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IBM Corporation

T. J. Watson Research Center

ABSTRACT
Applications from several domains are now being written to
process live data originating from hardware and software-
based streaming sources. Many of these applications have
been written relying solely on database and data warehouse
technologies, despite their lack of need for transactional sup-
port and ACID properties. In several extreme high-load
cases, this approach does not scale to the processing speeds
that these applications demand. In this paper we demon-
strate an application acceleration approach whereby a regu-
lar ODBC-based application is converted into a true stream-
ing application with minimal disruption from a software en-
gineering standpoint. We showcase our approach on three
real-world applications. We experimentally demonstrate the
substantial performance improvements that can be observed
when contrasting the accelerated implementation with the
original database-oriented implementation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed
databases

General Terms
Continuous processing, streaming processing, ODBC

1. INTRODUCTION
Data analytics are becoming a front-and-center issue in

many areas of business and science. One of the driving
forces behind this movement is the need for business an-
alysts, decision makers, and scientists alike to have better
tools to make more accurate management decisions or to
extract, on a timely basis, better insights from data. These
sources continuously generate new data and are an integral
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part of the increasingly complex information technology in-
frastructure that forms the underpinnings of modern busi-
nesses and scientific instruments. A second important trend
is that, as a result of better instrumentation and business
growth, more data is becoming available (both in volume
and in data rates), so there is more to analyze. Furthermore,
competition in the market-place requires better analysis as
a critical strategic necessity, either to improve the overall
efficiency of the business or to lower costs associated with
waste and fraud.

These two trends have been around for some time as part
of the natural cycle of re-invention that surrounds businesses
and the basic information technologies that innovative busi-
nesses rely on. In reality, a lot of applications implemented
by companies and research institutions can be construed as
data analytics applications. The fundamental shift that is
happening over the last few years, however, is the avail-
ability of more flexible tools for implementing this breed of
applications [11, 35, 39] such that they can scale to the data
volumes and rates that are now becoming common and can
provide timely responses.

Most of these applications are implemented using a model
where they continuously receive and process live data, and
in response, among other processing steps, originate one or
more queries against a database or data warehouse. Note,
however, that a lot of the strengths of databases are ac-
tually not used in these cases, since a lot of this data is
the representation of (periodically) pre-computed models,
is very static, and, in many cases, read-only or with much
looser synchronization and locking needs. When data rates
and volumes are small, this approach works well and thus
is widely employed in the industry. However, when volumes
and rates increase, a natural slowdown occurs as database
operations become a bottleneck, as we will experimentally
demonstrate later.

This paper proposes a framework whereby applications
built according to the model we outlined above can be semi-
transparently converted from an application that generates
a stream of queries into a distributed streaming applica-
tion. Indeed, the system infrastructure we designed allows
applications to be minimally disrupted from a code base
standpoint. In essence, the points where frequent database
interactions are made are converted into interactions with
a streaming infrastructure that is automatically generated
to manage the data at rest and process queries on it in a
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distributed fashion.
As we will show later in this paper, employing our frame-

work typically leads to substantial performance improve-
ments over the original implementations. Moreover, our
approach provides the means for a natural scale-out with
the addition of more computational resources. In particu-
lar, our contributions are: (1) A mechanism for converting a
database-based (or DB-based, for short) data analysis appli-
cation into a streaming application, by semi-automatically
transforming the embedded DB-type queries and the data
at rest; (2) An extensive experimental evaluation including
several case study applications as well as implementation al-
ternatives varying from the original implementation, to an
in-memory DB-based one, as well as the transformed appli-
cation using our framework.

2. PROBLEM STATEMENT
An emerging class of applications comprises those that

are continuous in nature in that external sources drive the
computation by generating a stream of events. Over the
last few years, stream computing middleware has been de-
veloped to address the particular needs of these types of
applications [10]. Nevertheless, most of these applications
are not purely streaming, as most of them must rely on
information that has been accumulated over time and dis-
tilled into models that incorporate historic patterns in ag-
gregated form. Indeed, a common architectural pattern is to
use models computed from the accumulated data (or data at
rest) to score and enrich the streaming incoming data (or
data in motion). While these applications are reasonably
common in several domains (see examples in Section 3), in
most cases, they are implemented using relational database
and data warehousing technologies. In other words, even
the stable and read-only data used for scoring the incom-
ing events is kept in relational databases, despite the lack of
need for typical relational database transactional and log-
ging guarantees. As we will show, the reliance on conven-
tional database servers considerably hinders these applica-
tions’ response time and scalability.

With these considerations in mind, we believe that a
framework that can semi-transparently inspect an applica-
tion’s source code, identify the queries against large and
infrequently updated datasets, and transform these queries
into a distributed query network against a partitioned ver-
sion of the original dataset can substantially improve the
application’s response time and throughput.

3. CASE STUDY APPLICATIONS
In this section we describe three applications, which have

been deployed in customer environments. These applica-
tions are also undergoing further development where scal-
ability requirements are being addressed to cope with load
imposed by increased usage.

These applications have a common underlying architec-
ture, including the streaming nature of their primary work-
load as well as their reliance on ODBC calls for querying
large scale, mostly read-only datasets. In our discussion we
will include the SQL formulation for the specific bottleneck
query in each of these applications. As will be seen in Sec-
tion 6, these queries are the focal point of the experimental
study we used to evaluate our application transformation
framework.

3.1 Trajectory Mapping

Figure 1: The Trajectory Mapping application re-

sults overlaid on Google Maps. Black solid lines

indicate the most congested road segments.

