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Stream Processing 
Is Everywhere

Netflix accounts for ~30% of downstream internet traffic.

Algorithmic trading accounts for 50-60% of all trades in the U.S.

A streaming application can predict the onset of sepsis in 
premature babies 24 hours sooner than experienced ICU nurses.
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At the Intersection
of Two Trends
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Data-
centric

applications

Multicores
and

clusters

Stream
processing

Languages and optimizations 
need to adapt
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Streaming Languages
and Optimizations
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Streaming
Languages

Streaming
Optimizations

CQL, StreamIt, Sawzall, 
Hancock, Gigascope, Lime, etc.

Fusion, fission, placement, 
reordering, etc.

Represent an application as 
a graph of streams and operators

Maximize utilization of
available resources

Tailored to the needs of 
a particular application domain

Often re-write the
data-flow graph 
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Stream Processing
Needs Infrastructure
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Benefits of a intermediate language (IL) are well known

Increase portability

Share optimizations

Streaming needs its own intermediate language

Need to reason across machines

Support different optimizations
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Hypothesis
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An intermediate language designed to meet the 
requirements of stream processing 

can serve as a common substrate for optimizations; 
assure implementation correctness; 

and reduce overall implementation effort.
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Thesis Components

A catalog of streaming optimizations identifies the requirements 
for a streaming IL

A minimal calculus provides a general, formal semantics 
and enables reasoning about correctness

An intermediate language provides a practical realization of the 
calculus 
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Optimizations Catalog
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Resolves conflicting terminology (e.g. kernel = operator = box)

Makes assumptions explicit (e.g. stream graph is a forrest)

Identifies the requirements for implementing optimizations

A catalog, but organized
as a reference.
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Brooklet Calculus
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Operators

State

Queue Queue

Names operators and queues: fundamental components

Explicit state and communication: need machinery 

Non-deterministic execution: reality of distributed systems

Establishes a formal foundation for an IL
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River IL
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Source
Language

Runtime

River Optimizer

Decouples front-ends from 
optimizations: portability and reuse

Concretizes Brooklet: operator 
implementations, concurrent 
execution, back-pressure

Modular parsers, type-checkers, 
code generators

Practical IL for streaming with 
a formal semantics
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Evaluation
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Condition Experiment

Meets the requirements
 of stream processing

Serves as a common 
substrate for optimization

Assures implementation
correctness

Reduces overall 
implementation effort

Front-ends for CQL, StreamIt, Sawzall
and benchmark applications

Operator fusion, fission, 
and placement optimizations

Formal translations of three languages, 
Safety proofs for three optimizations 

Language agnostic optimizations 
applied to benchmarks illustrates reuse
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Contributions

A systematic exploration of the requirements for a streaming IL

A formal foundation for the design of an IL

An IL with a rigorously defined semantics that decouples front-
ends from optimizations

The first formal semantics for Sawzall

The first distributed implementation of CQL 
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Outline of This Talk

A Catalog of Streaming Optimizations

The Brooklet Core Calculus

River: From a Calculus to an Execution Environment

Related Work

Outlook and Conclusions
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Optimizations Catalog

Identifying the Requirements for a Streaming IL
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Optimization Name
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Safety Profitability

Variations

Dynamism

Preconditions
for correctness

Most influential
published papers

How to optimize at runtime

Key Idea
Graph
Before

Graph
After

Micro-benchmark
Runs on System S
Relative numbers

Central trade-off factor
Th

ro
ug

hp
ut

(h
ig

he
r i

s 
be

tte
r)Items highlighted in red will be addressed in this talk
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List of Optimizations
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Operator reordering
Redundancy elimination
Operator separation
Fusion
Fission

Load balancing
Placement
State sharing
Batching
Algorithm Selection

Load shedding

Graph changed

{
Graph unchanged

Se
m

an
tic

s
un

ch
an

ge
d

Se
m

an
tic

s
ch

an
ge

d{
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Operator Reordering
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Safety Profitability

Variations

Dynamism

Commutative
Attributes available

Algebraic
Commutativity analysis
Synergies, e.g. fusion, fission Eddy

Move more selective operators upstream to filter data early.
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Redundancy Elimination
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Safety Profitability

Variations

Dynamism
In many-query case:
share at submission time

Combine or remove redundant operators.

