
NetPaxos: Consensus at Network Speed

Huynh Tu Dang* Daniele Sciascia*

Marco Canini† Fernando Pedone* Robert Soulé*

*Università della Svizzera italiana †Université catholique de Louvain

ABSTRACT
This paper explores the possibility of implementing the widely
deployed Paxos consensus protocol in network devices. We
present two different approaches: (i) a detailed design de-
scription for implementing the full Paxos logic in SDN switches,
which identifies a sufficient set of required OpenFlow exten-
sions; and (ii) an alternative, optimistic protocol which can
be implemented without changes to the OpenFlow API, but
relies on assumptions about how the network orders mes-
sages. Although neither of these protocols can be fully im-
plemented without changes to the underlying switch firmware,
we argue that such changes are feasible in existing hardware.
Moreover, we present an evaluation that suggests that mov-
ing Paxos logic into the network would yield significant per-
formance benefits for distributed applications.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems;
C.4 [Performance of Systems]: Reliability, availability, and
serviceability; D.4.5 [Reliability]: Fault-tolerance

Keywords
Software-defined networking, Paxos, NetPaxos.

1. INTRODUCTION
Software-defined networking (SDN) is transforming the

way networks are configured and run. In contrast to tradi-
tional networks, in which forwarding devices have propri-
etary control interfaces, SDNs generalize network devices
using a set of protocols defined by open standards, including
most prominently the OpenFlow [24] protocol. This move
towards standardization has led to increased “network pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SOSR2015, June 17 - 18, 2015, Santa Clara, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3451-8/15/06 ...$15.00.
http://dx.doi.org/10.1145/2774993.2774999.

grammability”, allowing ordinary programs to manage the
network through direct access to network devices.

Several recent projects have used SDN platforms to demon-
strate that applications can benefit from improved network
support. While these projects are important first steps, they
have largely focused on one class of applications (i.e., Hadoop
data processing [12, 15, 21, 36]), and on improving perfor-
mance via data-plane configuration (e.g., route selection [15,
36], traffic prioritization [12, 36], or traffic aggregation [21]).
None of this work has fundamentally considered whether ap-
plication logic could be moved into the network. In other
words: how can distributed applications and protocols uti-
lize network programmability to improve performance?

This paper focuses specifically on the Paxos consensus
protocol [19]. Paxos is an attractive use-case for several
reasons. First, it is one of the most widely deployed pro-
tocols in highly-available, distributed systems, and is a fun-
damental building block to a number of distributed applica-
tions [6, 14, 9]. Second, there exists extensive prior research
on optimizing Paxos [20, 22, 31, 32], which suggests that
the protocol could benefit from increased network support.
Third, moving consensus logic into network devices would
require extending the OpenFlow API with functionality that
is amenable to an efficient hardware implementation [3, 5].

Implementing Paxos in the network provides a different
point in the design space, and identifies a different set of net-
work requirements for protocol implementors. This paper
presents two different approaches: (i) a detailed description
of a sufficient set of OpenFlow extensions needed to imple-
ment the full Paxos logic in SDN switches; and (ii) an alter-
native, optimistic protocol which can be implemented with-
out changes to the OpenFlow API, but relies on assumptions
about how the network orders messages.

Although neither of these protocols can be fully imple-
mented without changes to the underlying switch firmware,
we present evidence to show that such changes are feasible.
Moreover, we present an evaluation that suggests that mov-
ing consensus logic into the network would reduce appli-
cation complexity, reduce application message latency, and
increase transaction throughput.

In summary, this paper makes the following contributions:

1

• It identifies a sufficient set of features that protocol im-
plementors would need to provide to implement con-
sensus logic in network devices.

• It describes an alternative protocol, inspired by Fast
Paxos [20], which can be implemented without changes
to the OpenFlow API, but relies on assumptions about
how the network orders messages.

• It presents experiments that suggest the potential per-
formance improvements that would be gained by mov-
ing consensus logic into the network.

The rest of this paper is organized as follows. We first pro-
vide a short summary of the Paxos protocol (§2), followed
by a description of the two approaches to providing network
support for Paxos (§3). Then, we present the results from
our experimental evaluation (§4), discuss related work (§5),
and conclude (§6).

