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ABSTRACT

In this paper, we introduce P4 Weaver as an approach towards
bringing modularity into the P4 language. P4 Weaver is designed
to merge new data plane features into a base program in a prin-
cipled and controlled way, so as to preserve the reliability of the
switch. We also present an architecture for an integrated develop-
ment environment that supports modular P4 programming while
also safeguarding the intellectual property of the vendor code. We
demonstrate the utility of P4 Weaver by adding three popular but
non-trivial protocols to a P4 switch. We show that modularity is in-
deed beneficial and that P4 Weaver supports modularity efficiently
and reliably.
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1 INTRODUCTION

P4 programmable devices have the potential to bring a major para-
digm shift in the way computer networks are designed and deployed.
Traditionally, network devices have been built around a fixed set of
data plane functions. Users were forced to find creative engineering
solutions using available features to address their use cases. Now
network administrators can follow a different approach: starting
from their use case, they identify the data plane behavior that ad-
dresses it in the best way and implement such behavior (or have it
implemented by a third party) on a programmable network device.
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However, network dataplane programming also introduces new
problems and challenges.

First, network programming is programming, which is never
easy, and network programming is relatively new and lacks ma-
ture tools to guide and support the development process. This
kind of support is especially important because network operators,
although technologically savvy, are not necessarily software devel-
opers. Moreover, network programming languages such as P4 [7]
are intentionally computationally restricted, which can make it
cumbersome to express intended algorithms.

Second, there is the question of who will do the program-
ming. Some vendors might develop their platforms around a
programmable ASIC without exposing programmability to the
user [2, 11, 28, 29]. At the other end of the spectrum, some op-
erators might choose bare-metal programmable switches [14] to
then develop the whole data plane and control plane stack from
scratch. In these cases it is conceivable that a single development
team would own a monolithic data-plane program.

However, arguably the most widely beneficial and effective case
is somewhere in the middle. A vendor would sell a switch with
a pre-programmed data plane profile with standard features (e.g.,
L2/L3 forwarding, tunneling, and ACLs), as is the case with existing
Arista [2] and Cisco [11] products, and the customer would program
the switch (or deploy third-party programs) to extend standard
features or to implement new protocols. In other words, network
programming is likely to be incremental and therefore modular.

This immediately leads to integration problems. The vendor
would want to be very careful in exposing their code to the customer,
and the customer should be careful in integrating new code within
the vendor code. This is for business reasons, for example because
the vendor might want to protect their intellectual property, but
also for reliability, since both the vendor and the customer would
want to guarantee the correct functionality of the switch.

In this paper, we propose P4 Weaver, a new environment for
incremental P4 programming. P4 Weaver allows switch customers
to implement and deploy their new ideas and algorithms while
ensuring that the switch remains reliable in its basic traffic-handling
functionality.

P4 Weaver introduces annotations in P4 programs for both the
vendor code and the extension code. Annotations in the vendor code
provide fine-grained access control over the core functionality of the
switch. For example, the vendor might annotate their code to expose
TCP headers and to use a new forwarding scheme for a particular
application’s traffic, while at the same time preventing any change
in the headers and the handling of ARP packets. Annotations within
the extension code describe how the extension code should be
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integrated within the base code of the switch. For example, the
customer might want/be able to add telemetry headers and the
corresponding processing before UDP or TCP processing, but after
IP forwarding.

In modern systems, incremental and modular programming is
supported by language constructs and by system features, such
as method invocation and dynamic linking. However, P4 does not
provide such constructs and features. This restriction is a deliberate
design choice motivated by efficiency and by the nature of the
target platform. We therefore design the core of P4 Weaver as a
source-to-source compiler that combines the customer and vendor
code.

P4 Weaver is implemented within a client-server architecture
that supports the programmer through a modern integrated devel-
opment environment (IDE). This architecture hides and protects
the vendor code, but at the same time supports the customer in
programming against the headers and controls that are annotated
as accessible by the vendor. For example, the IDE supports the
customer adding a telemetry header to TCP packets even without
giving the customer access to the TCP header definitions. P4 Weaver
then integrates the extension code within the vendor code, com-
piles it, and delivers the resulting binary code and other artifacts
to the customer for deployment onto the switch. If the extension
code violates the integration rules mandated by the vendor or if the
integrated code would exhaust the resources of the switch, then
P4 Weaver provides appropriate feedback to the customer (through
the IDE) with error messages or resource allocation reports, respec-
tively.

We evaluate P4 Weaver with some micro-benchmarks and
primarily through significant case studies. For example, we use
P4 Weaver to integrate new functions into a switch, including the
GPRS Tunneling Protocol (GTP) with ECMP routing, and in-band
network telemetry (INT). This diversity of applications demon-
strates the flexibility and expressiveness of P4 Weaver.

In summary, we make the following contributions:

e We design annotations for the P4 language that support the
principled and controlled extension of P4 programs;

e We implement a source-to-source compiler that integrates new
code within an existing P4 programs following proper syntactical
structures and abiding by the access-control policies defined
through annotations;

e We implement a development environment that supports incre-
mental P4 programming using annotations and the source-to-
source code weaver;

o We demonstrate the use and utility of the annotations and the
development environment through a series of practical examples
in which we extend a switch with real features and protocols
that are of interest to network operators.

The rest of this paper is organized as follows. We first discuss
the background and provide a motivating example (§2). Then, we
present the design of the P4 Weaver annotations and the weaving
process (§3), followed by a discussion of the system architecture
(§4). Next, we evaluate P4 Weaver with a set of micro-benchmarks
and case studies (§6). Finally, we discuss related work (§7) and
conclude (§8).

2 MOTIVATION AND BACKGROUND

Modular design is crucial for code re-usability, as it allows develop-
ers to change different system units independently. Indeed, modular
design and information hiding are the bedrocks of modern software
development [27].

In many software frameworks, modularity is a feature provided
by the programming language and the compiler. However, today,
the support for modular development in P4 is limited. In this section,
we motivate the need for modularity in P4, discuss the challenges
for supporting modularity in the language, and consider aspect-
oriented programming techniques as a possible approach to address
them.