Intelligent Transportation Systems (ITS) aim at contin-
uously tracking vehicle movement to optimize live vehicle
routing decisions as a means to decrease travel times and
reduce fuel consumption. In collaboration with a telecom
provider in China, an IBM team has prototyped an ITS
system where one of the basic operations is to recreate vehi-
cle trajectories from mobile phone GPS data. The problem
of trajectory mapping [36] requires reconstructing the route
taken by a vehicle from a sequence of discrete positions cap-
tured by the distributed sensors.

A formulation of the trajectory mapping problem reduces
to resolving the shortest path problem with additional con-
straints. Specifically, in an undirected graph, a vertex de-
notes a physical location in the real world and an edge con-
necting two vertices denotes a road segment. The weight
associated with an edge represents the length of the cor-
responding road segment. Considering an initial vertex vi

and a destination vertex vd, as well as a sequence of ob-
served vertices v0, v1 . . ., vn, the shortest path from vi to vd

must satisfy the following two constraints: (1) the shortest
path must include the observed vertices v0, v1 . . ., vn, in se-
quential order; (2) the total number of vertices in the path
is less than or equal to a predefined threshold l, allowing for
controlling how accurate the recovered trajectory is.

Trajectory mapping schema:

CREATE TABLE map (src integer, dst integer, path string,
length integer, PRIMARY KEY (src, dst))

Trajectory mapping SQL query:

SELECT path, length FROM map
WHERE src = vi AND dst = vd AND path LIKE pattern
ORDER BY length

Trajectory mapping query plan:

!"
map 

# Sort 

Figure 2: Original trajectory mapping query.

In our application, a typical road network represented
as a graph contains tens of thousands of vertices and re-
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constructing trajectories on-the-fly is not usually feasible.
To accelerate such computations, our application employs a
path-based index data structure [30] to speed up the recon-
struction of trajectories. This index data structure is very
stable as the road network does not change frequently. In
spite of that, this index was originally stored in a relational
database and queries of the type seen in Figure 2 are issued
by the application. The underlined vi, vd, and pattern in
the SQL query are the parameters to the query that change
from call to call, and the underlined σ in the query plan
is the select operator that uses the parameters. For exam-
ple, the parameters could look for paths from initial vertex
vi = 17 to destination vertex vd = 8 that go through vertices
v0 = 20 and v1 = 5 by using pattern = “%:20:%:5:%”. The
result of such queries are used to visualize road conditions
as seen in Figure 11.

These queries account for a substantial portion of the ITS
application computational load (above 90%) as this type of
query is used heavily for updating the visualization interface.
A quantitative analysis of the relational database implemen-
tation and other alternatives are presented in Section 6.

3.2 Market Intelligence Portal
The Market Intelligence Portal (MIP) [33] is an informa-

tion system for automatically collecting market information
from various sources on a continuous basis. Data sources
include web sites, distributed file systems, and mail servers.
Once all the data has been collected, it is stored in a re-
lational database server. The repository is then mined and
post-processed and the resulting information can be mapped
onto predefined taxonomies. Searching and browsing ser-
vices on these results are provided to end users as a means
to, for example, understand business trends and informa-
tion concerning competitors. MIP has been deployed by a
customer in China for coalescing and distilling information
from multiple information sources.

Figure 3: One of MIP’s query interface (translated

from Chinese)

In addition to post-processed information, the database
supporting the portal contains information on a large col-
lection of web pages, including the full page content and
basic page attributes (e.g., page author and page snapshot
timestamp). Figure 3 shows the user interface2 for one of the
bottleneck queries in the system. Figure 4 shows the SQL
formulation for the query we experimented with, underlining
the changing parameter idList. In general, the queries gen-
erated by the portal typically go against a stable snapshot

1We show a visualization on top of a road network in the
US due to a confidentiality agreement with our customer in
China.
2The original interface is in Chinese. We show a translation
to English made by our team.

of the database tables. The system is continuously ingesting
additional crawled data and updating the categorized infor-
mation, but users tolerate slightly out-of-date query results.

Market intelligence portal schemas:

CREATE TABLE webpage (id long primary key, root site id long,
language string, title string,
content string)

CREATE TABLE rootsite ( id long primary key, summary string)

Market intelligence portal SQL query:

SELECT webpage.*, rootsite.* FROM webpage AND rootsite
WHERE webpage.language = ‘en’
AND webpage.root site id = rootsite.id
AND webpage.id IN idList

Market intelligence portal query plan:

webpage 

rootsite 

!"

!"

Figure 4: Original market intelligence portal query.

We collected the logs from the portal and observed that
over long periods of time, this type of query accounts for
about 55% of the overall processing time. Again, in Sec-
tion 6, we provide a quantitative study of the original im-
plementation using a relational database and also of the al-
ternative configurations we have experimented with.

3.3 Spam Short Message Filtering
Short messaging or texting is a popular service provided

by cell phone companies worldwide. With the sharp in-
crease in the number of mobile phone users, in particular, in
emerging economies such as China3, spamming has become
a concern for service providers and users alike.

Traditional anti-spam methods such as scanning the mes-
sage content for keywords or, alternatively, allocating a pre-
defined quota on the number of short messages sent per
person daily usually do not provide satisfactory results, as
both have clear accuracy and usability shortcomings. Fac-
ing these challenges, our team, in collaboration with a tele-
com operator in China, developed a new application called
Spam Short Message Filtering (SSMF) using some of the
techniques described earlier in the literature [6].