2. PAXOS BACKGROUND
State-machine replication [18, 34] is a fundamental ap-

proach to designing fault-tolerant systems used by many dis-
tributed applications and services (e.g., Google’s Chubby [6],
Scatter [14], Spanner [9]). The key idea is to replicate ser-
vices, so that a failure at any one replica does not prevent
the remaining operational replicas from servicing client re-
quests. State-machine replication is implemented using a
consensus protocol, which dictates how the participants prop-
agate and execute commands.

Paxos [19] is perhaps the most widely used consensus pro-
tocol. Paxos participants, which communicate by exchang-
ing messages, may play any of three roles: proposers issue
requests to the distributed system (i.e., propose a value); ac-
ceptors choose a single value; and learners provide repli-
cation by learning what value has been chosen. Note that
a process may play one or more roles simultaneously. For
example, a client in a distributed system may be both a pro-
poser and a learner.

A Paxos instance is one execution of consensus. An in-
stance begins when a proposer issues a request, and ends
when learners know what value has been chosen by the ac-
ceptor. The protocol proceeds in a sequence of rounds. Each
round has two phases. For each round, one process, typically
a proposer or acceptor, acts as the coordinator of the round.
Phase 1. The coordinator selects a unique round number
c-rnd and asks the acceptors to promise that in the given
instance they will reject any requests (Phase 1 or 2) with
round number less than c-rnd. Phase 1 is completed when
a majority-quorum Qa of acceptors confirms the promise to
the coordinator. Notice that since Phase 1 is independent of
the value proposed it can be pre-executed by the coordina-
tor [19]. If any acceptor already accepted a value for the
current instance, it will return this value to the coordinator,
together with the round number received when the value was
accepted (v-rnd).

Phase 2. The coordinator selects a value according to the
following rule: if no acceptor in Qa accepted a value, the
coordinator can select any value. If however any of the ac-
ceptors returned a value in Phase 1, the coordinator is forced
to execute Phase 2 with the value that has the highest round
number v-rnd associated to it. In Phase 2, the coordinator
sends a message containing a round number (the same used
in Phase 1). Upon receiving such a request, the acceptors
acknowledge it, unless they have already acknowledged an-
other message (Phase 1 or 2) with a higher round number.
Acceptors update their c-rnd and v-rnd variables with the
round number in the message. When a quorum of acceptors
accepts the same round number (Phase 2 acknowledgment),
consensus terminates: the value is permanently bound to the
instance, and nothing will change this decision. Thus, learn-
ers can deliver the value. Learners learn this decision either
by monitoring the acceptors or by receiving a decision mes-
sage from the coordinator.

As long as a nonfaulty coordinator is eventually selected
and there is a majority quorum of nonfaulty acceptors and at
least one nonfaulty proposer, every consensus instance will
eventually decide on a value. A failed coordinator is de-
tected by the other nodes, which select a new coordinator.
If the coordinator does not receive a response to its Phase 1
message it can re-send it, possibly with a bigger round num-
ber. The same is true for Phase 2, although if the coordinator
wants to execute Phase 2 with a higher round number, it has
to complete Phase 1 with that round number.

The above describes one instance of Paxos. Throughout
this paper, references to Paxos implicitly refer to multiple
instances chained together (i.e., Multi-Paxos [7]).

Fast Paxos [20] is a well known optimization of Paxos.
It extends the classic rounds, as described above, with fast
rounds. In a fast round proposers contact acceptors directly,
bypassing the coordinator. Fast rounds save one communi-
cation step but are only effective in the absence of collisions,
a situation in which acceptors accept different values in the
round, and as a result no value is chosen. Fast Paxos can
recover from collisions using classic rounds. In order to en-
sure that no two values are decided, fast rounds require larger
quorums than classic rounds.

3. CONSENSUS IN THE NETWORK
In this section, we identify two approaches to improv-

ing the performance of Paxos by using software-defined net-
working. Section 3.1 identifies a sufficient set of features
that a switch would need to support to implement Paxos
logic (i.e., extensions to OpenFlow). Section 3.2 discusses
the possibility of implementing consensus using unmodified
OpenFlow switches.

3.1 Paxos in SDN Switches
We argue that performance benefits could be gained by

moving Paxos consensus logic into the network devices them-

2

selves. Specifically, network switches could play the role
of coordinators and acceptors. The advantages would be
twofold. First, messages would travel fewer hops in the net-
work, therefore reducing the latency for the replicated sys-
tem to reach consensus. Second, coordinators and acceptors
typically act as bottlenecks in Paxos implementations, be-
cause they must aggregate or multiplex multiple messages.
The consensus protocol we describe in Section 3.2 obviates
the need for coordinator logic.

