
Gotthard: Network Support for Transaction
Processing

Theo Jepsen Leandro Pacheco de Sousa Huynh Tu Dang
Fernando Pedone Robert Soulé

Università della Svizzera italiana

Introduction. Network latency has a significant impact on
the performance of transactional storage systems. To reduce
latency, systems typically rely on a cache to service read-
requests closer to the client. However, caches are not effec-
tive for write-heavy workloads, which have to be processed
by the storage system in order to maintain serializability.

This poster presents Gotthard, a system that implements
a new technique, called optimistic abort, which reduces net-
work latency for high-contention workloads. Gotthard lever-
ages recent advances in network data plane programmability
to execute transaction processing logic directly in network
devices. A switch running Gotthard examines network traf-
fic to observe and log transaction requests. If Gotthard sus-
pects that a transaction is likely to be aborted at the store, it
aborts the transaction early by re-writing the packet header,
and routing the packets back to the client. Gotthard signifi-
cantly reduces the overall latency and improves the through-
put for high-contention workloads.
Background. As network hardware becomes increasingly
programmable [4, 3], several recent systems have demon-
strated the benefits of tighter integration between the net-
work and distributed applications that run atop. These
benefits include reduced application complexity [9], im-
proved application performance [6, 11], better network uti-
lization [10], and more responsive traffic engineering [8].
Gotthard leverages the programmable network substrate to
improve performance for high-contention workloads.

Gotthard is written P4 [3], allowing the switch to execute
transaction processing logic. P4 provides high-level abstrac-
tions for network functionality: packets are processed by a
sequence of tables; tables match header fields, and perform
actions that forward, drop, or modify packets. Moreover,
P4 allows for stateful operations that can read and write to
memory cells called registers.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA

c© 2017 ACM. ISBN 978-1-4503-4947-5/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3050220.3060603

Gotthard
Switch

Client1

Clientn

… dss
Store

1

2
3

4
5

commit or
abort

log response

6

7

8

dcs

abort

log and
forwardsubmit

transaction

submit
transaction

done or
retry

retry

Figure 1: Overview of Gotthard deployment.

System Model. We consider a distributed system composed
of client processes and a server. The server provides a key-
value store. Clients execute transactions locally and then
submit the transaction to the store to be committed, similarly
to mini-transactions [1]. When executing a transaction, the
client may read values from its own local cache. Write oper-
ations are buffered until commit time. The isolation property
that the system provides is one-copy serializability: every
concurrent execution of committed transactions is equivalent
to a serial execution involving the same transactions [2].

The store implements optimistic concurrency control
(OCC) [7]. All read transactions are served directly by the
store. To commit a write transaction, the client submits its
buffered writes together with all values that it has read. The
store only commits a transaction if all values in the submit-
ted transaction are still current. As a mechanism for imple-
menting this check, the system uses a compare(k,v) opera-
tion, which returns true if the current value of data item k
is v, and false otherwise. Note that the compare operation
is not exposed to the users, but is simply used by the sys-
tem to implement OCC. In the event of an abort, the server
returns updated values, allowing the client to immediately
re-execute the transaction.
Design Overview. Fig. 1 shows a basic overview of Got-
thard. Client transaction requests pass through a Gotthard
switch. The switch either forwards the request to the store,
or aborts the transaction and responds to the client directly.
In the figure, the two cases are distinguished by color and
line type.

http://dx.doi.org/10.1145/3050220.3060603

0.0 0.2 0.4 0.6 0.8 1.0
Workload Write Ratio

0

200

400

600

800

Ti
m

e
to

C
om

pl
et

e
E

xp
er

im
en

t(
s)

Forward
Read Cache
Gotthard

Figure 2: Time to complete 1000 transactions as the workload be-
comes more write-heavy. The read cache is ineffective as the per-
centage of write transactions exceeds 15%.

The blue, dashed-line shows the forwarding case. When
the client submits the request (1), the switch examines the
transaction and logs the operations in its local cache (2). It
then forwards the transaction message to the store, which
can commit or abort the transaction (3). The store responds
to the client with the execution result. The switch logs the
result of the execution (4), and forwards the response to the
client. If the client learns that the transaction was aborted, it
can re-try. Otherwise, the transaction is complete (5).

The red, dotted-line shows the abort case. As before,
the client submits a request (6), and the switch examines
the transaction message. When logging the operations, if
the switch sees that a transaction is likely to abort based on
some previously seen transaction, the switch will preemp-
tively abort the request (7), and send a response to the client.
The client can then re-submit the transaction (8).

