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ABSTRACT
As P4 and its associated compilers move beyond relative im-
maturity, there is a need for common evaluation criteria. In
this paper, we propose Whippersnapper, a set of benchmarks
for P4. Rather than simply selecting a set of representative
data-plane programs, the benchmark is designed from first
principles, identifying and exploring key features and met-
rics. We believe the benchmark will not only provide a ve-
hicle for comparing implementations and designs, but will
also generate discussion within the larger community about
the requirements for data-plane languages.

1. INTRODUCTION
The P4 language [7] has rapidly captured the attention of

the networking community. The P4 Language Consortium
boasts over 12 university members and 44 industry mem-
bers, including companies such as Microsoft, Intel, Cisco,
and VMWare. SIGCOMM 2016 included five papers related
to P4 [1, 20, 31, 32, 30]. Using P4, developers have created
a variety of powerful new applications including advanced
network diagnostics and telemetry [24, 37] and responsive
traffic engineering [18].

As interest in the language and potential applications
grows, there has been a flurry of research and development
in P4 compilers and targets. At the May 2016 P4 work-
shop, there were at least seven P4 compiler implementations
demonstrated. Given the recency of these projects, the stan-
dard for evaluation of these tools has simply been “it exists”.
However, as P4 and its associated tools move beyond relative
immaturity, there is a need for common evaluation criteria.

Typically, these criteria come in the form of a benchmark.
Historically, benchmarks have been used to both encourage
and evaluate innovation. As an example of the former, when
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the Datamation Sort benchmark [33] was first proposed in
1985, the winning entry took more than one hour to sort
one million records. The same task can now be done in less
than 1 second. This progress is partly due to the fact that
researchers had a target for which to aim. As an example
of the latter, consider how benchmarks such as TPC-C [39]
are used in the database community. Research papers that
do not include an evaluation against a known benchmark are
viewed with skepticism, and are unlikely to be published.
The benchmark provides a standard by which the commu-
nity can evaluate a new technique or optimization.

Designing a benchmark suite for P4 is difficult for at least
two reasons. First, P4 is used as a high-level interface to
many diverse target platforms. Metrics on one target plat-
form may not be interesting or relevant on another. More-
over, because P4 abstracts away from target internals, it is
difficult to collect target-specific metrics using P4 primitives
themselves. This makes it hard to build a generic test har-
ness. Second, data-plane programming and applications are
still relatively new, and it is not yet clear what constitutes a
representative application and workload. Much of the excite-
ment around P4 is a result of discovering new applications
that have not been previously envisioned (e.g., Paxos [12]).
As usage increases, the expected functionality will change.

In this paper, we propose Whippersnapper, a P4 bench-
mark suite that addresses these challenges. First, to cope
with target heterogeneity, Whippersnapper is divided into
platform-agnostic and platform-specific benchmarks. More-
over, it advocates a black-box benchmarking methodology,
allowing for measurements in a target-agnostic manner. Sec-
ond, in contrast to benchmarks organized around a set of rep-
resentative programs and workloads [34, 35, 39, 2], Whip-
persnapper is a synthetic benchmark. It consists of artifi-
cial programs and workloads that evaluate essential P4 oper-
ations in isolation. Some of the first benchmarks widely-
accepted by industry were synthetic benchmarks [11, 41]
that evaluated key features of the Algol and Fortran lan-
guages. More recently, for file systems, researchers have ar-
gued for a systematic approach based on key metrics, rather
than “realistic” workloads [36]. Taking a cue from these
projects, Whippersnapper is designed from first principles
to focus on the essential language features of P4, identifying
a set of metrics to measure and parameters to change.

Although P4 is still in its infancy, there is already a strong
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need for a commonly accepted benchmark. There are nu-
merous P4 compiler implementation efforts underway, tar-
geting reconfigurable ASICs [38], NPUs [22], FPGAs [29,
40], GPUs [19], and general-purpose CPUs [27, 30, 17].
Without a benchmark, it is difficult for the community to
compare and evaluate the various approaches. Moreover,
the synthetic benchmark approach advocated by Whipper-
snapper is based on a systematic, multi-factor evaluation of
compilers and targets via fundamental P4 abstractions, al-
lowing it to be useful well after a large repository of real
code examples exist.

We have used Whippersnapper to benchmark four differ-
ent P4 compilers: PISCES [30], P4FPGA [40], BMV2 [6],
and a Xilinx prototype [9] based on SDNet [29]. The results
identify interesting opportunities for optimization in all four
systems.