In essence, the application distinguishes spam from reg-
ular messages according to personal relationships between
callers and callees as represented by a social network graph.
In this graph, a vertex vi denotes a mobile phone user and
an edge ei,j between vi and another vertex vj (represent-
ing another user) indicates that the two users i and j know
each other, as they have called one another in the past. The
basic assumption behind such model is that spam messages
are usually sent out to a large number of randomly selected
targets.

In a typical configuration, the SSMF application manages
a social network graph with several tens of millions of ver-
tices. An important aspect of this dataset is that the social
network evolves slowly and the spam detection technique
used in the application is, to a great degree, insensitive to
slight changes in the graph. This implies that scoring an in-
coming message against this model does not require a com-
pletely accurate graph.

3In 2009, the number of cell phone users in China reached
650 million [37].
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Spam short message filtering schemas:

CREATE TABLE graph (src unsigned long primary key,
dst unsigned long)

Spam short message filtering SQL query:

SELECT COUNT(*) FROM graph
WHERE src IN { SELECT dst FROM graph WHERE src=srcid }

AND dst IN { SELECT dst FROM graph WHERE src=srcid }
Spam short message filtering query plan:

graph 

graph 

! " 

# 

Figure 5: The original SSMF relational query.

From profiling runs with the original application, we
established that queries for assessing inter-user connectivity
in social network graph account for approximately 90%
of the total execution time in determining whether a
message is legitimate or not. Figure 2 depicts the specific
SQL formulation, underlining the parameter srcid. The
inner query SELECT dst FROM graph WHERE src=srcid
returns the set of neighbors of the sender srcid of the mes-
sage. If we denote this set as N(srcid), then the outer query
... FROM graph WHERE src IN N(srcid) AND dst IN N(srcid)
finds pairs src/dst of neighbors that are themselves con-
nected by an edge in the graph. In other words, the three
nodes {srcid, src, dst} form a triangle. A message looks
legitimate if the count of such common acquaintances is
high.

Again, in Section 6, we provide a more quantitative char-
acterization of the challenges faced in the context of the
original implementation as well as the improvements we were
able to obtain.

4. BACKGROUND
This section briefly describes the fundamental technolo-

gies used in the present work: the ODBC interface, the Sys-
tem S stream processing platform, and its programming lan-
guage, Spade. Our aim here is primarily to provide enough
information to the reader to understand how we architected
our framework (which we describe in Section 5), as opposed
to be comprehensive. Each of these technologies has sub-
stantial literature that describe them in detail.

4.1 ODBC-based Applications
Embedding database calls in the source code is the most

prevalent way of writing applications that rely on relational
database-managed state such as the application described
in Section 3. Most databases provide a call level interface
(CLI) to application writers. Nevertheless, it is common for
application writers to want to isolate an application from the
database the application employs. This approach is usu-
ally preferred because it affords a degree of independence
from database vendors, allowing the database server to be
replaced, if necessary.

Typically, this isolation is realized by employing ODBC
interfaces as opposed to the native CLI. The Open Database
Connectivity interface (ODBC) provides APIs for using
database servers. The designers of ODBC aimed to make it
independent of programming languages, database systems,
and operating systems. Most database vendors make ODBC
interfaces available with their servers. Drivers exist for en-

terprise servers such as Oracle, DB2, Microsoft SQL Server,
Sybase, Pervasive SQL, MySQL, PostgreSQL, and desktop
database products such as FileMaker and Microsoft Access,
running on many operating systems, ranging from Windows
to several flavors of Unix.

4.2 System S and the Spade Language
Emerging streaming workloads and applications gave rise

to new data management architectures as well as new prin-
ciples for application development and evaluation. Sev-
eral academic and commercial frameworks have been put
in place for supporting these workloads. System S [2, 27,
38] is a stream processing middleware from IBM Research.
System S supports structured as well as unstructured data
stream processing and the execution of multiple applications
from a community of users, simultaneously. These applica-
tions can be scaled to a large number of compute nodes and
can interact at runtime through stream importing and ex-
porting mechanisms. System S applications take the form
of dataflow processing graphs. A flow graph consists of a
set of PEs (processing elements, i.e., execution containers
for the application logic stated as a collection of operators)
connected by streams, where each stream has a fixed schema
and carries a series of tuples. The operators hosted by PEs
implement stream analytics and can be distributed on sev-
eral compute nodes. System S provides a multiplicity of
services, such as fault tolerance mechanisms [26], schedul-
ing and placement mechanisms [19], distributed job man-
agement, storage services, and security.

Spade [20, 23] is the programming language for System S.
The Spade tooling includes a rapid application develop-
ment environment, as well as visualization and debugging
tools [12, 18]. The language can be used to compose parallel
and distributed stream processing applications, in the form
of operator-based dataflow graphs. The language makes
available several operator toolkits, including a stream rela-
tional toolkit that implements relational algebra operations
in the streaming context; an edge adapter toolkit comprising
operators for ingesting data from external sources as well as
publishing results to external consumers, such as network
sockets, databases, file systems, as well as to proprietary
middleware platforms. A distinctive feature of the Spade
language is its extensibility. New type-generic, configurable,
and reusable operators can be added, enabling third parties
to create application or domain-specific toolkits of opera-
tors.

5. THE APPLICATION ACCELERATION
FRAMEWORK

Accelerating applications of the type described in Sec-
tion 3 is fundamental in the sense that they become able to
cope with additional workloads and thus meet the business
requirements associated with a growing user base. More-
over, it is fundamental that an acceleration framework pro-
vides the means for the application to be inherent scalable.
In other words, the data processing infrastructure support-
ing the data-intensive part of the application must be able
to grow and effectively use additional resources, when these
become available.