Same algorithm
Data available

Many-query optimization
Eliminate no-op
Eliminate idempotent op
Eliminate dead subgraph
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Operator Separation
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Safety Profitability

Variations

Dynamism

N/A

Break coarse-grained operators into finer steps.

Ensure A1(A2(s)) = A(s)

Algebraic
Using special API
Dependency analysis
Enable Reordering
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Fusion
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Safety Profitability

Variations

Dynamism
Online recompilation
Transport operators

Avoid the overhead of data serialization and transport.

Have right resources
Have enough resources
No infinite recursion

Single vs. multiple threads
Fusion enables traditional
compiler optimizations
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Fission
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Safety Profitability

Variations

Dynamism

Parallelize computations.

No state or disjoint state
Merge in order, if needed

Round-robin (no state)
Hash by key (disjoint state)
Duplicate Elastic operators (learn width)

STM (resolve conflicts)
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Fission 

p/s/o = 1/1/0 
p/s/o = 1/0/1 
p/s/o = 1/0/0 
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Placement

22

Safety Profitability

Variations

Dynamism

Assign operators to hosts and cores.

Have right resources
Have enough resources
Obey license/security
If dynamic, need migratability

Based on host resources vs.
network resources, or both
Automatic vs. user-specified Submission-time

Online, via operator migration
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Load Balancing
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Safety Profitability

Variations

Dynamism

Distribute workload evenly across resources

Avoid starvation
Ensure each worker is 
equally qualifies
Establish placement safety

Balancing work while 
placing operators
Balancing work by
re-routing data

Easier for routing than 
placement
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Load Balancing 

Balanced, 4 replicas 
Balanced, 3 replicas 
Skewed, 4 replicas 
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State Sharing
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Safety Profitability

Variations

Dynamism

Optimize for space by avoiding unnecessary copies of data.

Common access (usually fusion)
No race conditions
No memory leaks

Sharing queues
Sharing windows
Sharing operator state N/A
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Batching
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Safety Profitability

Variations

Dynamism

Process multiple data items in a single batch.

No deadlocks
Satisfy deadlines

Batching enables traditional
compiler optimizations Batch controller

Train scheduling

Saturday, May 19, 12



Algorithm Selection

26

Safety Profitability

Variations

Dynamism

Use a faster algorithm for implementing an operator.

Aα(s) ≅ Aβ(s) 
May not need to be safe

Algebraic
Auto-tuners
General vs. specialized Compile both versions, then

select via control port
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Load Shedding
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Safety Profitability

Variations

Dynamism

Degrade gracefully when overloaded.

By definition, not safe!
QoS trade-off

Filtering data items
(variations: where in graph)
Algorithm selection Always dynamic
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Load Shedding 

Throughput 

Accuracy 
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Optimizations Enable
Optimizations
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Traditional
→

Stream {
Stream

→
Stream {
Stream 

→
Traditional {
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Languages Enable 
Optimizations
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Mario
CEP patterns

StreamDatalog
StreamSQL

StreamIt
Graph GUI

SPL
Java API

Annotated C
C/Fortran

High-level
Easy to use
Optimizable

Low-level
General

Predictable
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Hand-Optimized vs. 
Auto-Optimization

Hand-Optimized

Experts can get
better performance

Better Control

Generality

Easier to build systems

30

Auto-Optimized

Better out-of-the-box
experience

Portability

Application code is
less cluttered
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Requirements for an IL

31

Observation Conclusion

4/11 depend on the 
order that operators execute

5/11 modify the topology

8/11 depend on state

9/11 have dynamic variations

11/11 have a unique requirement

IL should be explicit how
determinism is enforced

IL needs to model communication

IL needs to model state

IL needs to support dynamism

IL must be extensible
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A Universal Calculus
For Stream Processing

A formal foundation for a streaming IL

32
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Design Goals

Enable reasoning about correctness of optimizations

Flexibility to represent diverse languages

Formalize three of the requirements:

State, communication, and non-determinism

Save dynamism for future work

Extensibility is addressed in the IL

33
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Elements of a Streaming App
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State

Operator
Queue Queue

Saturday, May 19, 12



Elements of a Streaming App
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Elements of a Streaming App
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Not all operators
have state
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Elements of a Streaming App
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Operators may
share state
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Requirements for Calculus

38
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Requirements for Calculus

38

Make 
explicit
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Requirements for Calculus

38

Make 
explicit

Make 
explicit

and 1-to-1
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Requirements for Calculus