Who is the P4 Programmer? A natural question to ask is who,
exactly, will be programming in P4? One can imagine several alter-
native scenarios.

The “whitebox” deployment of a switching system with a pro-
grammable data plane requires the device user to implement from
scratch a data plane program and the corresponding control plane
software (possibly starting from a publicly available or proprietary
code base). This represents a significant shift from the traditional,
“turn-key” deployment of networking equipment: devices come
with pre-defined data plane functions and a network operating
system controlling them, and their users are concerned only with
configuring such functions using well-known, possibly standard,
interfaces such as a CLI (command line interface), SNMP (simple
network management protocol), and NETCONF.

To both benefit from a programmable data plane, and also of-
fer a more familiar deployment model, some equipment vendors,
such as Cisco Systems with their Nexus 3400 switches [11] and
Arista Networks with their 7170 Series switches [2], have mar-
keted products that lend themselves to the traditional turn-key
deployment. Their switches, built around the Barefoot Networks
P4 programmable Tofino chip [4], are released with a working
data plane program controlled by their signature operating system
(NXOS and EOS, respectively). Similarly, in the Data Processing
Unit (DPU) world, Pensando Systems has developed a full software
stack implementing distributed services for the Enterprise [29]
and for Cloud Providers [28] that runs on a programmable ASIC
designed in house.

For vendors, programmable data plane chips offer several advan-
tages in terms of reduced development time and cost over tradi-
tional designs based on fixed-function ASICs. However, turn-key
deployment of programmable data plane chips does not allow their
customers or third parties to take advantage of the programmability
of the data plane.

Ideally, then, there should be support for an incremental exten-
sion and composition of functions in a basic data plane program. In
other words, there should be support for modularity in P4 programs.

Motivating Example. As a motivating example, imagine that a
network operator would like their network to use Generic Network
Virtualization Encapsulation (GENEVE) as their virtualization pro-
tocol. They purchase a switch from a vendor that supports a variety
of L2/L3 forwarding features, including two virtualization protocols,
Virtual Extensible LAN (VXLAN) and Network Virtualization using
Generic Routing Encapsulation (NVGRE), but not GENEVE. The



user might modify the vendor’s base P4 program to add support
for the GENEVE protocol. This would require that they:

(1) Add a new header definition for GENEVE.

(2) Modify the parser finite state machine.

(3) Add a new table to match on GENEVE header fields.

(4) Add new actions for processing and possibly remove the
GENEVE header.

(5) Add a new table to match on various header fields to identify
packets that need to be encapsulated in a GENEVE header.

(6) Add new actions to build and add a GENEVE header.

(7) Modify the composition of the table pipeline.

(8) Update the deparser to emit the new header.

While perhaps conceptually straightforward, making these
changes is not a trivial task, even if the amount of code to be written
is possibly small. The open source switch.p4 program, which is com-
parable to a vendor base program, is roughly 5600 lines of code and
implements essentially all of the functionality found on a modern
data center switch, including L2 switching, L3 routing, multicast,
LAG, ECMP, ACLs, MPLS, multi-device fabrics, and mirroring. Even
just identifying the spots where the program must be modified in
order to merge the new code within it is a daunting task. Moreover,
a small change in this complex code base can inadvertently break
some other functionality.

Requirements. In a word, the example above suggests that P4
programming should be modular. The context of the example is an
incremental deployment, where a customer adds a function to a base
vendor program, but the idea of modularity applies more generally,
for example when an organization divides the development of a
P4 program between two teams. We therefore refer generically to
the addition of extension code to a base data plane program, and
we use the terms vendor and customer to refer generically to the
developers of the base and extension code, respectively. We now
articulate specific modularity requirements.

o Do not break what works. The base data plane program of a switch
usually implements protocols that are essential for the correct
operation of the switch. The addition of new extension code
should not affect the correct operation of the base program.

o Do not break the control plane. The operating system of a network
device typically relies on the data plane offering a specific set of
functions and a well-known interface to control these functions.
The incremental addition of new code should not disable the
operating system by changing or otherwise affecting the interface
between data plane and control plane.

e Do not show, do not see. The base program is often developed
by a switch vendor who might not want to share it with their
customers. In all the above examples of turn-key systems [2, 11,
28, 29] and even in the case of features developed on stand-alone
chips [4, 12], vendors are not willing to let go of the intellectual
property on which they have heavily invested by open-sourcing
their code.! On their part, customers would most likely want to
develop extensions without having to study or even see the base
code. In any case, hiding code is essential for modularity, so that
the extension would not rely on the implementation details of the
base program, and vice-versa. Being able to extend a base code

! Although Intel/Barefoot has released P4 code in the public domain, it is only a subset
of their full code base.

without needing to know its details, significantly reduces the
complexity of implementing such extension, which is beneficial
even when the base code is actually available. This is the case,
for example, of a developer adding new features to a well tested
P4 program previously developed within their own company.

e Resource sharing and isolation. Programmable chips have a limited
amount of resources (e.g. RAM, T-CAM, ALUs, registers, etc.)
that must be shared between the base and incremental code. Such
resources are used to store both the data plane program and the
parameter data provided by the control plane. Since the base
and incremental programs share resources, mechanisms must
be in place to ensure that the extension would not modify the
functionality and the parameters of the base program or exhaust
resources needed by the base program.

2.1 Modularity Challenges

Today, in P4, there are three main ways to support modular develop-
ment. First, actions group together a sequence of instructions that
may be parameterized. In P44, actions can be called directly, like
a function invocation. Second, both P414 and P4;¢ use the C pre-
processor to allow for direct inclusion of programs or declarations,
macros, and static conditionals. Third, P4;¢ introduced the notion
of an architecture. The architecture describes common capabilities
of a network switch. The architecture allows developers to separate
target-specific details from the core logic of their program. The
architecture also allows developers to create different instances of
a forwarding device with different implementation details.

Unfortunately, these features are not sufficient to extend the base
P4 program with the GENEVE protocol. We could use file inclusion
(i.e., CPP macros) to include the new header definition. But, our
example also requires that we re-write the parser and modify the
program control flow—which is not possible using the existing
support for modular development.