A switch-based implementation of Paxos need only im-
plement Phase 2 of the protocol described in Section 2. Since
Phase 1 does not depend on any particular value, it could be
run ahead of time for a large bounded number of values. The
pre-computation would need to be re-run under two scenar-
ios: either (i) the Paxos instance approaches the bounded
number of values, or (ii) the device acting as coordinator
changes (possibly due to failure).

Unfortunately, even implementing Phase 2 of the Paxos
logic in SDN switches goes far beyond what is expressible in
the current OpenFlow API, which is limited to basic match-
action rules, simple statistics gathering, and modest packet
re-writes (e.g., incrementing the time-to-live). Below, we
identify a sufficient set of operations that the switch could
perform to implement Paxos. Note, we are not claiming that
this set of operations is necessary. As we will see in Sec-
tion 3.2, the protocol can be modified to avoid some of these
requirements.

Generate round and sequence number. Each switch coor-
dinator must be able to generate a unique round num-
ber (i.e., the c-rnd variable), and a monotonically in-
creasing, gap-free sequence number.

Persistent storage. Each switch acceptor must store the lat-
est ballot it has seen (c-rnd), the latest accepted ballot
(v-rnd), and the latest value accepted.

Stateful comparisons. Each switch acceptor must be able
to compare a c-round value in a packet header with
a c-rnd value that has been stored. If the new value
is higher, then the switch must update the local state
with the new c-round and value, and then broadcast the
message to all learners. Otherwise, the packet could be
ignored (i.e., dropped).

Storage cleanup. Stored state must be trimmed periodically.

Recent work on extending OpenFlow suggests that the
functionality described above could be efficiently implemented
in switch hardware [3, 5, 4]. Moreover, several existing
switches already have support of some combinations of these
features. For example, the NoviSwitch 1132 has 16 GB of
SSD storage [27], while the Arista 7124FX [1] has 50 GB
of SSD storage directly usable by embedded applications.
Note that current SSDs typically achieve throughputs of sev-
eral 100s MB/s [29], which is within the requirements of
a high-performance, network-based Paxos implementation.

The upcoming Netronome network processor NFP-6xxx [26],
which is used to realize advanced switches and programmable
NICs, has sequence number generators and can flexibly per-
form stateful comparisons.

Also, rather than modifying network switches, a recent
hardware trend towards programmable NICs [2, 25] could
allow the proposer and acceptor logic to run at the network
edge, on programmable NICs that provide high-speed pro-
cessing at minimal latencies (tens of µs). Via the PICe bus,
the programmable NIC could communicate to the host OS
and obtain access to permanent storage.

3.2 Fast Network Consensus
Section 3.1 describes a sufficient set of functionality that

protocol designers would need to provide to completely im-
plement Paxos logic in forwarding devices. In this section,
we describe NetPaxos, an alternative algorithm inspired by
Fast Paxos. The key idea behind NetPaxos is to distinguish
between two execution modes, a “fast mode” (analogous to
Fast Paxos’s fast rounds), which can be implemented in net-
work forwarding devices with no changes to existing Open-
Flow APIs, and a “recovery mode”, which is executed by
commodity servers.

Both Fast Paxos’s fast rounds and NetPaxos’s fast mode
avoid the use of a Paxos coordinator, but for different mo-
tivations. Fast Paxos is designed to reduce the total num-
ber of message hops by optimistically assuming a sponta-
neous message ordering. NetPaxos is designed to avoid im-
plementing coordinator logic inside a switch. In contrast to
Fast Paxos, the role of acceptors in NetPaxos is simplified.
In fact, acceptors do not perform any standard acceptor logic
in NetPaxos. Instead, they simply forward all messages they
receive, without doing any comparisons. Because they al-
ways accept, we refer to them as minions in NetPaxos.

Figure 1 illustrates the design of NetPaxos. In the figure,
all switches are shaded in gray. Proposers send messages to
the single switch called a serializer. The serializer is used to
establish an ordering of messages from the proposers. The
serializer then broadcasts the messages to the minions. Each
minion forwards the messages to the learners and to a server
that acts as the minion’s external storage mechanism, used
to record the history of “accepted” messages. Note that if
switches could maintain persistent state, there would be no
need for the minion storage servers. Each learner has multi-
ple network interfaces, one for each minion.