38

Make 
explicit

Make 
explicit

and 1-to-1

Make non-
deterministic

Make 
trigger non-

deterministic
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Requirements for Calculus

38

Make 
explicit

Make 
explicit

and 1-to-1

Make non-
deterministic

Make 
trigger non-

deterministic

Treat 
functions as 

opaque
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Brooklet Syntax

39

Sum

$total

volumetrades

(volume, $total) ← Sum(trades, $total)
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Function Environment
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Sum

$total

volumetrades

F: The function implementations

Sum
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Queue Store
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Sum

$total

volumetrades

Q: The contents of the queues

volumetrades
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Variable Store
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Sum

$total

volumetrades

V: The contents of the variables

$total
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Brooklet 
Operational Semantics

43

Sum

$total

volumetrades

F┣ <Q, V> → <Q’, V’>
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Complete Calculus

44

4 Robert Soulé et al.

Brooklet syntax:
Pb ::= out in op Brooklet program
out ::= output q ; Output declaration
in ::= input q ; Input declaration
op ::= ( q, v ) ⇥ f ( q, v ); Operator
q ::= id Queue identifier
v ::= $ id Variable identifier
f ::= id Function identifier

Brooklet example: IBM market maker.
output result;
input bids, asks;
(ibmBids) � SelectIBM(bids);
(ibmAsks) � SelectIBM(asks);
($lastAsk)� Window(ibmAsks);
(ibmSales)� SaleJoin(ibmBids,$lastAsk);
(result,$cnt) � Count(ibmSales,$cnt);

Brooklet semantics: Fb ⌥ �V, Q �⇤ �V �, Q� 
d, b = Q(qi)

op = (_, _) ⇥ f(q, v);
(b

�
, d

�
) = Fb(f)(d, i, V (v))

V � = updateV (op, V, d
�
)

Q� = updateQ(op, Q, qi, b
�
)

Fb ⌥ �V, Q �⇤ �V �, Q� 
(E-FireQueue)

op = (_, v) ⇥ f(_, _);

updateV (op, V, d) = [v ⇧⇤ d]V
(E-UpdateV)

op = (q, _) ⇥ f(_, _);
df , bf = Q(qf )

Q� = [qf ⇧⇤ bf ]Q
Q�� = [⌃qi ⌅q : qi ⇧⇤ Q(qi), bi]Q

�

updateQ(op, Q, qf , b) = Q�� (E-UpdateQ)

Fig. 1. Brooklet syntax and semantics.

3.1 Brooklet Program Example: IBM Market Maker
As an example of a streaming program, we consider a hypothetical application
that trades IBM stock. Data arrives on two input streams, bids(symbol,price)
and asks(symbol,price), and leaves on the result(cnt,symbol,price) output
stream. Since the application is only interested in trading IBM stock, it filters
out all other stock symbols from the input. The application then matches bid
and ask prices from the filtered streams to make trades. To keep the example
simple, we assume that each sale is for exactly one share. The Brooklet program
in the bottom left corner of Fig. 1 produces a stream of trades of IBM stock,
along with a count of the number of trades.

3.2 Brooklet Syntax
A Brooklet program defines a directed, possibly cyclic, graph of operators con-
taining pure functions connected by FIFO queues. It uses variables to explicitly
thread state through operators. Data items on a queue model network packets
in transit. Data items in variables model stored state; since data items may be
lists, a variable may store arbitrary amounts of historical data. The following
line from the market maker application defines an operator:

(ibmSales) � SaleJoin(ibmBids, $lastAsk);

The operator reads data from input queue ibmBids and variable $lastAsk. It
passes that data as parameters to the pure function SaleJoin, and writes the
result to the output queue ibmSales. Brooklet does not define the semantics of
SaleJoin. Modeling local deterministic computations is well-understood [17, 19],
so Brooklet abstracts them away by encapsulating them in opaque functions.
On the other hand, a Brooklet program does define explicit uses of state. In the
example, the following line defines a window over the stream ibmAsks:

($lastAsk) � Window(ibmAsks);

The window contains a single tuple corresponding to the most recent ask for an
IBM stock, and the tuple is stored in the variable $lastAsk. Both the Window and
SaleJoin operators access $lastAsk.