The framework described in this section meets these crite-
ria. First, it transparently replaces the relational database
server component with an equivalent streaming application.
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Second, the streaming application is built such that, through
a modification of the dataset layout and the corresponding
distribution of the dataset over additional machines, it is
scalable and capable of exploiting additional processing and
storage resources when they are made available.

While there is a family of applications that can benefit
from our framework, the approach clearly is not applicable
to all applications that make use of relational databases.
Hence, it is useful to recap the properties of the applications
we target:

• Streaming paradigm: The application must have
a streaming nature, i.e., some portion of computation
performed by the application is triggered by an exter-
nal and continuous data source.

• Infrequently changing and read-only datasets:

In this application, the query (or queries) whose cost
dominates the application response time requires ac-
cessing a dataset that is read-only and updated infre-
quently.

• Partitionable datasets: The read-only dataset can
be declustered and distributed across multiple backend
servers. Such distribution has to take into considera-
tion the query or queries submitted by the application
and how different queries can be routed to different
backend servers based on simple properties such as a
unique identifier (e.g., a customer id).

In the rest of this section, we look into the steps required
by our framework to accelerate applications. We break these
steps into a compile-time phase and a runtime phase.

5.1 Transforming the original application
Our framework employs two basic strategies for accelerat-

ing the original application. First, it identifies the applica-
tion’s bottleneck queries, i.e., the queries responsible for the
highest portion of the processing cost in producing the appli-
cation results (e.g., asserting that a particular text message
is not spam in the spam filtering application). Second, it
relies on computation and dataset distribution to efficiently
leverage computing and I/O resources provided by one or
more backend servers, which run a distributed version of the
bottleneck queries against in-core and partitioned datasets,
representing the original database tables.

Employing the strategies we outlined above requires per-
forming four steps: (1) profiling the application and identi-
fying the queries that account for the bulk of the applica-
tion response time; (2) applying modifications to the original
application; (3) generating a streaming application for the
targeted queries from the original application; (4) distribut-
ing the datasets onto the backend servers that will host the
query processing streaming application. We now describe
these steps in a more detailed way.

5.1.1 Profiling the application
The application to be accelerated must be initially run in

profiling mode. In this step, we collect timing information
regarding each ODBC call made by the application. The
timing information is post-processed and the results are ag-
gregated on a per-query basis (i.e., the different types of
queries an application may issue against the database), and,
finally, ranked based on the amount of time that each type
of query demands.

The profiling information is used in the next step to decide
which queries will be converted into a System S streaming
application.

5.1.2 Modifying the application

Figure 6: Architecture.

Figure 6 illustrates the core modification to the origi-
nal application source code, which consists of intercepting
all ODBC calls and proxying them through a replacement
ODBC driver we implemented, the proxy ODBC driver.
This ODBC4 driver has the capability of routing queries
to either the relational database server or, alternatively, to
a System S streaming support application (described in Sec-
tion 5.1.3) that acts as a customized query engine for a spe-
cific type of query.

As we mentioned earlier, the interaction between the ap-
plication and the database server is carried out via ODBC
calls. Hence, the first step in modifying the original appli-
cation consists of two tasks. First, all ODBC calls must
be identified and replaced with drop-in replacement calls to
our proxy ODBC driver. Second, the specific statements
for the SQL queries must be extracted to be used in a code
generation phase we describe later.

The list of extracted SQL queries is then manually ana-
lyzed under the light of the profiling information that was
previously collected as described in Section 5.1.1. At this
stage, the developer has the option of tagging one or more
queries for replacement by the proxy ODBC driver, accord-
ing to their profiled cost. All of the tagged queries are then
converted into native System S streaming applications as we
will describe shortly. The catalog of converted queries is
kept by the proxy ODBC driver for query routing decisions
to be made at runtime as will be described in Section 5.2.

5.1.3 Generating the support streaming application
The support streaming application accelerates an SQL

query (that the user tagged as expensive) by running it on
System S. This section describes the step of generating the
streaming application. This step is currently carried out
in a semi-automatic fashion.5 Our design is driven by the
twin goals of improving scalability by utilizing many shared-
nothing hosts in a cluster, while keeping fidelity, i.e., staying
faithful to the semantics of the original SQL query.

4Note that, while not implemented, supporting JDBC-based
applications is also possible with the same general mecha-
nism outlined in this work.
5We are currently working on the mechanism to fully auto-
mate the application generation.
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Trajectory mapping CQL query plan:

! Sort 
map 

Now 
param 

Market intelligence portal CQL query plan:

webpage 

rootsite 

!"

Now 

param 

Spam short message filtering CQL query plan:

graph 

graph 

! 

" 

Now param 

Figure 7: Transformation from SQL to CQL.

5.1.3.1 From SQL to CQL.
CQL, the continuous query language, is a StreamSQL di-

alect [4, 5]. We chose CQL as an intermediate step for our
accelerator framework because it has a formal denotational
semantics that reuses the classical relational operators with
their usual meaning, thus making it easy to remain faithful
to SQL [5]. The intuition behind the transformation from
SQL to CQL is to go from a stream of SQL queries to a
continuously running CQL query by turning the parame-
ters that change between successive invocations of the SQL
query into an input stream for the CQL query. To make this
more concrete, consider an SQL query such as the following:

SELECT attrs FROM relations WHERE cond(param)
In this query, the underlined part is a parameter. To

obtain a CQL query, we turn this parameter into an input
stream:
SELECT attrs FROM relations, Now(param) WHERE cond
The Now operator in this transformed query is a window

operator that turns a stream into a relation. This is nec-
essary because the join operator (✶) expects two relations,
since CQL reuses standard relational operators for fidelity.
Figure 7 shows the CQL plans that result from applying the
transformation to each of the tagged queries in the exam-
ple applications from Figures 2, 4, and 5. In each case, the
CQL plan replaces the underlined select operator (σ) by a
join operator (✶) with an input from a parameter stream.