Just as the sorting benchmark spurred innovation in do-
main of data processing, a benchmark for P4 will help spur
innovation in compiler design and implementation. We be-
lieve that proposing such a benchmark will generate discus-
sion within the larger community about what are the require-
ments for P4 and data-plane languages in general, and what
are the criteria by which they should be judged.

Clearly, a benchmark must be a community effort. There-
fore, all source code for the P4 programs (or a script to gen-
erate a set of P4 programs) and packet capture (PCAP) files
with workloads are available with an open-source license.

Overall, this paper makes the following contributions:
• It identifies key language features, metrics, and parame-

ters for evaluating P4 programs.
• It describes a set of synthetic benchmarks that systemati-

cally explore and evaluate those key features.
• It demonstrates the utility of the benchmark on case stud-

ies involving four different P4 compilers.
The rest of this paper is organized as follows. In Section 2,

we describe the target-independent benchmarks. Then we
describe the target-dependent benchmarks in Section 3. Sec-
tion 4 discusses long-term questions about data-plane bench-
marks. In Section 5, we report results from case studies in-
volving four different P4 compilers. Finally, we describe
related work (Section 6) and conclude (Section 7).

2. TARGET-INDEPENDENT SUITE
P4 provides high-level abstractions for packet processing:

packets are parsed and then processed by a sequence of ta-
bles; tables match packet header fields, and perform actions
that forward, drop, or modify packets; actions may include
stateful operations that read and write to memory.

Whippersnapper is designed to explore how various pa-
rameters impact the design and implementation of the key
features provided by these P4 abstractions. Table 1 summa-
rizes the benchmark suite. Entries in the table are grouped
by a language feature, which correspond to the abstractions
provided by P4. Each entry in the table roughly corresponds
to an experiment in which a metric is measured as some pa-
rameter is changed. In all cases, except one, we expect that
the metrics are latency and throughput; for the size of table

Table 1: Language features and parameters.

Feature Parameter

Parsing
#Packet headers
#Packet fields
#Branches in parse graph

Processing

#Tables (no dependencies)
Depth of pipeline
Checksum on/off
Size of tables

State Accesses

#Writes to different register
#Writes to same register
#Reads to different register
#Reads to same register

Packet Modification
#Header adds
#Header removes

Action Complexity
#Field writes
#Arithmetic expressions
#Boolean expressions

benchmark, we expect that the metric is memory consump-
tion. For all but one of the benchmarks, measurements are
collected at runtime; for the size of table benchmark, the
metric is collected at compiler time.
Parsing. When a packet enters the processing pipeline,
the parser extracts header fields and metadata, which can be
referenced in match rules in P4 tables. Parsers are typically
implemented as finite state machines. Thus, the overhead
due to parsing can result from either increasing the size or
number of headers, or increasing the complexity of the parse
graph. Whippersnapper includes three sets of programs to
evaluate parsing performance: one that increases the num-
ber of nested packet headers, one that increases the number
of fields in a packet header, and one that increases the num-
ber of branches in a parse graph (i.e., checking the value in
a header, and transitioning to another state). For all three
experiments, we are interested in latency and throughput.
Processing. Once a packet has been parsed, it is processed
by a sequence of tables, which match header fields and per-
form actions. Tables are composed using P4 control-flow ab-
stractions. The overhead due to processing can result from:
(i) the number of tables, (ii) the depth of the pipeline (i.e.,
number of tables that have dependencies), (iii) if the table
requires a checksum computation, and (iv) the size of the ta-
bles measured in number of entries. The processing bench-
marks isolate each of these parameters.
State Accesses. P4 allows for stateful operations that can
read and write to memory cells called registers. Thus, Whip-
persnapper includes experiments that vary the number of