The P4 Language Design Working Group has done work to
add a certain degree of modularity in the language, but finding
a solution to the problem is not straightforward. Defining new
language constructs is relatively easy. What remains fundamentally
difficult is mapping such constructs onto some specific hardware
targets.

In a typical software development environment, systems might
come in binary form but users would still be able to augment the
code with static and dynamic linking. However, such an approach
would not easily work for ASICs or FPGAs. On a general-purpose
instruction set architecture such as x86, the output of the compi-
lation is an object file that contains data as well as code objects
identified by symbols. Some of the instructions may reference exter-
nal symbols (functions, global objects, etc.) defined in other object
files. Later a static or dynamic linker loads all the necessary object
files and links every symbol to its implementation, resolving each
reference to a symbol into a concrete memory address. This creates
the final executable. Then, at runtime, the stack-based call and re-
turn mechanism implemented by the CPU ultimately realizes the
seamless integration of modular components.

The problem is that these same mechanisms can not be mapped
onto ASICs where the logic connections between code and data
elements are hard-wired as a result of the compilation of the P4



source. In other words, the notion of a linker and a run-time stack
for P4 is not feasible. This leads us to a different approach, one that
works via source-code manipulation.

2.2 Aspect-Oriented Programming in P4?

Today, one of the most popular paradigms for modular program-
ming is object-oriented programming (OOP). There are many
variations—from Javascript’s prototype based inheritance to C++,
Java, and Python’s class based approach—but all of them are based
on the concept of an “object” with data fields and methods. This
abstraction enables many of the desirable features of modularity,
such as encapsulation, composition, inheritance, and delegation.

OOP is not without limitations. Given a break-down of function-
ality and data into objects, there might still be common “aspects”
of the behavior of many of those objects that could not be easily
modularized into one or more separate objects. To address this
problem, Gregor Kiczales and colleagues at Xerox Park proposed
the concept of aspect-oriented programming (AOP) [19]. Aspect-
oriented programming provides a way to modularize cross-cutting
concerns, that is, units of functionality that span multiple classes,
methods, procedures, etc. The basic idea of AOP is that developers
can modify the behavior of some base code by adding some code
called advice. An advice may take control at specific join points
in the base code, for example before or after the invocation of a
function. A pointcut is an expression that specifies one or more
such join points for a given advice. The program that joins the base
program with the advice at the specified join points is referred to
as a weaver.

In this paper, we propose to use techniques from AOP to provide
modularity to P4. In the programming languages community, this
is likely a somewhat controversial proposition. One of the major
criticisms of AOP is that the implicit transfer of control from the
base program to the advice code makes the program flow hard to
understand. This is, essentially, the same argument that Dijkstra
famously made against GOTO statements.

Given this valid criticism, it is natural to ask, “should AOP be
used in P4?” We argue that what we propose uses AOP techniques,
but is in fact a more principled and controlled approach that provides
proper code isolation and sequencing. In AOP, the extension code
would define an “aspect” consisting of both an advice, meaning
the code of the extension, and a pointcut, meaning the definition
of the points in which that code takes control. By contrast, in our
design of P4 Weaver there are two clearly distinct roles, namely the
base code and the extension, with a proper separation of concerns.
In particular, it is the base code that defines appropriate pointcuts
through which the extension code can take control and also how
and where control returns to the base code. In fact, the base code
can constrain the extension code within a strict sequencing or more
generally limit the use of both control and data structures of the
base code.

3 P4 WEAVER DESIGN

We now detail the design of our P4 Weaver. We start by dis-
cussing the type of changes we propose to support with P4 Weaver.
P4 Weaver realizes such changes by integrating the extension code
within the base code. This integration is controlled by annotations

in both the extension and base code. We present the syntax and
semantics of these annotations. Then we present the design of the
weaver, including some technical details of the weaving process.

3.1 Modular Extensions in P4

P4 Weaver is intended to support customers in customizing the
behavior of their switches. However, a customer may not make
arbitrary modifications, as these could introduce potentially unsafe
behavior. Below, we discuss the types of code modifications that
are permissible.

Only Additive Modifications. P4 Weaver only allows users to
add functionality to a base program. This is because removing or
changing existing functionalities and parameters can violate the
contract between the control plane and the data plane (e.g., the
PD-API in case of P4 on Tofino).

As a concrete example, a user might want to remove an unused
protocol. If they know that they will never use IPv6 in their network,
they might want to remove the related table to recover switch
resources. However, the control plane may use or otherwise refer to
that data-plane table, which would then break the contract provided
by the APL

Even simple modifications can be problematic. A user might
want to route packets also based on the value of the differentiated
services field (DS). To do that, a user could add a key to the IPv4
forwarding table to represent the DS field, so that different entries
for the same destination could be associated with different DS
values. However, this change would break the operating system
because the operating system would not know of the additional
key in the table.

Reconciling violations of a data-plane API is possible, but re-
quires coordinated changes in the control plane and possibly the
switch operating system. In practice, this is often done using pre-
processor flags to selectively include feature-specific definitions in
P4 programs [17], which in turn are carefully coupled with a corre-
sponding configuration of the control-plane code, possibly through
the same preprocessor flags. Such coordinated feature selection is
perfectly compatible with P4 Weaver.

However, P4 Weaver is intended to support modularity and a
separation of concerns between the base code and extension code.
We assume that the developer of the data-plane extension would
not have access to the control-plane or operating-system code, and
therefore we choose to prohibit altogether changes that may create
inconsistencies. In this respect, our design is quite conservative.
We know that if no tables and corresponding actions are removed
or changed, the API stays consistent with the control plane and the
operating system. One could imagine a more permissive design in
which users may modify a base program but only to a limited extent
so as to preserve correctness. For example, it might be possible
to safely reduce the size of a table. However, determining which
modifications are safe requires a careful analysis of the expectations
of the control plane over the data plane parameters (such as table
sizes) which are platform dependent.