5.1.3.2 Distributing CQL.
The step of transforming from SQL to CQL kept fidelity,

but did not yet achieve scalability, because the execution
engine described by the CQL paper is not distributed [4].
The original CQL execution engine relies on two assump-
tions that impede distribution. It assumes shared memory,
because synopses (operator-local data) and streams hold
pointers to shared actual tuple objects. And it assumes
a centralized scheduler, because the operators must work in
topological order to guarantee input availability.

In prior work, we presented an alternative semantics for
CQL that avoids these two assumptions for the purpose of
being more amenable to distribution [31]. We achieve that
by translating from CQL to our core stream calculus Brook-
let, which has a small-step operational semantics that mod-
els distributed implementations. Our paper on Brooklet pro-

! Sort 

map 

Now param 

Src Sink 

Figure 8: CQL query+source+sink = SPADE graph.

vides a proof that our alternative semantics keep fidelity by
still using the same relational operators as CQL.

Compared to the Brooklet-based semantics in our previ-
ous paper, the present work speeds up the implementation
through two additional steps. First, we use incremental mes-
sages: we avoid sending the entire contents of each relation
at each timestamp, by sending only the changes in the rela-
tion compared to the previous timestamp. This is similar to
the implementation described by the designers of CQL [4].

Second, we use phantom messages: we avoid sending
empty messages when no changes occur along one path. In
the original semantics, CQL sends one message on every
edge in the query plan at every timestamp. This achieves
determinism, because confluence operators (operators with
> 1 input edges) wait for input messages with matching
timestamps. However, thanks to the “infrequently changing
and read-only datasets” property mentioned earlier, data on
some edges rarely changes, and thus the message is empty
most of the time. Sending those empty messages is wasteful,
but in their absence, confluence operators need some other
way of determining that all inputs are up to the latest time-
stamp. We call an empty message that is not sent a phantom
message, and indicate it by setting a phantom bit on a mes-
sage on the sibling path. When a message with phantom bit
arrives at a confluence operator, the operator proceeds with-
out waiting for another message for that timestamp. Details
of this idea are omitted for space reasons.

5.1.3.3 Distributed CQL on System S.
Figure 8 shows the flowgraph of the System S application

for the trajectory mapping bottleneck query. Each vertex
in the CQL query plan turns into an operator in a Spade
application flowgraph. In addition, the Spade graph has
two extra operators, one source and one sink. All operators
(source, sink, and “regular” CQL operators) are generated
from templates through a synthesis harness, as mentioned
in Section 4.2. For example, there is a template for a join
operator (✶), and the synthesis harness instantiates differ-
ent optimized versions of the template for different schemas
and join conditions. One benefit that CQL lends to our ac-
celeration framework is that we can use the same operators
and the same Spade application for both normal execution
and for index building.

During normal execution, the proxy ODBC driver routes
bottleneck queries to the Spade application. Those queries
are received by an input socket of the source operator. The
source operator tags the parameters with consecutive times-
tamps starting at 1, and sends them on the param stream
shown in Figure 8. From there, the data is processed by the
CQL query plan. The query plan naturally exploits pipeline
parallelism, and uses the timestamped CQL semantics to as-
semble results correctly at confluence operators. The Spade
compiler may fuse some operators to reduce communication
overhead [19], depending on how the logical query plan is
mapped to physical machines, and depending on profiling
information. Finally, when results arrive at the sink opera-
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Trajectory mapping partitioned query plan:

! Sort map 

Now 
param 

! Sort 

! Sort 

U Sort 

Split 

Split 

Market intelligence portal partitioned query plan:

webpage 
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!"

Now 
param 

Split 

Split 

Split 

U 

Spam short message filt. partitioned query plan:

graph 

graph 

Now 
param 

Split 

Split 

! 

! 

! U 

Split 

Split 

Split 

" 

" 

" 

U " 

Figure 9: Query plans after partitioning.

tor, the sink relays them back to the proxy ODBC driver.
During index building, the source operator bulk-loads re-

lations from the database, tags them with timestamp 0, and
sends them along the appropriate edges. For example, in
Figure 8, the source operator loads the map relation and
sends it on the map edge. The data from the relations flows
through the CQL query plan, eventually coming to rest in
the operator-local state area, which is called synopses in
CQL terminology [4]. Besides getting the data in the right
place and the right representation, index-building sometimes
even performs some pre-computation. For example, consider
the CQL query plan for the market intelligence portal in Fig-
ure 7. At timestamp 0, the webpage relation is first filtered
by a select operator, then joined with the rootsite relation,
and finally comes to rest in the synopsis of the final join
operator, which will later combine it with the parameters
during normal execution.

The phantom messages are key to making this dual use of
the Spade application for both index building and normal
execution efficient. At timestamp 0, the param path through
the graph lies idle, by being treated as phantom messages
while the relation paths are active. At timestamps ≥ 1, the
relation paths through the graph lie idle, by being treated as
phantom messages while the param path is active. However,
all paths through the graph use the same operators, with
symmetric algorithms and data structures. This reuse re-
duces engineering effort and increases our confidence in the
fidelity of the accelerator: both index building and normal
execution follow CQL semantics, which, in turn, is faithful
to the meaning of the classical relational operators.