reads and writes to different registers. We note that P4 does
not guarantee that reads and writes to registers for a given
packet will be atomic. Therefore, the performance (and cor-
rectness) can vary quite a bit, depending on how state ac-
cesses are implemented. The state access benchmarks in-
clude experiments that vary the number of reads and writes
to the same register, in order to evaluate the potential over-
head of concurrency control. While the main metrics for the
state access benchmarks are latency and throughput, the ex-
periments based on increasing reads and writes to different
registers also test the capacity that registers can support on a
given target. Our benchmark does not currently test for cor-
rectness, since correctness is not defined in the current P4
specification.
Packet Modification. A P4 program can modify packets
using action components. Whippersnapper separates actions
that modify packets in different ways. The packet modi-
fication benchmarks evaluate the overhead for adding and
removing packet headers. In these benchmarks, we expect
to measure latency and throughput as the number of header
adds or removes increases.
Action Complexity. P4 can also modify packets by writing
to header fields. Moreover, field writes can include arith-
metic or boolean expressions. An action can be made in-
creasingly complex by varying the number of expressions.
Whippersnapper includes separate benchmarks that vary the
number of field writes, and vary action complexity by in-
creasing the number of expressions.
Intentionally Omitted. Of course, as with any evaluation
or model, it is important to not only identify those metrics
that you are concerned with, but also those metrics that you
ignore. Whippersnapper intentionally does not address:
• Compilation time. Compilation time is quite long (e.g.,

synthesis on an FPGA can take hours). At the same time,
we expect that this is a one-time cost, as users do not fre-
quently re-compile and deploy new data-plane programs.

• Power consumption and area used. These metrics are in-
teresting, but they depend on “white box” profiling and
reporting from the compilers.

• Rule installation time. The time to install new flow rules
can be impacted by a variety of factors, including the tar-
get, controller, and network latency. While this is an inter-
esting metric, we have omitted it because it is not neces-
sarily a compiler issue. (Although, a compiler may impact
installation time, for example, if it generates code that uses
a slow TCAM to load new rules, when an SRAM would
have been a fine alternative.)

• Reliability and correctness. We do not include experi-
ments that evaluate reliability concerns (e.g., dropped/lost
packets) or correctness. We assume that these issues are
covered by unit tests. Instead, we focus on performance.

Overall, Whippersnapper is a benchmark suite that system-
atically evaluates the core P4 language features in isolation.

3. TARGET-DEPENDENT SUITE
In addition to the above benchmarks, Whippersnapper in-

cludes a set of target-dependent benchmarks. These bench-

marks are summarized in Table 2. Below, we briefly discuss
these benchmarks in more detail.
General Purpose CPU. Higher performance is often
achieved by running multiple processing threads in paral-
lel on separate cores. Therefore, performance is often un-
predictable due to scheduling or locking on shared state.
To evaluate this, Whippersnapper includes benchmarks that
vary the workload by changing the working set of flows
quickly, changing size of flows, and reading/writing to a sin-
gle register. We note that there is often significant overhead
due to processing packets in the OS kernel. Consequently,
several projects have explored kernel-bypass approaches,
such as DPDK [13] and NetMap[28]. With DPDK, a sin-
gle thread runs on a separate CPU core that is directly at-
tached to one Ethernet Network Interface and one of the
Non-Uniform Memory Access (NUMA) nodes of the ma-
chine. Usually, each thread can process packets indepen-
dently and does not need to share any state with the other
threads.
NPU. Like CPUs, NPUs typically have multiple process-
ing cores executing in parallel, each with separate memory
for storing instructions Multiple-threads may be assigned
to a processor, but only a single thread is active at a time.
Processors are divided into clusters. Within a cluster, pro-
cessors are connected by a bus, and share access to cluster
memory. Clusters are connected to chip memory by a chip
bus. As with CPUs, the performance of NPUs can be unpre-
dictable, due to issues such as thread scheduling and locking
to protect memory accesses. To explore this unpredictability,
Whippersnapper includes benchmarks that vary the work-
load by changing the working set of flows quickly, changing
size of flows, and reading/writing to a single register.
FPGA. One of the major challenges when compiling to
an FPGA is handling resource constraints. FPGA hardware
has a number of fixed and finite components, including In-
put/Output, block RAMs, logic cells, digital signal process-
ing blocks, transceivers, and other blocks. Of course, FP-
GAs come in many different sizes, and with different feature
mixes. So, the resources will vary across devices. To ex-
plore the constraints of a particular target, Whippersnapper
includes an FPGA-specific benchmark that checks if increas-
ingly large P4 programs, as measured by number of tables
and table sizes, fit on a given device. The target-independent
benchmarks also check this aspect, for example, different
sizes of parsers and numbers of packet modification con-
sume different amounts of FPGA logic resources.