The protocol, as described, does not require any additional
functionality beyond what is currently available in the Open-
Flow protocol. However, it does make two important as-
sumptions:

1. Packets broadcast from the serializer to the minions
arrive in the same order. This assumption is impor-
tant for performance, not correctness. In other words,
if packets are received out-of-order, the learners would
recognize the problem, fail to reach consensus, and re-
vert to the “recovery mode” (i.e., classic Paxos).

3

Proposer

Minion
(switch)

Serializer
(switch)

Minion
storage

Minion
(switch)

Minion
storage

Minion
(switch)

Minion
storage

Minion
(switch)

Minion
storage

Proposer

Learner Learner

Figure 1: Network Paxos architecture. Switch hardware is
shaded grey. Other devices are commodity servers. The
learners each have four network interface cards.

2. Packets broadcast from a minion arrive all in the
same order at its storage and the learners. This as-
sumption is important for correctness. If this assump-
tion is violated, then learners may decide different val-
ues in an instance of consensus and not be able to re-
cover a consistent state from examining the logs at the
minion storage.

Recent work on Speculative Paxos [33] shows that packet
reordering happens infrequently in data centers, and can be
eliminated by using IP multicast, fixed length network topolo-
gies, and a single top-of-rack switch acting as a serializer.
Our own initial experiments (§ 4) also suggest that these
assumptions hold with unmodified network switches when
traffic is non-bursty, and below about 675 Mbps on a 1 Gbps
link.

Fast Paxos optimistically assumes a spontaneous message
ordering with no conflicting proposals, allowing proposers
to send messages directly to acceptors. Rather than relying
on spontaneous ordering, NetPaxos uses the serializer to es-
tablish an ordering of messages from the proposers. It is
important to note that the serializer does not need to estab-
lish a FIFO ordering of messages. It simply maximizes the
chances that acceptors see the same ordering.

Learners maintain a queue of messages for each interface.
Because there are no sequence or round numbers, learners
can only reason about messages by using their ordering in
the queue, or by message value. At each iteration of the
protocol (i.e., consensus instance), learners compare the val-
ues of the messages at the top of their queues. If the head
of a quorum with three queues contain the same message,
then consensus has been established through the fast mode,
and the protocol moves to the next iteration. The absence of
a quorum with the same message (e.g., because one of the
minions dropped a packet), leads to a conflict.

Like Fast Paxos [20], NetPaxos requires a two-thirds ma-
jority to establish consensus, instead of a simple majority. A
two-thirds majority allows the protocol to recover from cases
in which messages cannot be decided in the fast mode. If a
learner detects conflicting proposals in a consensus instance,
then the learner reverts to recovery mode and runs a classic

round of Paxos to reach consensus on the value to be learned.
In this case, the learner must access the storage of the min-
ions to determine the message to be decided. The protocol
ensures progress as long as at most one minion fails. Since
the non-conflicting scenario is the usual case, NetPaxos typ-
ically is able to reduce both latency and the overall number
of messages sent to the network.

Switches and servers may fail individually, and their fail-
ures are not correlated. Thus, there are several possible fail-
ure cases that we need to consider to ensure availability:

• Serializer failure. Since the order imposed by the seri-
alizer is not needed for correctness, the serializer could
easily be made redundant, in which case the protocol
would continue to operate despite the failure of one se-
rializer. Figure 1 shows two backup switches for the
serializer.

• Minion failure. If any minion fails, the system could
continue to process messages and remain consistent.
The configuration in Figure 1, with four minions, could
tolerate the failure of one minion, and still guarantee
progress.

• Learner failure. If the learner fails, it can consult the
minion state to see what values have been accepted,
and therefore return to a consistent state.

A natural question would be to ask: if minions always ac-
cept messages, why do we need them at all? For example,
the serializer could simply forward messages to the learn-
ers directly. The algorithm needs minions to provide fault
tolerance. Because each minion forwards messages to their
external storage mechanism, the system has a log of all ac-
cepted messages, which it can use for recovery in the event
of device failure, message re-ordering, or message loss. If,
alternatively, the serializer were responsible for maintaining
the log, then it would become a single point of failure.