The Window operator writes data to $lastAsk, but does not use the data stored
in the variable in its internal computations. Operators that incrementally update
state must both read and write the same variable, such as in the Count operator:
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1>
<FNM,1,€2>

$lastBid = <FNM,0,0>
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Example: 
A Fannie Mae Bid/Ask Join

47

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1>
<FNM,1,€2>

$lastBid = <FNM,0,0>
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Example: 
A Fannie Mae Bid/Ask Join

47

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1>

<FNM,1,€2>
$lastBid = <FNM,0,0>
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Example: 
A Fannie Mae Bid/Ask Join

47

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1><FNM,1,€2>
$lastBid = <FNM,0,0>
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum
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volumetrades
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$lastBid
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$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>
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Example: 
A Fannie Mae Bid/Ask Join

53

SaleJoin Sum
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$lastAsk

$lastBid
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Example: 
A Fannie Mae Bid/Ask Join
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Example: 
A Fannie Mae Bid/Ask Join
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Example: 
A Fannie Mae Bid/Ask Join
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Example: 
A Fannie Mae Bid/Ask Join
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Example: 
A Fannie Mae Bid/Ask Join
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 1

<FNM,1>

$lastBid = <FNM,1,€2>
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 1
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Example: 
A Fannie Mae Bid/Ask Join
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SaleJoin Sum

$total
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$lastBid
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$lastAsk = <FNM,1,€2> $total = 1
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Translations

Demonstrating Brooklet’s generality
by translating three rather diverse streaming languages

60
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CQL, StreamIt, Sawzall:
One Translation Approach

61

Expose graph topology

Expose implicit 
and explicit state

Functions Queues Variables

Wrap original operators in 
higher-order functions

┣ , ><
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CQL, StreamIt, Sawzall:
One Translation Approach

61

Expose graph topology

Expose implicit 
and explicit state

Functions Queues Variables

Wrap original operators in 
higher-order functions

┣ , >

Make 
queues explicit

and 1-to-1

<

Saturday, May 19, 12



CQL, StreamIt, Sawzall:
One Translation Approach

61

Expose graph topology

Expose implicit 
and explicit state

Functions Queues Variables

Wrap original operators in 
higher-order functions

┣ , >

Make 
state explicit

Make 
queues explicit

and 1-to-1

<
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CQL, StreamIt, Sawzall:
One Translation Approach

61

Expose graph topology

Expose implicit 
and explicit state

Functions Queues Variables

Wrap original operators in 
higher-order functions

┣ , >

Make 
state explicit

Make 
queues explicit

and 1-to-1Do not 
model local 

computations

<
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Sum

$total

volumeFNM-trades

Filter
trades

Example: CQL to Brooklet

62

select Sum(shares) from trades
where trades.ticker = “FNM”

CQL

Brooklet
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Sum

$total

volumeFNM-trades

Filter
trades

Example: CQL to Brooklet

62

select Sum(shares) from trades
where trades.ticker = “FNM”

CQL

Brooklet Make 
queues explicit

and 1-to-1
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Sum

$total

volumeFNM-trades

Filter
trades

Example: CQL to Brooklet

62

select Sum(shares) from trades
where trades.ticker = “FNM”

CQL

Brooklet

Make 
state explicit

Make 
queues explicit

and 1-to-1
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$total

volumeFNM-trades

Filter
trades

∑

select Sum(shares) from trades
where trades.ticker = “FNM”

Example: CQL to Brooklet

63

CQL

Brooklet
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$total

volumeFNM-trades

Filter
trades

∑

select Sum(shares) from trades
where trades.ticker = “FNM”

Example: CQL to Brooklet

63

CQL

Brooklet Dynamically
adapt runtime 

arguments

Statically 
bind the original 

function
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Translation 
Correctness Theorem

64

CQL/StreamIt Input

Brooklet Input

CQL/StreamIt Output

Brooklet Outputexecute

execute

translatetranslate

Results under CQL and StreamIt semantics are the same as the 
results under Brooklet semantics after translation

First formal semantics for Sawzall
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Optimizations

Demonstrating Brooklet’s utility
by realizing three essential optimizations

65
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Operator Fusion:
Eliminate Queueing Delays

66

Look for connected operators,
 whose state isn’t used anywhere else

before

after
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Operator Fission:
Process More Data in Parallel

67

Look for stateless operators

Split Join

before

after
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Operator Reordering:
Filter Data Early

68

Look for operators whose read/write sets 
don’t overlap [Ghelli et al., SIGMOD 08]

before

after

Filter

Filter
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From a Calculus
to an Intermediate Language 

The River Intermediate Language

69
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An Intermediate Language
for Stream Processing

Benefits of a VEE/IL are well known

Increase portability, share optimizations, etc.