Possible Additions. Even considering only additive changes, our
design limits the type of such additions. The choice of allowable
additions stems from a careful analysis of the P4 language specifi-
cation [25]. P4 Weaver allows users to add new constants, errors,



actions, parser state changes, type declarations (e.g., headers, meta
data), control constructs (e.g., tables), and functions. Table 1 details
the addition of each language construct.

Construct Description

constant Declaration of a new constant value

error Declaration of a new error type

function Declaration of a new function

type Declaration of a new derived type or use of typedef
to define an alias for another type declaration. This
addition covers the addition of a new header, since
header definitions and structs are considered type
declarations.

Extension of the finite state machine of the parser:
addition of a new parser state together with the con-
nections to and from this new state.

parser

Declaration of a new control block, or addition of
modules to the switch’s previously defined ingress
and egress blocks. This addition covers the addition
of a new table, since control blocks include table defi-
nitions, constant values, variables and action declara-
tions.

control

action Declaration of a new action outside of a control block.
The action then can be invoked from all the control

blocks.
Table 1: Additive changes supported by P4 Weaver

P4 Weaver does not allow users to add new match kind or extern
declarations. These declarations depend on the architecture, and
therefore are only valid and meaningful if supplied by the vendor.
Users are also not allowed to instantiate a new switch. Such a
change does not make sense in our context and would likely violate
the control-plane APL

3.2 Annotations in the Base Code

The vendor annotates the base code to define allowable extensions
for the customer. In particular, annotations in the base code (i) con-
trol the visibility of header types and identifiers, (ii) indicate places
where new parser state transitions may be added, and (iii) indicate
places in the source code where the composition of tables can be
modified. Each annotation is associated with a specific language
construct and includes a set of attributes consisting of key-value
pairs.

Listing 1 exemplifies the annotations that P4 Weaver supports
for the base code. We now document each annotation type in detail.
Header Annotations. The @Header annotation is associated with
a header definition and is defined by the access attribute. This
annotation specifies the permission granted to the extension code
in accessing the referenced header. Possible values for the access
attribute are name, read, and write. A name access means that the
extension code may validate the existence of this header (using the
isValid() method); read means that the extension code may read
the value of all the fields in this header; read implies name; write

@Header (access="read")
header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
}
/S
@State (enabled="true",
positions="before,after",
name="Parser_UDP")
state parse_udp {
packet.extract(hdr.udp);
transition accept;
}
/) oo
@Table (enabled="true",
positions="before/after/hit/miss",
name="Ingress_IPv4_Forward")
table ipv4_forward {
key = {
meta.routing_metadata.nhgrp : exact;
}
actions = {pkt_send; drop; }
size = 64;
default_action = drop;

3

Listing 1: Annotations in the base code for the GTP use case
(described in Section 6). IPv4 forwarding table. According to
the values of valid_positions, the customer can inject new
code, before, after or in case of miss or hit of this table. As in
@StateConfig, the vendor can use an alias, to avoid revealing
the real name of the table.

means that the customer code may modify the value of all the fields
in this header; write implies read and name.

State Annotations. The @State annotation is associated with a
parser state and is defined by attributes name, enabled, and positions.
This annotation allows the extension code to connect the annotated
parser state with a new parser state of the extension. The name
attribute defines an alias that the extension code must use to refer to
the annotated parser state. The enabled attribute simply makes this
annotation active or dormant. The value of the positions attribute
may be after, before, or both, indicating that the extension may add
an outgoing branch, an incoming branch, or both, respectively.

Table Annotations. The @Table annotation is associated with
a table definition and is defined by attributes name, enabled, and
positions. This annotation allows a user to add code before or after
the application of the annotated table. The name attribute defines
an alias that the extension code must use to refer to the annotated
table. The enabled attribute simply makes this annotation active or
dormant. The value of the positions attribute may be before, after,
hit, miss, or any combination of these values. These values indicate
that the extension code may take control before, after, in case of
a miss (no match), or hit (match), or in any combination of these
positions.

3.3 Annotations in the Extension Code

A developer creates an extension by writing P4 code and by an-
notating that code to properly connect it to the base code. The
annotations refer to the headers, parser states, and tables of the
base code as defined by the annotations in the base code. In other
words, the annotations in the base code define the interface between
the extension and the base code.



Annotations in the extension code: (i) define new state-
transitions in the parser state machine, (ii) attach control logic
to, or return control to the base code, and (iii) modify the deparser
to emit any new headers. Listing 2 shows an example of the anno-
tations that P4 Weaver supports.

@Parser(after="Parser_UDP",
condition="hdr.udp.dstPort == GTP_UDP_PORT")
state parse_gtp {
packet.extract (hdr.gtp_common) ;
transition select(hdr.gtp_common.version, hdr.gtp_common.tFlag) {
(1,0) : parse_teid;
(1,1) : parse_teid;
(2,1) : parse_teid;
(2,0) : parse_gtpv2;
default : accept;
)
)
oo
@Control(table="Ingress_IPv4_Forward",
condition="before")
control GTP_contrl(inout my_headers hdr,
inout my_metadata meta,
inout standard_metadata_t standard_metadata) {

meter(256, MeterType.bytes) teid_meters;

action drop() {
mark_to_drop(standard_metadata);

3

}
/l oo
@Deparser(after="hdr.udp")
control MyDeparser(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.gtp_common);
packet.emit(hdr.gtp_teid);
packet.emit(hdr.inner_ipv4);
packet.emit(hdr.inner_icmp);
packet.emit(hdr.inner_udp);
}
}

Listing 2: @Parser annotation that adds the GTP parser
state after the state that processes the UDP header. In this
example, condition specifies that only those UDP packets
with destination port equal to GTP_UDP_PORT are considered
to be GTP packets.

Notice that apart from the annotations, the extension code is
pure P4 code. In fact, only a few elements of that code need to be
annotated, and many other additions, of the kinds listed in Table 1,
are simply defined by the structural elements of the extension code.
For example, the code may define new headers and new tables as
usual.

We now document each type of annotation in detail.