A final consideration is whether network hardware could
be modified to ensure the NetPaxos ordering assumptions.
We discussed this matter with several industrial contacts at
different SDN vendors, and found that there are various plat-
forms that could enforce the desired packet ordering. For ex-
ample, the Netronome NFP-6xxx [26] has a packet reorder
block on the egress path that allows packets to be reordered
based on program-controlled packet sequence numbers. A
NetPaxos implementation would assign the sequence num-
bers based on when the packets arrive at ingress. The NetF-
PGA platform [13] implements a single pipeline where all
packet processing happens sequentially. As such, the Net-
Paxos ordering assumption is trivially satisfied. Furthermore,
discussions with Corsa Technology [10] and recent work on
Blueswitch [16] indicate that FPGA-based hardware would
also be capable of preserving the ordering assumption.

In the next section, we present experiments that show the
expected performance benefits of NetPaxos when these as-
sumptions hold.

4

4. EVALUATION
Our evaluation focuses on two questions: (i) how fre-

quently are our assumptions violated in practice, and (ii)
what are the expected performance benefits that would result
from moving Paxos consensus logic into forwarding devices.
Experimental setup. All experiments were run on a cluster
with two types of servers. Proposers were Dell PowerEdge
SC1435 2-CPU servers with 4 x 2 GHz AMD cores, 4 GB
RAM, and a 1 Gbps NIC. Learners were Dell PowerEdge
R815 8-CPU servers with 64 x 2 GHz AMD hyperthreaded
cores, 128 GB RAM, and 4 x 1 Gbps NICs. The machines
were connected in the topology shown in Figure 1. We used
three Pica8 Pronto 3290 switches. One switch played the
role of the serializer. The other two were divided into two
virtual switches, for a total of four virtual switches acting as
minions.
Ordering assumptions. The design of NetPaxos depends
on the assumption that switches will forward packets in a
deterministic order. Section 3.2 argues that such an ordering
could be enforced by changes to the switch firmware. How-
ever, in order to quantify the expected performance benefits
of moving consensus logic into forwarding devices, we mea-
sured how often the assumptions are violated in practice with
unmodified devices.

There are two possible cases to consider if the ordering as-
sumptions do not hold. First, learners could deliver different
values. Second, one learner might deliver, when the other
does not. It is important to distinguish these two cases be-
cause delivering two different values for the same instance
violates correctness, while the other case impacts perfor-
mance (i.e., the protocol would be forced to execute in re-
covery mode, rather than fast mode).

The experiment measures the percentage of values that re-
sult in a learner disagreement or a learner indecision for in-
creasing message throughput sent by the proposers. For each
iteration of the experiment, the proposers repeatedly sleep
for 1 ms, and then send n messages, until 500,000 messages
have been sent. To increase the target rate, the value of n is
increased. The small sleep time interval ensures that traffic
is non-bursty. Each message is 1,470 bytes long, and con-
tains a sequence number, a proposer id, a timestamp, and
some payload data.

Two learners receive messages on four NICs, which they
processes in FIFO order. The learners dump the contents
of each packet to a separate log file for each NIC. We then
compare the contents of the log files, by examining the mes-
sages in the order that they were received. If the learner sees
the same sequence number on at least 3 of its NICs, then
the learner can deliver the value. Otherwise, the learner can-
not deliver. We also compare the values delivered on both
learners, to see if they disagree.

Figure 2a shows the results, which are encouraging. We
saw no disagreement or indecision for throughputs below
57,457 messages/second. When we increased the through-
put to 65,328 messages/second, we measured no learner dis-

0.
00

0.
10

0.
20

0.
30

Messages / Second

P
er

ce
nt

ag
e

of
 P

ac
ke

ts
 R

es
ul

tin
g

in
 D

is
ag

re
em

en
t o

r
In

de
ci

si
on

10,000 30,000 50,000

Indecisive
Disagree

(a) Ordering assumptions.

0.
5

1.
5

2.
5

3.
5

Messages / Second

La
te

nc
y

(m
s)

10,000 30,000 50,000

Basic Paxos
NetPaxos

(b) NetPaxos performance.

Figure 2: Evaluation of ordering assumptions and perfor-
mance. 2a shows the percentage of messages in which learn-
ers either disagree, or cannot make a decision. 2b shows the
throughput vs. latency for basic Paxos and NetPaxos.

agreement, and only 0.3% of messages resulted in learner
indecision. Note that given a message size of 1,470 bytes,
65,328 messages/second corresponds to about 768 Mbps, or
75% of the link capacity on our test configuration.

Although the results are not shown, we also experimented
with sending bursty traffic. We modified the experiment
by increasing the sleep time to 1 second. Consequently,
most packets were sent at the beginning of the 1 second time
window, while the average throughput over the 1 second
reached the target rate. Under these conditions, we mea-
sured larger amounts of indecision, 2.01%, and larger dis-
agreement, 1.12%.