Streaming needs its own IL

Need to reason across machines, support different optimizations

Brooklet serves as a solid foundation

Challenge: How to bridge the gap between theory and practice?

70
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Make Abstractions Concrete

71

Brooklet River

Sequence of atomic steps

Pure functions, state 
threaded through invocations

Non-deterministic execution

Opaque functions

No physical platform, 
independent from runtime

Finite execution

Operators execute concurrently

Stateful functions, protected 
with automatic locking

Restricted execution with bounded 
queues, and back-pressure

Function implementations

Abstract representation 
of runtime e.g. placement

Indefinite execution
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Concurrent Execution:
No Shared State

72

O2

$y

O3O1

$x $z
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Concurrent Execution:
No Shared State

72

O2

$y

O3O1

$x $z

Single
threaded
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O2

$y

O3O1

$x $z

Single
threaded

Atomic queue
operations
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Concurrent Execution:
No Shared State

72

O2

$y

O3O1

$x $z

Brooklet operators fire one at a time

River operators fire concurrently

For both, data must be available

Single
threaded

Atomic queue
operations
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Concurrent Execution:
With Shared State

73

O2

$y

O3O1

$x $y

Locks form equivalence classes over shared variables

Every shared variable is protected by one lock

Shared variables in the same class protected by same lock

Locks acquired/released in standard order
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Concurrent Execution:
With Shared State

73

O2

$y

O3O1

$x $y

Locks form equivalence classes over shared variables

Every shared variable is protected by one lock

Shared variables in the same class protected by same lock

Locks acquired/released in standard order

Minimal
locking
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Restricted Execution:
Bounded Queues

74

O2

$y

O3O1

$x $y

Naïve approach: block when output queue is full

If O2 holds the lock on $x and blocks, O3 cannot execute

Deadlock!
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Restricted Execution:
Safe Back-Pressure

75

O2

$y

O3O1

$x $y
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O2

$y

O3O1

$x $y1. Acquire
locks
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3. Data
on local
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locks
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3. Data
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queue

4. Release
locks

5. Data
on output

queue

Saturday, May 19, 12



Restricted Execution:
Safe Back-Pressure

75

O2

$y

O3O1

$x $y

Only step 5 can block

Locks have already been released, so O3 can execute 

Even if downstream is full, there is no deadlock

1. Acquire
locks

2. Fire
operator

3. Data
on local
queue

4. Release
locks

5. Data
on output

queue
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Applications of an 
Intermediate Language

Must make language development economic

Implementation language, language modules, operator templates

Must support a broad range of optimizations

Annotations provide additional information between source and IL

76
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Function Implementations
and Translations

77

logs : {origin : string; target : string} stream;
hits : {origin : string; count : int} stream =
  select istream(origin, count(origin)) 
    from logs [range 300]
    where origin != target

Pre-existing 
operator templates Bag.filter (fun x -> #expr)

Bag.filter (fun x -> origin != target)

Expose operators, 
communication, 
and state{

Select Range Aggr IStream
$win $count
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Translations with Modules

78

select istream(*) 
from quotes[now], history
where quotes.ask <= history.low
and quotes.ticker = history.ticker

CQL
Analyzer

SQL
Analyzer

Expression
Analyzer

Symbol 
Table

has-a has-a

has-a
is-a
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Translations with Modules

79

CQL
Analyzer

SQL
Analyzer

Expression
Analyzer

Symbol 
Table

has-a has-a

has-a

select istream(*) 
from quotes[now], history
where quotes.ask <= history.low
and quotes.ticker = history.ticker

is-a

CQL = SQL + Streaming + Expressions
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Optimization Support:
Extensible Annotations

80

Source
Language

Runtime

River Optimizer

Establishes properties
by construction
e.g. Sawzall reducers commute {

Establishes constraints,
e.g. available resources{

Needs to know:
- Safety constraints
- Profitability {
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Optimization Support:
Extensible Annotations

80

Source
Language

Runtime

River Optimizer

Establishes properties
by construction
e.g. Sawzall reducers commute {

Establishes constraints,
e.g. available resources{

Annotations 
convey

this information

Needs to know:
- Safety constraints
- Profitability {
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Optimization Support:
Extensible Annotations