Parser State Annotations. The @Parser annotation is associated
with a parser state and is defined by attributes after, before, and
condition. This annotation connects one or more source states in
the base code to this annotated state. Attributes after and before
identify one or more source states: after names the source state
directly as shown in the example of Listing 2, which creates a branch
from the Parser_UDP state in the base code to the new parse_gtp
state defined in the extension code. Notice that Parser_UDP is the
alias for the state parse_udp as annotated in the base code shown
in Listing 1. Instead, before identifies one or more source states
indirectly. For example, before="Parser_UDP" indicates as sources
the states that connect into state Parser_UDP, which in this case

might be states IPv4 and IPv6. The condition attribute defines
the branching condition to go from the source states to the new,
annotated state.

Control Block Annotations. The @Control annotation is asso-
ciated with a control block and is defined by attributes table and
condition. This annotation attaches the annotated control block to
the application of a table in the base code. Attribute table identifies
the table. Attribute condition may be either before, after, miss, or
hit, which determines whether the annotated control block takes
control before, after, or only in case of a miss or a hit, respectively.
Notice that after means in case of either miss or hit.

Deparser Annotations. The @Deparser annotation is associated
with a deparser control block and is defined by attributes after and
before. This annotation determines the sequencing of the annotated
deparser as part of the overall deparser. More specifically, this
annotation determines the position of the headers indicated in
the annotated deparser block within the deparser sequence in the
base code. The after and before attributes refer to the names of
the headers that immediately precede and follow the annotated
headers, respectively. For example, the @Deparser annotation in
Listing 2 adds the GTP headers immediately after UDP.

3.4 Weaver

The weaving process takes the annotated base code and the anno-
tated extension code, and combines them into a single P4 source file.
As a first step, the weaver parses the base code and the extension
code and builds an abstract syntax tree (AST) for each. The weaving
then proceeds as a merge operation on the two trees.

For some parts of the code, such as constants, errors, functions,
types (including header definitions), and actions, the merge opera-
tion is very straightforward. The output is simply the union of the
two parts. More specifically, if subtrees tf’ s té’ ,...and tf R t; ,...are
the two sets of subtrees of the base and extension ASTs, respectively,
representing, say, the header definitions, then the output AST will
contain a concatenation of all those subtrees: tlb s té’ SN

The other parts, namely parser and control (see Table 1), require a
more involved merging process. In both cases, the merging process
requires changes in the base code and, to a lesser extent, in the
extension code. Also, other general processing steps are needed
to properly handle identifiers and to check that the merging is
consistent with the policies defined within the base code. We now
describe these processing steps at least at a high level.

Code Generation for the Parser. The combined parser consists
of the finite state machine of the parser of the base code properly
extended with the new states defined by the extension code. There-
fore, the crucial change amounts to adding the necessary transitions
between source states (base) and new states (extension) within the
transition blocks of the source states.

Algorithm 1 shows the process to merge the parser of the exten-
sion into the parser of the base code. Lines 8 and 13 ensure that
the extension is allowed according to the access-control policies
determined by the annotations in the base code and similarly line 5
ensures no policy violation exists in accessing base headers. Then,
the merge procedure branches depending on whether the parser
extension is to be inserted after or before a particular parser state
in the base code.



Algorithm 1 WeaveParser function

Input: base AST, ext_AST // AST of base and extension code
Output: merged_AST or error message
1: merged_AST « copy of base_AST
2: Try:
3 for all parser states ext_s in ext_AST do
4 h « headers accessed in ext_s
5: assert h are accessible according to base_AST
6 if ext_s.after then
7 base_s < ext_s.after // base-code parser state
8 assert “after” € base_s.positions
9 cond « ext_s.condition

10: update base_s.select with cond and ext_s
11: else if ext_s.before then

12: base_s « ext_s.before // base-code parser state
13: assert “before” € base_s.positions

14: for all parser states s in base_AST do

15: if s has a transition to base_s then

16: update that transition to ext_s instead
17: end if

18: end for

19: end if

20: append ext_s to merged_AST

21:  end for

22:  return merged_AST
23: Catch: assertion violations
. return assertion violations

N
'y

In the after case, the select statement in the parser state of the
base code (base_s) must be modified to include a transition to the
parser state of the extension (line 10). At a high-level, there are
two cases: if the transition condition (line 9) refers to the same
selection variable used in base-code state, then P4 Weaver adds the
given condition as the first case statement within the selection.
Otherwise, if the transition condition refers to a different variable,
then P4 Weaver adds the new condition variable to the select
statement of the base-code state, and correspondingly adds the
selection expressions for what is now a pair of keys for all the case
statements in that state. If the select statement already refers to
two keys, then P4 Weaver changes it to three, etc.

In the before case, P4 Weaver identifies the target base-code
parser state (base_s) and all the other states in the base-code parser
that have a transition into that target state. For each of those states,
P4 Weaver changes their transition into the target state to instead
go to the state of the extension code (see line 14).

Code Generation for Control Blocks. Merging control blocks
means inserting into the base code the application of the control
blocks defined and annotated within the extension code. The anno-
tation of the extension control blocks determines the target table
and also a condition. In the simplest case, the condition is either
before or after, in which case P4 Weaver simply adds an invocation
of the extension control block before or after the application of
the target table in the same code-block within the base code. For
example, if the base code applies IP table within, say, an if state-
ment (i.e., the then code-block), and the extension code defines a

control block B annotated as after table IP, then P4 Weaver inserts
the statement B.apply(. . .) right after the statement IP.apply()
within the same if statement.

Notice that in generating the B.apply(...) statement,
P4 Weaver must also define the proper parameters for the apply
call. This is because the extension code (the B block) might refer to
headers that are defined in the base code but not in the extension
code. Thus, P4 Weaver outputs a completely new struct declara-
tion that contains the union of the headers available from the input
parameters of the control block in both the base and extension code.

The missand hit conditions are a bit more complex. In these cases,
P4 Weaver must generate code to store the result of the application
of the associated table and then wrap the B.apply(...) callina
corresponding if statement. This may be necessary because the P4
compiler does not allow multiple applications of the same table.