Overall, these results suggest that the NetPaxos ordering
assumptions are likely to hold for non-bursty traffic for through-
put less than 57,457 messages/second. As we will show, this
throughput is orders of magnitude greater than a basic Paxos
implementation.
NetPaxos expected performance. Without enforcing the
assumptions about packet ordering, it is impossible to im-
plement a complete, working version of the NetPaxos proto-
col. However, given that the prior experiment shows that the
ordering assumption is rarely violated, it is still possible to
compare the expected performance with a basic Paxos im-
plementation. This experiment quantifies the performance
improvements we could expect to get from a network-based
Paxos implementation for a best case scenario.

We measured message throughput and latency for Net-
Paxos and an open source implementation of basic Paxos1

that has been used previously in replication literature [35,
23]. As with the prior experiment, two proposers send mes-
sages at increasing throughput rates by varying the number
of messages sent for 1 ms time windows. Message latency is
measured one way, using the time stamp value in the packet,
so the accuracy depends on how well the server clocks are
synchronized. To synchronize the clocks, we re-ran NTP
before each iteration of the experiment.

1https://bitbucket.org/sciascid/libpaxos

5

The results, shown in Figure 2b, suggest that moving con-
sensus logic into network devices can have a dramatic im-
pact on application performance. NetPaxos is able to achieve
a maximum throughput of 57,457 messages/second. In con-
trast, with basic Paxos the coordinator becomes CPU bound,
and is only able to send 6,369 messages/second.

Latency is also improved for NetPaxos. The lowest la-
tency that basic Paxos is able to provide is 1.39 ms, when
sending at a throughput of only 1,531 messages/second. As
throughput increases, latency also increases sharply. At 6,369
messages/second, the latency is 3.67 ms. In contrast, the la-
tency of NetPaxos is both lower, and relatively unaffected
by increasing throughput. For low throughputs, the latency
is 0.15 ms, and at 57,457 messages/second, the latency is
0.37 ms. In other words, NetPaxos reduces latency by 90%.

We should stress that these numbers indicate a best case
scenario for NetPaxos. One would expect that modifying the
switch behavior to enforce the desired ordering constraints
might add overhead. However, the initial experiments are
extremely promising, and suggest that moving consensus
logic into network devices could dramatically improve the
performance of replicated systems.

5. RELATED WORK
Network support for applications. Several recent projects
have demonstrated that large-scale, data processing applica-
tions, such as Hadoop, can benefit from improved network
support. For example, PANE [12], EyeQ [17], and Mer-
lin [36] all use resource scheduling to improve the job per-
formance, while NetAgg [21] leverages user-defined com-
biner functions to reduce network congestion. These projects
have largely focused on improving application performance
through traffic management. In contrast, this paper argues
for moving application logic into network devices.

Speculative Paxos [33] uses a combination of techniques
to eliminate packet reordering in a data center, including IP
multicast, fixed length network topologies, and a single top-
of-rack switch acting as a serializer. NetPaxos uses simi-
lar techniques to ensure message ordering. However, Net-
Paxos moves Paxos logic into the switches, while Specula-
tive Paxos uses servers to provide the role of acceptors.
OpenFlow extensions. To better support the needs of net-
worked applications, there has been an increasing interest
in extending OpenFlow with a more generalized API. From
academia, there have been several recent proposals [5, 3, 17].
In industry, there has been a longstanding discussion about
how to support stateful operations in the new versions of
the OpenFlow protocol. The presiding standards body, the
Open Networking Foundation (ONF), includes two work-
ing groups on the topic: one to standardize extensions to
the protocol (EXT-WG), and one focused on forwarding ab-
stractions (FAWG).
Replication protocols. Research on replication protocols
for high availability is quite mature. Existing approaches for
replication-transparent protocols, notably protocols that im-

plement some form of strong consistency (e.g., linearizabil-
ity, serializability) can be roughly divided into three classes
[8]: (a) state-machine replication [18, 34], (b) primary-backup
replication [28], and (c) deferred update replication [8].