80

Source
Language

Runtime

River Optimizer

Establishes properties
by construction
e.g. Sawzall reducers commute {

Establishes constraints,
e.g. available resources{

Annotations 
convey

this information

Needs to know:
- Safety constraints
- Profitability {

Separate policy 
from mechanism
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Optimization Support:
Current Annotations

81

Annotation Description Optimization

@Fuse(ID) Fuse operators with same ID in 
the same process Fusion

@Parallel() Perform fission on an operator Fission

@Commutative() An operator’s function is 
commutative Fission

@Keys(k1,...,kn)
An operator’s state is 

partitionable by the key fields 
k1,...,kn

Fission

@Group(ID) Place operators with same ID 
on the same machine Placement
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Evaluation

Four benchmark applications

CQL Linear Road 

StreamIt FM Radio

Sawzall Batch Web Log 
Analyzer

CQL Continuous Web Log 
Analyzer

82

Three optimizations

Placement

Fission

Fusion
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Distributed Linear Road

83

now 
proj

ect 

istre

am 

dup

split 

ran 

ge 

join 

istre

am 

aggre

gate 

join 

se 

lect 

join 

ran 

ge 

parti

tion 

proj

ect 

dis 

tinct 

dup-

split 

now 

proj

ect 

aggre

gate 

pro 

ject 

pro 

ject 

rstre

am 

First distributed CQL implementation
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CQL Parallelization 
Has Limited Effect

84

0

1

2

3

 2 4 8 16

1.00
1.47

1.86
2.09 2.15

CQL Log Analyzer Speedup

0

1

2

3

1 2 4

1.00

1.84
2.12

Linear Road Speedup

2.12x speedup on 4 machines

Limited task and pipeline 
parallelism

2.15x speedup on 16 machines

Synchronization is bottleneck
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Reusable
Optimizations

85

0

1

1

2

1 2 4

1.00

1.48

1.84

FM Radio Speedup

StreamIt FM Radio can re-use the placement optimization

1.84x speedup on 4 machines
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MapReduce on River
Scales (Almost) Linearly

86

1

10

100

 2 4 8 16 32 641.00
1.63

3.21
6.26

10.77 13.82
18.93

Our Sawzall uses the same data-parallelism optimizer as CQL

10.77x speedup on 16 machines, 18.93x speedup on 64 cores

Sawzall Speedup
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Related Work

87
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Related Work

88

This%Thesis%

Stream%processing%
Run3me%for%
execu3ng%IL%
on%pla9orms%

Translators%from%
languages%to%IL%
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CQL%
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Comparison to Traditional ILs

89

Stream processing 

Runtime for 
executing IL 
on platforms 

Translators from 
languages to IL 

P-Code 
Nelson 
CC’79 

+ 

Traditional IL River IL

For Pascal, Java, C#  For StreamSQL, Sawzall, StreamIt

IL is lower-level IL for explicit streaming topology

Data at rest (registers) Data in motion (queues)

Instructions that run in a sequence, 
one after the other

Functions that run in parallel, 
continuously
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Comparison to CQL

90

Stream processing 
Runtime for 
executing IL 
on platforms 

Translators from 
languages to IL 

+ CQL 
Arasu et al. 
VLDB J.’06 

CQL River IL

Described in terms of SRA
(stream-relational algebra)

Uses more general streaming IL
(not restricted to relational)

Inter-dependent with a single runtime Virtual, independent of 
any particular runtime
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Comparison to SVM

91

Stream 
processing 

Runtime 
for 
executing 
IL on 
platforms 

Translators from 
languages to IL 

+ 

SVM$
Labonte$
et$al.$

PACT’04$

SVN River IL

Missing translators from 
any language

Translation by recursion over 
syntax, making state explicit, 
encapsulating computation in 

functions

Synchronous, assumes 
centralized controller

Asynchronous, 
no centralized controller

Assumes machine model 
with shared memory and 

CPUs

Abstracts away streaming 
runtime (may even be a 

distributed cluster)

Saturday, May 19, 12



Conclusions

92
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Limitations

93

Component Limitations or
Future Work

Optimizations Catalog

Brooklet

River

Interaction of optimizations, compiler 
analysis, standard benchmarks

Relationship to other calculi, time 
constraints, more optimizations, 

dynamism

Support for dynamism, performance, 
design of new languages
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Conclusion