Handling Identifiers. Even with P4 Weaver’s conservative ap-
proach to modifications, introducing new code has the potential
to introduce unexpected behaviors and bugs. The extension code
might inadvertedly use identifiers that are already used in the base
code. To avoid duplicate identifiers, P4 Weaver generates a unique
alias for all the identifiers defined in the extension code. This solves
the problem without revealing the presence of any specific identi-
fier in the base code. The aliases are defined using a special prefix
in such a way that they can be distinguished as belonging to the
extension code, and furthermore that they can be mapped to the
corresponding original identifiers in the extension code. This al-
lows the weaver to correctly refer to the original extension code
when reporting feedback to the customer (for example, for error
messages). We discuss the feedback channels in greater detail in
Section 4.

Checking for Unauthorized Access to the Packet. The exten-
sion code might erroneously read from or write into headers that
are not declared accessible by the vendor. P4 Weaver parses and
analyzes the extension code, and therefore can identify the [value
and rvalue expressions in the extension code to then determine
which objects (e.g., headers) are accessed by the extension code.
P4 Weaver then checks that the extension code would not violate
the access policies annotated within the base code. As an example,
see lines 4 and 5 of Algorithm 1.

Checking for Invalid Logic Paths. The extension code must also
be consistent with the sequencing of the various processing phases
as determined by the base code. For example, the customer might
extend the finite-state machine of the parser by adding new code to
the control blocks. However, those additions have to be explicitly al-
lowed with annotations within the base code. In general, P4 Weaver
makes sure that the flow of the program will always satisfy the
constraints of the vendor.

4 ARCHITECTURE

The design of the annotations and weaver mechanism described
above provides a principled and controlled approach to ensuring
code isolation and enabling incremental development. However,
this design does not in and of itself hide the base code from the cus-
tomer. Nor does it offer any support to the customer in developing
their extension code.
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Figure 1: The components of the P4 Weaver client-server
architecture along with the communication among them.
(1) The IDE receives the interface of the base code and other
diagnostics, and uses that to guide and support the devel-
oper. (2) The extension code is merged with the base code
(switch.p4) by the weaver, and then (3) compiled to obtain a
binary file that (4) is then sent to the client. If the compila-
tion is successful, then (5) the binary image can be deployed
onto the switch and/or (6) more diagnostics and statistics can
be sent back to the developer.

For these requirements—i.e., to limit the visibility of the base
code and to support developers—P4 Weaver uses a client-server
architecture (Figure 1) that realizes its full functionality without
giving the customer direct access to the vendor base-program, and
at the same time providing focused support for the developer.

Server Side. The base P4 program is stored on a server that may be
administered by the vendor or a trusted third party. In the figure, the
base code is named switch.p4. Thus, the server side is responsible for
all the activities that require access to the base code. In particular,
the server side runs a compiler for the annotations in the base code,
the weaver, and the vendor compiler.

The annotation compiler reads and extracts from the base code
and its annotations the information needed by the developer. This
compiler is part of the P4 Weaver system and does not need to be
able to generate code for the vendor target architecture (or any other
real target). In our implementation this is a modified version of the
open-source P4 compiler that produces structured information on
the interface of the base code in the form of a JSON file.

The weaver then merges the base code with the extension code
also performing all the necessary validity checks as described in
Section 3. The weaver takes the base code from the local reposi-
tory, the extension code from the client side, and may also return
diagnostic information back to the client.

The vendor compiler takes the merged P4 program and produces
a binary image, possibly including diagnostic information, which
is then sent over to the client.

The client-side component of P4 Weaver is a programming as-
sistant integrated into an IDE. The assistant receives information
about the base program and exposes it to the customer. In our im-
plementation, this information is provided via a GUI in the IDE.
The IDE then supports the developer by providing autocompletion,
basic checks, and error reporting using a local P4 compiler. The
IDE also relays diagnostic information from the vendor compiler
on the server side.

The workflow within this client-server architecture is as follows.
First, the P4 compiler on the server side processes the base code
and extracts its structured interface (e.g., public headers, parser
states, etc.) and communicates this information to the programming
assistant on the client side (arrow 1). Second, the customer uses the
programming assistant (IDE) to code their extensions. When the
developer is ready to compile their code, the client software sends
the extension code to the server component (arrow 2).

The weaver program then merges the extension and base code,
combining them into a single P4 switch program. If everything goes
well, the server component then invokes the vendor-supplied P4
compiler on the merged program (arrow 3). For example, for Tofino-
based switches, this compiler would be the Barefoot Networks
compiler provided with their SDE. If the weaver detects errors (e.g.,
policy violations) the server component then relays those error
messages back to the IDE on the client side (arrow 1). Once the
compilation is complete, the server component sends the image
back to the client (arrow 4). Finally, on the client side, the switch
driver installs the new binary files on the switch device (arrow 5)
and/or may return diagnostic to the developer (arrow 6).

Note that this client-server architecture and this data flow al-
lows for the best level of privacy protection afforded by the vendor
compiler and hardware. However, P4 Weaver is not intended to
protect the base code in a cryptographic sense, nor to protect the
functionality of the switch against the intentions of the customer.
With or without P4 Weaver, having physical access to the device
and being able to inspect registers and table entries, the customer
might still be able to reverse engineer some information about the
vendor code, in particular information on resource usage. Also, it is
of course possible for a customer to disrupt the intended function-
ality of the switch by misconfiguring or modifying table entries.
Similarly, a P4 extension can explicitly drop all incoming traffic.
P4 Weaver is not intended to prevent such scenarios, also because
they might be exactly what the customer wants to obtain.

5 LIMITATIONS AND FUTURE WORK

Below, we discuss some of the limitations of the current P4 Weaver
design, and directions for future work.

Incremental Control Plane Development. P4 Weaver is de-
signed to support incremental development of the data plane pro-
gram. As we already discussed in Section 3, P4 Weaver only allows
additive modifications, so as not to break the API between the data
plane and the control plane. In the future, it would be useful to
extend P4 Weaver with support for incremental extensions to the
control plane component. However, this is a challenging problem.
There are several layers of abstraction in the switch software stack
(e.g., hardware abstraction, generic switch hardware abstraction,
switch state abstraction, etc.), and each of these layers has complex



internal and external (intra-layer) dependencies. Moreover, none
of these abstractions are truly program independent. For example,
even with the P4Runtime API, which is the control plane specifi-
cation for a P4-programmable device, although the API calls are
program independent, the parameters are not.