At the core of all classes of replication protocol discussed
above, there lies a message ordering mechanism. This is ob-
vious in state-machine replication, where commands must
be delivered in the same order by all replicas, and in de-
ferred update replication, where state updates must be deliv-
ered in order by the replicas. In primary-backup replication,
commands forwarded by the primary must be received in or-
der by the backups; besides, upon electing a new primary to
replace a failed one, backups must ensure that updates “in-
transit” submitted by the failed primary are not intertwined
with updates submitted by the new primary (e.g., [30]).

Although many mechanisms have been proposed in the
literature to order messages consistently in a distributed sys-
tem [11], very few protocols have taken advantage of net-
work specifics. Protocols that exploit spontaneous message
ordering to improve performance are in this category (e.g.,
[20, 31, 32]). The idea is to check whether messages reach
their destination in order, instead of assuming that order must
be always constructed by the protocol and incurring addi-
tional message steps to achieve it. As we claim in the pro-
posal, ordering protocols have much to gain (e.g., in perfor-
mance, in simplicity) by tightly integrating with the under-
lying network layer.

6. CONCLUSION
Software-defined networking offers improved network pro-

grammability, which can not only simplify network man-
agement, but can also enable a tighter integration with dis-
tributed applications. This integration means that networks
can be tailored specifically to the needs of the deployed ap-
plications, and improve application performance.

This paper proposes two protocol designs which would
move Paxos consensus logic into network forwarding de-
vices. Although neither of these protocols can be fully im-
plemented without changes to the underlying switch firmware,
all of these changes are feasible in existing hardware. More-
over, our initial experiments show that moving Paxos into
switches would significantly increase throughput and reduce
latency.

Paxos is a fundamental protocol used by fault-tolerant sys-
tems, and is widely used by data center applications. Con-
sequently, performance improvements in the protocol imple-
mentation would have a great impact not only on the services
built with Paxos, but also on the applications that use those
services.
Acknowledgments: We thank Gianni Antichi, Marc LeClerc,
Rolf Neugebauer, Luc Mayrand, Arun Paneri, and Stacey
Sheldon for their feedback, and the reviewers for their sug-
gestions. This research is (in part) supported by European
Union’s Horizon 2020 research and innovation programme
under the ENDEAVOUR project (grant agreement 644960).

6

7. REFERENCES
[1] Arista. Arista 7124FX Application Switch datasheet.

http://www.arista.com/assets/data/pdf/7124FX/
7124FX_Data_Sheet.pdf.

[2] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis,
L. Koromilas, and G. O’Shea. Enabling End Host Network
Functions. In SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM), Aug. 2015.

[3] G. Bianchi, M. Bonola, A. Capone, and C. Cascone. OpenState:
Programming Platform-Independent Stateful Openflow Applications
Inside the Switch. In SIGCOMM Computer Communication Review
(CCR), volume 44, pages 44–51, Apr. 2014.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Computer Communication Review (CCR), 44(3):87–95,
July 2014.

[5] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hardware for SDN.
In SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM), pages 99–110, Aug. 2013.

[6] M. Burrows. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 335–350, Nov. 2006.

[7] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos Made Live: An
Engineering Perspective. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 398–407, Aug. 2007.

[8] B. Charron-Bost, F. Pedone, and A. Schiper, editors. Replication:
Theory and Practice, volume 5959 of Lecture Notes in Computer
Science. Springer, 2010.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s
Globally-Distributed Database. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 251–264, Oct.
2012.

[10] Corsa Technology. http://www.corsa.com/.
[11] X. Defago, A. Schiper, and P. Urban. Total Order Broadcast and

Multicast Algorithms: Taxonomy and Survey. ACM Computing
Surveys (CSUR), 36:372–421, Dec. 2004.

[12] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi.
Participatory Networking: An API for Application Control of SDNs.
In SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM), pages 327–338, Aug. 2013.

[13] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown.
NetFPGA – An Open Platform for Teaching How to Build
Gigabit-Rate Network Switches and Routers. IEEE Transactions on
Education, 51(3):160–161, Aug. 2008.

[14] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Scalable Consistency in Scatter. In ACM Symposium on
Operating Systems Principles (SOSP), pages 15–28, Oct. 2011.

[15] T. Gupta, J. B. Leners, M. K. Aguilera, and M. Walfish. Improving
Availability in Distributed Systems with Failure Informers. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 427–441, Apr. 2013.

[16] J. Hun Han, P. Mundkur, C. Rotsos, G. Antichi, N. Dave, A. W.
Moore, and P. G. Neumann. Blueswitch: Enabling Provably
Consistent Configuration of Network Switches. In 11th ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems, Apr. 2015.