We note that ASICs also typically impose resource con-
straints. However, with FPGAs, there are two subtle differ-
ences. First, while FPGAs come in a variety of different
sizes, ASICs typically come in only one or a few sizes. So,
when fitting a given program on hardware, users may have
to accept that they could be wasting unused resources. Sec-
ond, with an ASIC, a program must be mapped to a generic
pipeline in a hardware substrate. With an FPGA, compilers
attempt to map the hardware substrate to fit the program.
ASIC. The common hardware architecture for pro-
grammable high-performance packet-processing ASICs is



Table 2: Platform-dependent metrics.

Target Metric(s) Parameter Measurement Time

General Purpose CPU
Latency,Throughput Changing working set of flows quickly Runtime
Latency, Throughput Changing size of flows Runtime
Latency, Throughput Read, modify, update same register Runtime

NPU
Latency, Throughput Changing working set of flows quickly Runtime
Latency, Throughput Changing size of flows Runtime
Latency,Throughput Read, modify, update same register Runtime

FPGA
Does it fit? #Tables Compile-time
Does it fit? Table size Compile-time

ASIC
Does it fit? #Tables Compile-time
Does it fit? Table size Compile-time
Does it fit? #Depth of dependency in expression Compile-time

often dubbed PISA (Protocol Independent Switch Architec-
ture) [21, 8]. In essence, PISA is a special kind of VLIW ma-
chine with a huge amount of I/O capacity and on-chip mem-
ory necessary to realize match-action units (i.e., exact or
ternary lookup logic coupled with simple ALUs) and packet
buffers, combined with generic packet parsing logic [15].
Unlike the conventional VLIW architecture used for CPUs,
however, PISA does not have logic for heap, instruction
memory, or stack pointers. Hence looping is not possible,
and data dependencies between packets are resolved via a
sequential pipeline of match-action units. The amount of all
physical resources on a PISA chip is determined and fixed at
the chip design time. Important resource constraints include
number of physical stages, number of match-action units in
each stage, amount of on-chip memory per stage, amount
of containers that can carry header fields and metadata, ca-
pabilities of match-action units and state-processing ALUs,
etc.

CPUs and NPUs can spend virtually as many resources
(cycles and memory) as needed to process each packet. In
contrast, PISA machines strictly limit the resources usage.
This is necessary because a PISA machine must ensure de-
terministically high performance; the performance target of
a PISA chip today is multi Tbps or billions of packets per
second of throughput, and a sub-microsecond processing la-
tency (excluding queuing delay).

Note a PISA machine’s throughput and latency are char-
acterized by a P4 program at compile time; at run time
(packet processing time) the machine’s throughput and la-
tency do not change. Hence, with Whippersnapper we pro-
pose to benchmark PISA machines’ target-specific capabil-
ities in terms of number and size of tables, the depth of the
table dependency graph, and the complexity of action defi-
nition the target can support.

4. DISCUSSION
The proposal of a P4 benchmark suite raises several inter-

esting questions related to both benchmarking methodology,
and about potential impact on the P4 language itself, includ-
ing future areas of research. We expand the discussion of
some of these topics below.
Language Evolution. The design of the P4 language is
an active area of research and development. The language
itself has quickly evolved from the P414 specification [26]
to the P416 specification [25]. The internals of the refer-
ence compiler implementations have also evolved quickly,
transitioning between several standardized intermediate rep-
resentations [16, 3]. The synthetic benchmark approach ad-
vocated by Whippersnapper should be able to evolve with
the language as well. The methodology, which is based on
a systematic, multi-factor evaluation via fundamental lan-
guage abstractions, is useful beyond the syntactic details of
a particular language version.
Methodology challenge. One challenge in using a black-
box approach to benchmarking is collecting measurements
with timestamps of sufficient granularity to measure differ-
ences in performance. Collecting such measurements re-
quires access to hardware timestamps. In our sample runs,
we have used three different tools: a hardware simulator
with sub-nanosecond accuracy, the MoonGen Packet Gener-
ator [14] and a custom packet generator running in an FPGA.
P4 does not provide a generic way to access hardware times-
tamps, and in general, such target-specific functionality must
be implemented with “extern” functions. It would be useful
to consider extensions to the P4 API that would allow for
accurate benchmarking in the P4 program itself.