Resource Allocation. One of the biggest challenges for P4 devel-
opers is managing resource consumption. Adding relatively minor
changes to an existing program can alter the table dependency
graph and dramatically impact how a data plane program is laid out
in memory. In the future, we plan to add some support to P4 Weaver
to help developers with the resource allocation challenge. One ap-
proach would be to give estimates of resource usage via static
analysis of the extension code. Another approach would be to be
less conservative and allow users to modify resource allocation
(e.g., reduce the number of table entries) so as to free up resources
without breaking the API contract.

Dynamic Access Control. Currently, access to the header fields
is considered to be static and independent of the type of exten-
sion applied by the customer. However, one could imagine a more
flexible design. For example, bounding access to the vendor TCP
header definition in case of a certain destination port address. Even
though some of these features can be expressed with more complex
annotations, not all of them can be realized due to limitations in
the P4 language itself.

6 EVALUATION

To demonstrate the utility of the annotations and system architec-
ture, we used P4 Weaver to implement a series of practical examples
in which we extend a switch with real features and protocols that
are of interest to network operators. We report on the details of
the implementations and our experience in these use cases. As a
sanity check, we also report on the running time for the weaver
tool, which is negligible. Overall, we found P4 Weaver to be an
effective incremental development environment for P4.

6.1 Prototype Implementation

We have implemented a prototype of P4 Weaver. All source code
is publicly available with an open-source license?. The P4 Weaver
annotations use P4’s existing support for annotations, allowing us
to extend the language without changing the grammar [26]. The
prototype implementation includes two major components: the
client and server, which we discuss in more detail below.

P4 Weaver Client. The client side component is implemented as
a plugin for the Microsoft VSCode IDE. The plugin is written in
TypeScript, a type-safe extension to Javascript. The client includes
a P4 parser, written using the ANTLR parser generator tool [1]. The
client-side parser allows the IDE to check for syntactic errors and
perform some basic semantic checks, without communicating to
the server.

P4 Weaver Server. The server-side software is composed of several
independent modules. The main server interface is a REST Web
API implemented with Ruby on Rails. The web server invokes the
P4 Weaver core, which merges the base and extension code. The
weaver module is written in Java and includes a P4 parser, again

https://github.com/usi-systems/pdweaver

based on ANTLR, which constructs the two ASTs that are then
merged into a single program. To compile the merged program,
the server invokes an external P4 compiler. P4 Weaver is agnostic
to which P4 compiler is used. We have used P4 Weaver with both
the open-source P4c compiler that targets the behavioral model
software switch, and the proprietary P4 compiler included in the
Barefoot Networks SDE.

6.2 RTP Timestamp Switching

Real-time Transport Protocol (RTP) timestamp switching is a func-
tionality not offered by any commercial switch—but actually needed
by the broadcast media industry—and is perfect in showing the ben-
efits stemming from the hybrid deployment of a P4 programmable
switch.

Media flows transported within multicast IP packets must be
switched based on the value of the timestamp contained in the RTP
header and the multicast destination address in the IP header. A
device implementing timestamp switching must rewrite the des-
tination IP address based on the value of the timestamp, so that
different portions of a flow get delivered to different sets of desti-
nations by the subsequent switches. Once the destination address
is rewritten, the switch must be able to properly replicate and for-
ward the resulting IP packet based on the new IP address, possibly
using routing information collected by a multicast routing protocol
running in the control plane.

If a P4 programmable device is deployed in whitebox mode,
the user must write the P4 code implementing not only timestamp
switching, but also multicast IP packet forwarding. Moreover, when
developing the control plane, the user must implement not only the
control for timestamp switching, but also for IP multicast, which
might include support for multicast routing protocols.

When deploying a P4 programmable device in hybrid mode, the
incremental programmer only needs to implement the timestamp
switching function, while multicast IP packet forwarding is already
implemented within the base code and its control logic is readily
available within the network operating system.

To add support for RTP, a user of P4 Weaver must implement
the RTP header; specify how the RTP header is parsed, branching
on the parsing of a UDP header; add a new table that uses the
destination IP address and RTP timestamp as keys; define a new
action to modify the destination IP address in case of match; and
indicate where the new table should be matched to the pipeline.

6.3 GPRS Tunneling Protocol (GTP)

The General Packet Radio Service (GPRS) is used by some mobile
carriers for communication between cell tower base stations and
mobile phones. For some of these sessions, cell tower base station
A with IPv4 address X will have an IPv4 tunnel configured between
itself and another network device (e.g., perhaps another cell tower
base station B with IPv4 address Y). This enables the mobile phone
data to be carried over an IPv4 network.

GTP has a signaling component for establishing new sessions;
we will not discuss it here because it is implemented in the control
plane. Once sessions are established, there could be thousands of
individual handset-to-other-IP-addressable-device sessions sending



data simultaneously, all having the same Ethernet/IPv4/UDP/GTP
encapsulation.

The P4;¢ header type definition gtp_v1_t in Listing 3 defines
the format of a GTP version 1 header. There are optional fields in a
GTP version 1 header that can appear after the teid field. For this
use case, we only need the portion of the GTP header defined here.
We do not need access to any optional field or headers after the
GTP header.

header gtp_vi_t {
bit<3> version;
bit<1> protocol_type;
bit<1> reservedl;
bit<1> extension_header_flag;
bit<1> sequence_number_flag;
bit<1> npdu_number_flag;
bit<8> message_type;
bit<16> message_length;
bit<32> teid; /% Tunnel Endpoint ID x/

Listing 3: GTP Header

It is fairly common in many network switches to extract fields
like Ethernet MAC addresses, IPv4 addresses, IPv4 protocol, and/or
layer-4 ports, and then hash those fields to select among one of
several equal-cost paths through the network (ECMP) as a form of
load balancing.

