pktin -0‘»~ > > alarm aCk I

4. Scheduling Execution 5. Speculative Scheduling @

« Support multiple internal event queues.
 Check if:
» WriteNew n (ReadCurrent u WriteCurrent) = &

* Remove the next event from the external
event queue.
« Consult the concurrency table to compare

read and write sets for event and running
fixpoints.

synackOut

» An alternative is to speculatively execute and
check for conflict afterwards.
 Best strategy depends on expected frequency

» WriteCurrent n (ReadNew u WriteNew) = &

» If no conflict, enqueue event on its own internal
event queue and start execution.

of conflict.