Stream processing is crucial, and needs software infrastructure

Identify requirements with a catalog of optimizations 

Provide a formal foundation with a calculus

Design a practical IL with a rigorous semantics

Overall this work:

Enables further advances in language and optimizations design

Encourages innovation in stream processing

94
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CQL Translation Rules

96

A Universal Calculus for Stream Processing Languages 7

4 Language Mappings

We demonstrate Brooklet’s generality by mapping three streaming languages
CQL, StreamIt, and Sawzall to it. Each translation exposes implicit uses of state
as explicit variables; exposes a mechanism for implementing global determinism
on top of an inherently non-deterministic runtime; and abstracts away local
deterministic computations with higher-order wrappers that statically bind the
original function and dynamically adapt the runtime arguments (thus preserving
small step semantics).

4.1 CQL and Stream-Relational Algebra
CQL syntax:

Pc ::= Pcr | Pcs CQL program
Pcr ::= (Relation query)

RName Relation name
| S2R(Pcs) Stream to relation
| R2R(Pcr) Relation to relation

Pcs ::= (Stream query)
SName Stream name

| R2S(Pcr) Relation to stream
RName | SName ::= id Input name
S2R | R2R | R2S ::= id Operator name

CQL example: Bargain finder.
IStream(BargainJoin(Now(quotes), history))

CQL program translation: [[ Fc, Pc ]]pc = ↵Fb, Pb�
[[ Fc, SName ]]pc =  , outputSName;inputSName;•

(Tp
c -SName)

[[ Fc, RName ]]pc =  , outputRName;inputRName;•
(Tp

c -RName)

Fb, output qo; input q; op = [[ Fc, Pcs ]]pc
q⇥o = freshId() v = freshId()

F ⇥
b = [S2R ⌃⇤ wrapS2R(Fc(S2R))]Fb

op⇥ = op, (q⇥o, v) ⇥ S2R(qo, v);

[[ Fc, S2R(Pcs) ]]pc = F ⇥
b, output q⇥o; input q; op⇥

(Tp
c -S2R)

Fb, output qo; input q; op = [[ Fc, Pcr ]]pc
q⇥o = freshId() v = freshId()

F ⇥
b = [R2S ⌃⇤ wrapR2S(Fc(R2S))]Fb

op⇥ = op, (q⇥o, v) ⇥ R2S(qo, v);

[[ Fc, R2S(Pcr) ]]pc = F ⇥
b, output q⇥o; input q; op⇥

(Tp
c -R2S)

Fb, output qo; input q; op = [[ Fc, Pcr ]]pc
n = |Pcr| q⇥o = freshId() q⇥ = q1, . . . , qn

⌥i ⌅ 1 . . . n : vi = freshId() op⇥ = op1, . . . , opn

F ⇥
b = [R2R ⌃⇤ wrapR2R(Fc(R2R))](⌦Fb)

op⇥⇥ = op⇥, (q⇥o, v) ⇥ R2R(qo, v);

[[ Fc, R2R(Pcr) ]]pc = F ⇥
b, output q⇥o;input q⇥;op⇥⇥

(Tp
c -R2R)

CQL domains:

⇤⌅T Time
e⌅T P Tuple
⇥⌅� = bag(T P) Instantaneous relation
r⌅R = T ⇤ � Time-varying relation
s⌅S = bag(T P�T ) Time-varying stream

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CQL operator signatures:

S2R : S � T ⇤ �
R2S : � � � ⇤ �
R2R : �n ⇤ �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CQL operator wrapper signatures:

S2R : (� � T ) � {1}� S ⇤ (� � T ) � S
R2S : (� � T ) � {1}� � ⇤ (� � T ) � �
R2R : (� � T ) � {1 . . . n}� (2��T )n

⇤ (� � T ) � (2��T )n

CQL operator wrappers:
⇥, ⇤ = dq s = dv

s⇥ = s ⌦ {↵e, ⇤� : e ⌅ ⇥} ⇥⇥ = f(s⇥, ⇤)

wrapS2R(f)(dq, _, dv) = ↵⇥⇥, ⇤�, s⇥

(Wc-S2R)

⇥, ⇤ = dq ⇥⇥ = dv ⇥⇥⇥ = f(⇥, ⇥⇥)

wrapR2S(f)(dq, _, dv) = ↵⇥⇥⇥, ⇤�, ⇥
(Wc-R2S)