For all GTP version 1 encapsulated traffic from IPv4 address X
to IPv4 address Y, all of those mentioned fields in the headers up
to and including the UDP header will have the same field values,
and thus existing ECMP implementations will send the packets
for many otherwise independent GTP sessions over the same path.
While the data rates of individual mobile phone data sessions might
be fairly low, the aggregate rate of thousands of such data sessions
can be a significant fraction of the network link capacities.

In this use case, we implement logic to recognize packets that
contain a GTP version 1 header, extract the Tunnel Endpoint Identi-
fier (TEID) field, and include the teid field in the hash calculation
used for ECMP path selection.

To correctly recognize which packets contain a valid GTP ver-
sion 1 header, the program must first check that there is an IPv4
header with fragment offset equal to 0, followed by a UDP header
with destination port 2152 decimal. The program then must check
that the GTP version field is set to 1. If the version field is not 1,
then the program should not extract a GTP version 1 header from
the packet. This is implemented using the lookahead feature of P4¢
parsers.

6.4 In-band Network Telemetry (INT)

One recent approach to network monitoring is to collect, directly
within the packet, fine grained statistics on every switch a packet
passes through [16, 18]. A “sink” switch, possibly located at the
egress of the monitored network, extracts the data collected in
the packet and sends it to an analytics system such as Barefoot
Networks Deep Insight [5] or Broadcom’s BroadView Analytics [9]
for processing.

We used P4 Weaver to add support for providing telemetry data
by populating fields in the in-band network telemetry (INT) header.
This required new P4 code that defines the INT header and how it

i P4
Example LoC Annotations Weaving ¢

(ms) (ms)
RTP 76 3 608 + 48 3433 + 63
GTP 263 3 641 £43 4628 + 112
INT 813 13 657 £ 65 9402 + 615

Table 2: A comparison among the running time of P4 Weaver
for different case studies. It can be seen that running time is
slightly longer for larger extension and higher number of
annotations, while being always insignificant relative to the
compilation time using Barefoot Networks’ P4c. In all the
cases, the base LoC is 537 and it contains 20 annotations.

is parsed; adding actions to populate the INT header fields with the
appropriate data; and a table to check if the switch is the sink; if
it is, the program removes the INT header stack and forwards the
information out to the collector in a new report packet. INT header
processing was our most complex use case, requiring 813 new lines
of P4 code and 13 client-side annotations.

6.5 Running Time

Table 2 shows the number of lines of code and number of anno-
tations for the base and extension programs from all three of our
case studies. It also shows the running time for weaving the base
and extension programs, which are computed as an average of 15
independent runs. We also report the running time for the Barefoot
Networks” P4c compiler included in SDE 9.0.0 for compiling the
merged programs.

We ran all experiments on a Ubuntu 18.04.1 LTS virtual machine
with a 2.8GHz Intel i7 processor with 32KB L1 data, 32KB L1 in-
struction, 256KB L2 (per core), 6MB L3 (shared) cache, and 8GB of
main memory. The processor has 2 cores and our implementation
is parallelized to use both.

These experiments show that the overhead of P4 Weaver is
negligible when compared to overall compilation time.

7 RELATED WORK

Incremental Programming for P4. P4 Weaver builds on earlier
work in daPIPE [3]. Both projects use a client/server architecture
to control access to the vendor code. Moreover, both projects iden-
tify “hook points” in P4 code where user and vendor code can be
merged. P4 Weaver offers a more principled and controlled ap-
proach to providing code isolation and sequencing. With daPIPE,
the hook points are exposed through a GUI. The P4 Weaver devel-
opment environment is implemented as a plug-in to an existing
IDE. P4-Ansible [21] is a tool to merge customer and vendor P4
programs, but we were unable to find additional details beyond the
feature table on the product website. P4 Visor [35] merges multiple
independent P4 programs deployed on the same device to optimize
resource consumption. It provides algorithms to efficiently merge
two P4 programs, but does not addressing the issue of modular
development.



Data Plane Programming Languages. Several recent projects
have proposed domain-specific languages for dataplane program-
ming [8, 10, 31]. Notably, yP4 [32] and Lyra [15] allow for portable
and modular development. With pP4, a large P4 program is de-
composed into smaller, target-agnostic, reusable modules. Lyra
targets data plane programming across multiple heterogeneous
programmable switches. Both yP4 and Lyra require that a vendor
rewrite their existing data plane codebase using the new language.
By contrast, P4 Weaver uses annotations that must be applied to
existing P4 code. Moreover, P4 Weaver provides fine-grained access
control on the variables and code blocks which safeguards the base
functionality of the switch.

P4 Compilers. Given the significant interest in P4 as a develop-
ment platform, there are several efforts underway to implement P4
compilers and tools for a variety of hardware. P4.org provides a ref-
erence compiler [6] with back-ends that target the behavioral model
software switch and Berkeley Packet Filters. Barefoot Networks de-
velops a compiler that targets their Tofino chips [4]. There are a few
projects that target FPGAs, including SDNet from Xilinx [34] and
P4FPGA [33]. P4c [20] translates P4 to DPDK [13]. PISCES [30] tar-
gets a modified version of Open vSwitch [24]. P4gpu [22] generates
code for GPUs. Open-NFP [23] supports a compiler that translates
P4 to network processing units (NPUs). None of these projects offer
support for modular development.

8 CONCLUSION

This paper has presented P4 Weaver, a development environment to
enable incremental programming on P4-based switches. The design
of P4 Weaver is inspired by prior work on Aspect-Oriented pro-
gramming. But, in contrast to traditional AOP, P4 Weaver adopts a
principled and controlled approach to code isolation, by assigning
clearly distinct roles, vendor and customer, with a proper separa-
tion of concerns. Moreover, P4 Weaver provides controlled visibility
via a client-server architecture that prevents physical access to the
vendor base-program. Using three real-world inspired case studies,
we have demonstrated how P4 Weaver allows users to address their
use cases in the most suitable way by adding their own custom
features, while also leveraging typical switching and routing func-
tions. Overall, P4 Weaver enables the incremental programmer to
leverage the base code without needing to cope with its complexity
and while keeping the base code confidential.
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