5.1.4 Partitioning and distributing the dataset
Section 5.1.3 showed how to turn a bottleneck SQL query

into a streaming application for System S, via the interme-
diate steps of creating a CQL query and its physical distri-

bution plan. That transformation already provided pipeline
parallelism, but the benefits of pipeline parallelism are lim-
ited by the depth of the query plan. To increase the available
parallelism, we partition the data. Our partitioning tech-
nique is fairly standard [15], and is enabled by the previous
step of distributing CQL on System S. We have not yet au-
tomated the partitioning; instead, we transform the stream
graphs by hand for our case study applications. Besides the
aforementioned benefit of increasing available parallelism,
partitioning yields the additional benefit of reducing the
amount of data on each node in the cluster. This allows
us to limit the space requirements on each node to fit com-
fortably in main memory, yielding speedups over disk-based
databases.

The “partitionable datasets” requirement mentioned ear-
lier mandates key attributes on the input relations and pa-
rameters. Our partitioning uses a hash-split operator that
routes data to different subgraphs. As before, index build-
ing and normal execution are treated no differently, both use
the same split and other operators for fidelity and to keep
our acceleration framework simple.

Figure 9 shows the partitioned query plans for N = 3
nodes. Configurations for other values of N follow a similar
pattern. The Split operator always partitions by the primary
key attributes from the SQL queries in Figures 2, 4, and 5.
For example, the Split operator in the trajectory mapping
application partitions by src and dst, and the join operator
performs equality comparisons on these before filtering with
the LIKE predicate. As for the union (∪) operators, the tra-
jectory mapping application performs one Sort still in the
split subgraph, exploiting the cluster nodes better, but re-
quires a final Sort after the union. Similarly, the spam short
message filtering application pre-aggregates the count (γ) in
the split subgraph and finalizes it after reunion. The spam
short message filtering application has a nested subquery,
which uses different key attributes. Therefore, the subquery
and the main query turn into two separate split/union sub-
graphs.

Overall, the load balancing of our partitioning scheme de-
pends on how well hashing spreads the workload. The less
skew in the hashed key attributes, the better the load bal-
ancing, and the better the overall performance. At the time
of this writing, we use manually written hash functions.

5.2 Running the streaming application
Once the original application has undergone the modifi-

cations summarized in Section 5.1, the new application can
be run normally as the changes are completely transparent
to the original application.

This transparency is accomplished by making use of
a proxy ODBC driver as we stated earlier. The new
application receives the data to be processed and goes
through its normal processing. Based on the incoming
workload, a query statement is prepared as usual (using
the SQLPrepare ODBC interface) and executed (using the
SQLExecute ODBC interface). Once the query is received
by the ODBC driver, it makes a routing decision pertain-
ing to where the query is to be executed. A query may be
executed by the original relational database server or via
the System S support application. This is a simple decision.
The proxy ODBC driver has a catalog of which query types
should be directed to the database and which should not.
For queries shipped to the database server, a simple call is
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made through the original ODBC driver. In other words,
our ODBC driver acts purely as a proxy. For the queries
shipped to the System S support application, the variable
parameters are removed from the query specification and
are directly sent to the support streaming application.

The support streaming application has a Dispatcher
Source that receives these parameters and initiates the query
processing. The Dispatcher Source routes the query to the
Query Executor subgraph. Once the Query Executor com-
putes the result for the query, it submits the results to the
Result Sink operator, which, in turn, returns the results to
the proxy ODBC driver, making the results available to the
application for further processing as required.

Our framework has been designed to include the capability
of hot-swapping the support streaming application on-the-
fly, when the datasets employed for computing the query
results are updated. In other words, a new version of the
System S support application loaded with the new version
of the read-only datasets can be brought up in tandem with
the original version. Once the new one becomes fully op-
erational, the old version is terminated. Our replacement
ODBC driver can detect the change and start routing the
queries to the new version, seamlessly. This capability is
still experimental and available only in prototype form.

6. EXPERIMENTS
The design of our database acceleration framework aimed

at improving the performance of certain types of applica-
tions that must process a stream of incoming queries. To
assess how effective our proposed framework is, we employed
the applications described in Section 3. We empirically stud-
ied them considering two key metrics: query latency and
query throughput.

Query latency is important because it gives an indication
of how long it takes for a query engine, in this case either a
relational database server or the equivalent Spade stream-
ing application produced by the acceleration framework, to
compute the query results on behalf of the front-end appli-
cation. Query throughput is important because, ultimately,
the goal is to scale up the original application to accommo-
date higher workloads demanded by a production deploy-
ment. In other words, as the load increases (e.g., as more
mobile phone users are added by the telecom provider using
the SSMF application) and as more computational resources
are made available to the application, the goal is to keep the
number of queries answered per unit of time constant, ide-
ally.

Our study was conducted in a Linux cluster, using a stock
distribution of System S. Our cluster has four 2.66 GHz Intel
Core 2 6700-based nodes, each with 12 GB memory and a
160 GB hard disk, running RedHat Enterprise 4.0.

For each of the case study applications we extracted the
bottleneck query (described in Section 3), identified by the
profiling phase discussed in Section 5. We then developed 5
versions of a query execution mechanism for computing this
query. The query execution mechanism consists of a query
engine and the dataset needed for executing the bottleneck
query. The query engines we employed included the origi-
nal relational database used by the application, which was
IBM DB2 in all cases, as a baseline as well as the following
alternative configurations:

• SolidDB-RW: The SolidDB-RW configuration em-

ploys IBM’s SolidDB. SolidDB is an in-core relational
database [24]. It can be configured both in read-
write mode (when queries can also update tables) or
in read-only mode (when updates are not allowed).
The SolidDB-RW configuration employs the database
server in read-write mode, even though that was not
needed by our case study applications.