Gotthard adopts an aggressive strategy for aborting trans-
actions. It proactively updates its cache with the latest value
after the switch has seen a transaction request. We refer to
this as an optimistic abort strategy. It is optimistic because
the switch assumes that any transaction request that it has
seen is likely to be committed. As a result, it can make deci-
sions about aborting subsequent transactions sooner. How-
ever, this approach may abort transactions that would not
have been aborted by the store. For a transaction that would
have aborted at the store, the intuitive advantage of the Got-
thard approach is clear: the message avoids traveling the dis-
tance from the switch to the store, twice.
Evaluation. To evaluate how Gotthard improves the perfor-
mance for processing workloads with high contention, we
performed the following experiment. We measured the total
time to complete 1,000 transactions for increasingly write-
heavy workloads with a single data item. In the experiment,
a client submits two types of transactions to the store: one
with a single read operation, and one with both a read and
write operation. We varied the proportion of the two transac-
tion types, to create workload scenarios ranging from more
read-intensive to more write-intensive.

All the transactions passed through a switch that operated
in one of three different modes of execution. In the first, the
switch acted traditionally, and simply forwarded requests to
the store. In the second mode, the switch was modified us-
ing a data plane P4 program to behave like an on-path look-

through cache. In the third configuration, the switch exe-
cuted Gotthard logic.

Fig. 2 shows the results. As expected, when the percent-
age of write requests increases, the cache becomes less effec-
tive. In fact, when the percentage of write requests is above
15%, we see almost no benefit to performance for using the
read cache. This is because the client can read stale values
from the cache which then cause write transactions to abort
at the store. In contrast, Gotthard significantly reduces exe-
cution time with respect to simple forwarding and caching.
When the workload is only at only 25% writes, Gotthard al-
ready reduces the completion time by half.
Outlook. It is widely recognized that the performance
of OCC protocols is heavily dependent on workload con-
tention [5]. Gotthard is designed to address this prob-
lem. Gotthard compliments prior techniques for reducing
network latency, such as using a cache to service read re-
quests [9], by focusing on write-intensive workloads. More-
over, Gotthard provides a novel application of data plane
programming languages that advances the state-of-the-art in
this emerging area of research.

REFERENCES
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: A New Paradigm for Building
Scalable Distributed Systems. TOCS, 27(3):5:1–5:48, 2009.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley Longman Publishing Co., Inc., 1987.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
Protocol-Independent Packet Processors. SIGCOMM CCR,
44:87–95, July 2014.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding
Metamorphosis: Fast Programmable Match-Action
Processing in Hardware for SDN. In SIGCOMM, pages
99–110, Aug. 2013.

[5] R. E. Gruber. Optimism vs. locking: A study of concurrency
control for client-server object-oriented databases. Technical
report, MIT, 1997.

[6] T. Gupta, J. B. Leners, M. K. Aguilera, and M. Walfish.
Improving Availability in Distributed Systems with Failure
Informers. In NSDI, pages 427–441, Apr. 2013.

[7] H. T. Kung and J. T. Robinson. On Optimistic Methods for
Concurrency Control. ACM TODS, 6(2):213–226, June 1981.

[8] J. Lee and J. Zeng. LBSwitch: Your Switch is Your Server
Load-Balancer. http://schd.ws/hosted_files/
2016p4workshop/0f/ELTE%2C%20p4-ws-2016-laki.pdf,
May 2016.

[9] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J.
Freedman. Be Fast, Cheap and in Control with SwitchKV. In
NSDI, pages 31–44, Mar. 2016.

[10] L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca,
P. Pietzuch, and A. L. Wolf. NetAgg: Using Middleboxes for
Application-Specific On-Path Aggregation in Data Centres.
In CoNext, pages 249–262, Dec. 2014.

[11] R. Soulé, S. Basu, P. Jalili Marandi, F. Pedone, R. Kleinberg,
E. Gün Sirer, and N. Foster. Merlin: A Language for
Provisioning Network Resources. In CoNext, pages 213–226,
Dec. 2014.

http://schd.ws/hosted_files/2016p4workshop/0f/ELTE%2C%20p4-ws-2016-laki.pdf
http://schd.ws/hosted_files/2016p4workshop/0f/ELTE%2C%20p4-ws-2016-laki.pdf

	References