Another methodological challenge is generating work-
loads. Our implementation of the benchmark suite includes
PCAP files with sample packets for each benchmark. To
vary workload parameters, such as number of packets, num-
ber of flows, duration, and interpacket gaps, we rely on fea-



tures of the packet generator (e.g., [14]).
Underspecified semantics. The benchmarks related to
state accesses present a particular challenge. Neither the cur-
rent draft of the P414 spec nor the pre-release of the P416
spec identify a concurrency model for state accesses. In
other words, P4 does not guarantee that reads and writes to
registers for a given packet will be atomic. Therefore, both
the performance and correctness can vary quite a bit, de-
pending on how state accesses are implemented. For these
experiments, it may be worth adding a metric that reports the
semantics that one can expect on a given platform.
Target diversity. P4 provides a target-agnostic API. How-
ever, in reality, there are compilers for many different tar-
gets, and performance metrics vary significantly on different
hardware. For example, consider that INT allows a devel-
oper to measure the depth of a queue on an ASIC when a
packet is buffered. But, on a software switch [30], it is un-
clear how queue depth relates to queuing delay (especially if
system overheads prevent line-rate processing), or on which
buffer a packet is stored (e.g., in the kernel or on the NIC).
Extensibility. As the language evolves, and new use cases
for P4 emerge, the benchmark will need to be extended. To
add a new benchmark to the suite, a developer must concep-
tually identify a metric to measure, and a set of parameters
that would cause the value of the metric to change. Con-
cretely, they would need to provide a set of P4 programs (or
script to generate them) that change those parameters, and a
PCAP file with a representative workload.

5. EXAMPLE USE CASES
To demonstrate potential use cases for Whippersnapper,

we have performed a set of experiments using four different
P4 compilers targeting different hardware:
• PISCES [30] is a software hypervisor switch that extends

Open vSwitch [23] with a protocol independent design.
• P4FPGA [40] is an open-source framework that compiles

and runs high-level P4 programs to various FPGA targets
such as Xilinx and Altera FPGAs. P4FPGA first trans-
forms P4 programs into a data-plane pipeline expressed as
a sequence of hardware modules written in Bluespec Sys-
tem Verilog [5]. P4FPGA then compiles these Bluespec
modules to FPGA firmware.

• Xilinx SDNet [29] is a development environment that al-
lows for scalability across the range of Xilinx FPGAs. We
used an early research prototype compiler implementa-
tion [9] that builds on SDNet. It first maps the source P4
program to the high-level PX [10] language. Then, SDNet
compiles programs from PX to a data-plane implementa-
tion on a Xilinx FPGA target, at selectable line rates from
1G to 100G without program changes.

• BMV2 is the reference compiler implementation on
P4.org which targets the P4 Behavioral Model software
switch [6].
We ran the bmv2 and PISCES experiments on a server

with 12 cores (dual-socket Intel Xeon E5-2603 CPUs @
1.6GHz), 16GB of 1600MHz DDR4 memory. The OS was
Ubuntu 14.04. On a separate server, we ran the MoonGen

packet generator. To measure latency, the packet generator
applied a timestamp to each packet at departure and arrival
time. The two servers were connected with 2 10Gbps links
on 2 distinct SFP+ ports. The P4FPGA results were col-
lected using hardware simulation.

Packet modification. Our first experiment is from a subset
of the packet modification benchmarks, in which we mea-
sure the latency as we increase the number of header ad-
ditions and removals. As a compiler, we used the Xilinx
research prototype mentioned above. As a target hardware,
we used a Xilinx Virtex UltraScale+ XCVU13P, which can
achieve a 100Gb/s line rate, and throughput of 150 million
minimum-size packets per second. The measurements came
from running the benchmark test packet through a hardware
simulation at sub-nanosecond accuracy, using the Verilog
hardware design generated from the P4 description.

Figure 1a shows the results. While the general trend con-
forms to our intuitions (i.e., more adds/removes results in
higher latency), the relative performance is surprising: it is
slower to remove a header than add a header.

This behavior is due to a non-optimized feature in this par-
ticular P414-to-PX mapper. It adds a separate removal stage
for each header (e.g., 16 removal stages for the 16-removal
case) before deparsing. However, all insertions are done in
a single stage at the same time as deparsing. In practice, the
removals could also be done at the same time as deparsing,
but the prototype does not take this approach.

We note that as the P4 language transitions to a new ver-
sion, the P414-to-PX mapper we used in our experiments has
been replaced with a P416-to-PX mapper, based on a new
code base that does not exhibit the same behavior. SDNet
itself has the same latency for adding and removing.