• SolidDB-RO: The SolidDB-RO configuration was
setup such that the database was capable of execut-
ing only read-only queries.

• CQL on System S: The CQL on System S configura-
tion corresponds to the application as produced by the
code generation mechanism described in Section 5.1.3.

• Manual System S: The Manual System S configura-
tion corresponds to the application generated by our
framework, but with additional manual optimizations.
The manual tweaks were made only for the SSMF ap-
plication. In this case, the code generated by the CQL-
translation phase is further optimized as is the layout
for the data. Locating the neighbors to a vertex can
benefit from indexing, reducing the complexity of the
search at runtime. We omit the details for space rea-
sons; our methodology is similar to Schank and Wag-
ner’s “edge-iterator” algorithm [29]. Indexing is done
offline and the modified runtime algorithm assumes
the presence of the index. We have not attempted to
further optimize the auto-generated code for the MIP
and TM applications.

The set of query workloads we employed were generated
by randomizing the application traces we had from earlier
field deployments. In all experimental configurations we
used as much of the real data for each application as we could
fit in memory. In other words, we truncated the datasets
based on time intervals, constrained by how much in the
past we could go and still keep the data in main memory.

6.1 Varying the dataset size
In the first set of experiments, we looked at each applica-

tion’s bottleneck query from the standpoint of each query
engine’s sensitivity to the dataset size. In this case, all ap-
plications were run on a single node.

The first set of experimental results are depicted by Fig-
ure 10 and focused on query throughput. As expected, all
query engines exhibited a decrease in throughput as the
datasets increased in size. Not surprisingly, the baseline
DB2 configuration was the slowest as it experiences all of
the transactional costs incurred by a disk-based relational
server. The in-core capabilities provided by SolidDB are re-
sponsible for a great deal of improvement in performance,
with and average of a 2-fold to 5-fold increase in through-
put for the TM and MIP applications. Even more substan-
tial improvements were observed for the SSMF application
with the SolidDB-RW and SolidDB-RO configurations, re-
spectively, irrespective of the dataset size. On top of such
gains, our CQL-translated streaming application was able
to attain between 1.5 and 2-fold additional improvement in
query throughput when compared to SolidDB-RO. These
improvements can be attributed to the application-tailored
code produced by the Spade compiler (in contrast with the
generic query engines provided by the relational databases)
as the CQL query is translated into a System S application.

1401



0 

500 

1,000 

1,500 

2,000 

2,500 

3,000 

3,500 

4,000 

4,500 

256 512 1,024 2,048 4,096 8,192 

T
h
ro

u
g
h
p
u
t 
(q

u
e
ri
e
s
/s

e
c
)

Data set size (MB)

System S 

SolidDB-

RO 

SolidDB-

RW 

DB2 

(a) Trajectory mapping.

0 

50 

100 

150 

200 

250 

300 

256 512 1,024 2,048 4,096 8,192 

T
h
ro

u
g
h
p
u
t 
(q

u
e
ri
e
s
/s

e
c
)

Data set size (MB)

System S 

SolidDB-

RO 

SolidDB-

RW 

DB2 

(b) Market intelligence portal.

0 

20 

40 

60 

80 

100 

120 

256 512 1,024 2,048 4,096 8,192 

T
h
ro

u
g
h
p
u
t 
(q

u
e
ri
e
s
/s

e
c
) 

Data set size (MB)

Manual 

System S 
CQL on 

System S 
SolidDB-

RO 
SolidDB-

RW 
DB2 
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Figure 10: Throughput vs. data set size for bottleneck queries, on one cluster node.
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Figure 11: Normalized latency vs. data set size for bottleneck queries, on one cluster node, relative to DB2.

Our second set of experimental results, depicted by Fig-
ure 11, focus on latency. In particular, we looked at
the speedup provided by the alternative query engines
when compared to the one relying on DB2. Surprisingly,
sharper improvements were observed in query latency. Both
SolidDB-based configurations provide substantial speedups
in most cases, up to a factor of 7 (for the TM application
bottleneck query when employing the SolidDB-RO config-
uration). The speedups tend to decrease with the dataset
size as the cost of memory accesses increases. In all cases,
the application produced as a result of the CQL translation
step delivers speedups varying from an 8-fold improvement
to a 15-fold improvement.

The SSMF query clearly benefits from the manually in-
serted optimizations, with an extra 50% increase in through-
put and almost double of the speedup provided by the au-
tomated translation, irrespective of the dataset size.

6.2 Varying the number of cluster nodes
In the next set of experiments, we looked at each applica-

tion’s bottleneck query from the standpoint of the sensitivity
of each query engine configuration to distributed execution
as we increased the number of cluster nodes (and dataset
partitions) we employed. In this case, each data partition
is hosted on a different node and we made use of the query
distribution strategy described in Section 5 to load balance
the stream of incoming queries. Again, we examined the
impact on query throughput and latency.

As before, the first set of experiments depicted by Fig-
ure 12 focuses on throughput. Once again, we see that all the
configurations are reasonably well-behaved, scaling almost
linearly with the increase of computational resources. Nev-
ertheless, the relative difference between the different con-
figurations is noticeable. The general trend is that SolidDB-
based configurations outperform DB2, but are also outper-

formed by the CQL-translated Spade application. In some
cases, the improvement translates into triple the through-
put of the SolidDB-RO configuration (specifically, the 4-
node configuration for the MIP application). As before,
we see that the manual tweaks deliver superior results for
the SSMF application, demonstrating that more in-depth
compiler-based analysis in the CQL translation might be
worthwhile.