[17] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar,
A. Greenberg, and C. Kim. EyeQ: Practical Network Performance

Isolation at the Edge. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 297–312, Apr. 2013.

[18] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM (CACM),
21(7):558–565, July 1978.

[19] L. Lamport. The Part-Time Parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, May 1998.

[20] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, Oct.
2006.

[21] L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca,
P. Pietzuch, and A. L. Wolf. NetAgg: Using Middleboxes for
Application-Specific On-Path Aggregation in Data Centres. In ACM
International Conference on Emerging Networking Experiments and
Technologies (CoNEXT), pages 249–262, Dec. 2014.

[22] P. Marandi, M. Primi, N. Schiper, and F. Pedone. Ring Paxos: A
High-Throughput Atomic Broadcast Protocol. In IEEE International
Conference on Dependable Systems and Networks (DSN), pages 527
–536, June 2010.

[23] P. J. Marandi, S. Benz, F. Pedone, and K. P. Birman. The
Performance of Paxos in the Cloud. In IEEE International
Symposium on Reliable Distributed Systems (SRDS), pages 41–50,
Oct. 2014.

[24] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Computer
Communication Review (CCR), 38(2):69–74, Mar. 2008.

[25] Netronome. FlowNICs – Accelerated, Programmable Interface
Cards. http://netronome.com/product/flownics.

[26] Netronome. NFP-6xxx - A 22nm High-Performance Network Flow
Processor for 200Gb/s Software Defined Networking, 2013. Talk at
HotChips by Gavin Stark.
http://www.hotchips.org/wp-content/uploads/hc_
archives/hc25/HC25.60-Networking-epub/HC25.27.
620-22nm-Flow-Proc-Stark-Netronome.pdf.

[27] NoviFlow. NoviSwitch 1132 High Performance OpenFlow Switch
datasheet. http://noviflow.com/wp-content/uploads/
2014/12/NoviSwitch-1132-Datasheet.pdf.

[28] B. Oki and B. Liskov. Viewstamped Replication: A General
Primary-Copy Method to Support Highly-Available Distributed
Systems. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 8–17, Aug. 1988.

[29] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang. SDF:
Software-Defined Flash for Web-Scale Internet Storage Systems. In
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
471–484, Feb. 2014.

[30] F. Pedone and S. Frolund. Pronto: A Fast Failover Protocol for
Off-the-Shelf Commercial Databases. In IEEE International
Symposium on Reliable Distributed Systems (SRDS), pages 176–185,
Oct. 2000.

[31] F. Pedone and A. Schiper. Optimistic Atomic Broadcast: A Pragmatic
Viewpoint. Theoretical Computer Science, 291:79–101, Jan. 2003.

[32] F. Pedone, A. Schiper, P. Urban, and D. Cavin. Solving Agreement
Problems with Weak Ordering Oracles. In European Dependable
Computing Conference (EDCC), Oct. 2002.

[33] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy.
Designing Distributed Systems Using Approximate Synchrony in
Data Center Networks. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Mar. 2015.

[34] F. B. Schneider. Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial. ACM Computing Surveys
(CSUR), 22(4):299–319, Dec. 1990.

[35] D. Sciascia and F. Pedone. Geo-Replicated Storage with Scalable
Deferred Update Replication. In IEEE International Conference on
Dependable Systems and Networks (DSN), pages 1–12, June 2013.

[36] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster. Merlin: A Language for Provisioning Network
Resources. In ACM International Conference on Emerging
Networking Experiments and Technologies (CoNEXT), pages
213–226, Dec. 2014.

7

http://www.arista.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf
http://www.arista.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf
http://www.corsa.com/
http://netronome.com/product/flownics
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.60-Networking-epub/HC25.27.620-22nm-Flow-Proc-Stark-Netronome.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.60-Networking-epub/HC25.27.620-22nm-Flow-Proc-Stark-Netronome.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.60-Networking-epub/HC25.27.620-22nm-Flow-Proc-Stark-Netronome.pdf
http://noviflow.com/wp-content/uploads/2014/12/NoviSwitch-1132-Datasheet.pdf
http://noviflow.com/wp-content/uploads/2014/12/NoviSwitch-1132-Datasheet.pdf

	Introduction
	Paxos Background
	Consensus in the Network
	Paxos in SDN Switches
	Fast Network Consensus

	Evaluation
	Related Work
	Conclusion
	References