Parsing. This subset of the benchmark measures the la-
tency for parsing an increasing number of headers using
PISCES, P4FPGA, and the bmv2 switch. The results ap-
pear in Figure 1b. All results are normalized to the latency
for each particular system for parsing 1 header, which are
shown in Table 3. We see that as we increase the number of
headers, the latency for bmv2 increases rapidly. In contrast,
the latency for PISCES is only about 7% worse for 16 head-
ers. We were surprised to find that P4FPGA scales much
worse that PISCES, about 30% worse for 16 headers.

The benchmark exposes an opportunity for optimization
in P4FPGA. The current parser is designed without consid-
eration for the size of the header. In this case, the headers
are 2 bytes, and the data width is 16 bytes. The parser only
reads one header at a time, which takes 1 clock cycle. Mul-
tiple headers could have been read at the same time, which
would have reduced latency.

Action complexity. Figure 1c shows the latency for per-
forming an increasing number of field writes using PISCES,
P4FPGA, and the bmv2 compiler. P4FPGA scales better
than either of the two software switches. P4FPGA lever-
ages hardware parallelism to schedule packet modify oper-
ations with no read-after-write dependencies into the same
clock cycle. If all field write operations are writing to differ-
ent packet fields, then all operations will be scheduled to the
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Figure 1: Whippersnapper identifies opportunities for optimization for four different P4 compilers.

Table 3: Latencies for parsing 1 header, writing 1 field, pro-
cessing through 1 table.

Target Parse 1 header Write 1 field Depth of 1

bmv2 11.2 ms 11.1 ms 14.4 ms
PISCES 5.2 µs 5.5 µs 4.8 µs
P4FPGA 0.3 µs 364 ns 364 ns

same clock cycle, yet still maintain the intended semantics
of source P4 program. We note that in PISCES (and Open
vSwitch), if the same field is set multiple times, it will re-
sult in a single set-field action. However, if multiple distinct
fields are set, there will be a separate set-field action for each
field. These actions are executed in sequence.

Processing Pipeline. Figure 1d shows the latency for pro-
cessing packets as we increased the table depth. In this ex-
periment, we see the benefits of optimizations in PISCES,
in contrast to the bmv2 software switch. There is no la-
tency increase when the table count increases, as the match-
action pipeline is converted into a single match-action rule.
P4FPGA implements a similar optimization.

These experiments demonstrate the types of phenomenon
that a P4 benchmark can uncover, and how compiler imple-
mentors can use the benchmark to better understand the im-
plications of their designs and potential optimizations.

6. RELATED WORK
This work is motivated both by the many P4 compiler im-

plementation efforts underway, and inspired by benchmark-
ing efforts in other communities.

P4 Compilers. P4.org provides a reference compiler [27]
with backends that target the behavioral model software
switch, and Berkeley Packet Filters. Barefoot Networks is
developing a compiler that targets their Tofino chips [38].
There are a few projects that target FPGAs, including SDNet
from Xilinx [29] and P4FPGA [40]. P4c [17] translates P4
to DPDK. PISCES [30] targets a modified version of Open
vSwitch [23]. P4gpu [19] generates code for GPUs.

Benchmarks. There is a long history of benchmarks
in different domains. Unix Systems have the Spec bench-
marks [34]. For web applications, there is SpecWeb [35].
Java VM developers use the DaCapo benchmark [4]. In
databases, TPC-C [39] is one prominent example. Whip-
persnapper is a synthetic benchmark, based on artificial pro-
grams and workloads that evaluate key features of a lan-
guage or system. Whetstone [11] is a synthetic benchmark
used to evaluate Algol 60. Dhrystone [41] was developed as
an alternative to Whetstone, and was based on characteriza-
tions of programs in terms of common language constructs.

7. CONCLUSION
Whippersnapper is a synthetic benchmark suite for P4

that systematically evaluates the key language components.
Whippersnapper not only provides a way to evaluate compil-
ers or compiler/target combinations, but it will also help spur
innovation. Indeed, using Whippersnapper, we have already
identified interesting opportunities for optimizations in four
P4 compilers. As the ecosystem of P4 tools and compil-
ers grows, Whippersnapper addresses the pressing need for
a common evaluation criteria.

Availability
All code for the benchmark suite and sample packet capture
files to generate workloads are publicly available under an
open-source license at: http://p4benchmark.org.
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