⇥, ⇤ = dq d⇥i = di ⌦ {↵⇥, ⇤�}
⌥j ⇧= i ⌅ 1 . . . n : d⇥j = dj

�j ⌅ 1 . . . n : @⇥ : ↵⇥, ⇤� ⌅ dj

wrapR2R(f)(dq, i, d) = •, d
⇥

(Wc-R2R-Wait)

⇥, ⇤ = dq d⇥i = di ⌦ {↵⇥, ⇤�}
⌥j ⇧= i ⌅ 1 . . . n : d⇥j = dj

⌥j ⌅ 1 . . . n : ⇥j = aux(dj , ⇤)

wrapR2R(f)(dq, i, d) = ↵f(⇥), ⇤�, d
⇥

(Wc-R2R-Ready)

↵⇥, ⇤� ⌅ d

aux(d, ⇤) = ⇥
(Wc-R2R-Aux)

Fig. 2. CQL semantics on Brooklet.

CQL, the Continuous Query Language, is a member of the StreamSQL family
of languages. StreamSQL gives developers who are familiar with SQL’s select-
from-where syntax an incremental learning path to stream programming. This
paper uses CQL to represent the entire StreamSQL family, because it has a clean
design, has made significant impact [1], and has a formal semantics [2].
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CQL, the Continuous Query Language, is a member of the StreamSQL family
of languages. StreamSQL gives developers who are familiar with SQL’s select-
from-where syntax an incremental learning path to stream programming. This
paper uses CQL to represent the entire StreamSQL family, because it has a clean
design, has made significant impact [1], and has a formal semantics [2].
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Operator Fission
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Theorem 1 (CQL translation correctness). For all CQL function environ-
ments Fc, programs Pc, and inputs Ic, the results under CQL semantics are the
same as the results under Brooklet semantics after translation [[ Fc, Pc ]]pc .

Theorem 2 (StreamIt translation correctness). For all StreamIt function
environments Fs, programs Ps, and inputs Is, the results under StreamIt se-
mantics are the same as the results under Brooklet semantics after translation
[[ Fs, Ps ]]ps.

5 Optimizations
The previous section used our calculus to understand how a language maps to
an execution platform. This section uses our calculus to specify how to use three
vital optimizations: data-parallel computation, operator fusion, and operator re-
ordering. Each optimization comes with a correctness theorem; for space reasons,
we leave the proofs to an extended technical report [22].
5.1 Data Parallelism
If an operation is commutative across data items, then the order in which the
data items are processed is irrelevant. MapReduce uses this observation to ex-
ploit the collective computing power of a cluster for analyzing extremely large
data sets [5]. The input data set is partitioned, and copies of the map operator
process the partitions in parallel. In general, the challenge in exploiting such
data parallelism is determining if an operator commutes. Sawzall and StreamIt
solve this challenge by restricting the programming model. In Brooklet, commu-
tativity analysis can be performed with a simple code inspection. Since a pure
function always commutes4, and all state in Brooklet is explicit in an operator’s
signature, a su�cient condition for introducing data-parallelism is that an oper-
ator does not access variables. The transformation must ensure that the output
data is combined in the same order that the input data was partitioned. Brooklet

can use the round-robin splitter and joiner described in the StreamIt transla-
tion for this purpose. Thus, the operator (out)�wrapMap-LatLong(q); can be
parallelized with N = 3 copies like this:
(q1, q2, q3, $sc) � Split(q, $sc);
(q4) � wrapMap-LatLong(q1);
(q5) � wrapMap-LatLong(q2);
(q6) � wrapMap-LatLong(q3);
(out, $v4, $v5, $v6, $jc) � Join(q4, q5, q6, $v4, $v5, $v6, $jc);

The following rule describes how to create the new program with N duplicates
of the parallelized operator.

op = (qout) ⇥ f(qin);
⇧i ⌅ 1 . . . n : qi = freshId() ⇧i ⌅ 1 . . . n : q0

i = freshId()
F 0

b, ops = [[ ⌃, split roundrobin, q, qin ]]ps
⇧i ⌅ 1 . . . n : opi = (q0

i) ⇥ f(qi);
F 00

b , opj = [[ ⌃, join roundrobin, qout , q
0 ]]ps

�Fb, op �⇤N
split �Fb ⌥ F 0

b ⌥ F 00
b , ops op opj 

(Ob-Split)

4 At least in the mathematical sense; in systems, floating point operations do not
always commute.
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