6.3 Studying the effects of data skew
The experiments depicted by Figure 13 focus on data skew

and its effect on throughput when the applications are run
in distributed mode. In particular, we were interested in
understanding how data skew affects the load balancing in
distributing queries to different nodes. For these experi-
ments, we rigged the hash functions to produce skew. The
x-axis gives the amount of skew as the percentage of data
that is stored on the most heavily loaded node. For example,
with 4 nodes, 25% on the most heavily loaded node corre-
sponds to an even data distribution (no skew), whereas 70%
on the most heavily loaded node leaves only 10% each for
the other three nodes (heavy skew). As expected, the ben-
efits of data parallelism diminish with increasing skew. For
example, the performance of the 4-node configuration drops
approximately to the performance of the 3-node configura-
tion when skew increases from 25% to 33%, since through-
put is now bounded by a node with the same load. To
conclude, partitioning helps most when skew is small (as
expected), highlighting the importance of using hash func-
tions that provide good workload spreading. All three of our
case study applications have negligible skew.

6.4 Beyond the bottleneck queries
All the previous experiments focused on executing the

bottleneck queries in isolation. In the experiments depicted
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Figure 12: Throughput vs. number of nodes for bottleneck queries, with 8GB data set for each application.
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Figure 13: Throughput vs. data skew for bottleneck queries, with 8GB data set for each application.

by Figure 14, we ran the full application, but still measured
the performance of the bottleneck queries as a proxy for the
application performance. The intention was to assess the
effect of running the full application on the throughput and
latency for those queries, as computational resources are di-
verted to additional processing.

Interestingly, the results are generally consistent with
those seen in Figure 10, as the bottleneck queries do account
for the bulk of each application’s computational budget. For
this reason, we omit the latency results as they also track
what we had seen in Figure 11.

6.5 Discussion
Our empirical evaluation demonstrates that the code gen-

eration approach employed by our CQL translator, coupled
with our ODBC-driver replacement, is a viable alternative
to improving the performance and scaling up this class of
applications that processes a stream of queries against read-
only and infrequently updated datasets.

Despite being very promising, we consider our results still
a work-in-progress. As seen from the relative difference be-
tween the automated translation and the manually tweaked
configuration for the SSMF application, our CQL translator
still has considerable room for improvement. Furthermore,
we consider our tooling as not being at production-level yet.
For example, additional improvements will have to be made
to aid in the automatic identification of queries that can
be efficiently translated. More work is also needed to create
mechanisms and tooling for automating dataset partitioning
and workload distribution.

7. RELATED WORK
Database acceleration and, in general, query optimization

has been a prolific area of research. Multiple surveys over

the last two decades have summarized the state of the art
techniques in this area. A non-exhaustive list includes the
work done by Graefe [21], Ioannidis [25], and Chaudhuri [9].
Substantial improvements in commercial relational database
systems have resulted from the pioneering work described in
these surveys.

For several applications that do not require the guarantees
provided by regular relational databases, both researchers
and vendors have looked at in-memory database implemen-
tations [16, 22] to speed up the execution of queries. From
TimesTen [34] (later acquired by Oracle) to Solid Informa-
tion Technology [24] (later acquired by IBM), several prod-
ucts are available in the market. There has also been sub-
stantial work on parallel database technologies [14, 15] and
database federation frameworks [28], which provide improve-
ments in raw database performance and integration capabil-
ities. There has also been work on read-only transactions in
databases [17].

There has been work on novel, distributed data process-
ing frameworks, focusing on large-scale datasets. Examples
include work on database servers that make use of dataset
declustering techniques [8] and the now famous map-reduce
paradigm [13]. Likewise, stream processing has been an ac-
tive research area for over half a decade. This has led to
the development of several academic and commercial plat-
forms. STREAM [3], Borealis [1], StreamBase [32], and
TelegraphCQ [7], among others, have focused on providing
stream processing query languages, optimization techniques,
and runtime middleware.

We believe that the core contributions in the present pa-
per are unique in light of the earlier work, but it clearly is in
the confluence of these multiple areas, leveraging the ideas
from the parallel database and from the stream comput-
ing research. We think that this work presents a reasonable
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Figure 14: Throughput vs. data set size for entire application, on one cluster node.

method for transforming applications that deal with stream-
ing workloads, which, in several applications, are typically
implemented using traditional relational database technolo-
gies, into true streaming applications, making use of the
flexibility afforded by stream processing middleware.

8. CONCLUDING REMARKS
In this work we have described an approach for modifying

applications that have a streaming nature, but whose origi-
nal implementations rely on traditional relational databases
for the bulk of their processing. The end result is an applica-
tion that leverages the capabilities of a distributed stream-
ing middleware for computationally expensive queries, en-
abling the scaling up of processing in concert with increases
in workload, while maintaining low latencies.

We have shown that there is an emerging class of appli-
cations that require timely data processing due to the con-
tinuous nature of their processing. The method described
in this work, while not fully automated, is very effective
in guiding the transformation of relational queries that are
performance critical in these applications into customized
distributed streaming applications. As was experimentally
demonstrated in the context of several real-world appli-
cations, such transformations result in substantial perfor-
mance and scalability improvements as we have shown.

We believe that the ideas proposed here are a step in
evolving legacy applications to a streaming formulation
where data in motion is processed via middleware that en-
ables continuous query processing, while data at rest resides
on database servers and warehouse for offline processing as
well as long-lead time business intelligence applications.
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