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2.1 Eigenvectors and Eigenvectors

I’ll begin this lecture by recalling some definitions of eigenvectors and eigenvalues, and some of
their basic properties. First, recall that a vector v is an eigenvector of a matrix M of eigenvalue λ
if

Mv = λv .

As almost all the matrices we encounter in this class will be symmetric (or morally symmetric), I’ll
remind you of the special properties of the spectra of symmetric matrices. If v1 is an eigenvector
of M of eigenvalue λ1, v2 is an eigenvector of M of eigenvalue λ2 6= λ1, and M symmetric, then v1

is orthogonal to v2. To see this, note that

λ1v
T
1 v2 = vT

1Mv2 = vT
1 λ2v2 = λ2v

T
1 v2

implies vT
1 v2 = 0, assuming λ1 6= λ2. On the other hand, if v1 and v2 are both eigenvectors of

eigenvalue λ, then v1 + v2 is as well.

For a symmetric matrix M , the multiplicity of an eigenvalue λ is the dimension of the space of
eigenvectors of eigenvalue λ. Also recall that every n-by-n symmetric matrix has n eigenvalues,
counted with multiplicity. Thus, it has an orthonormal basis of eigenvectors, {v1, . . . , vn} with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn so that

Mv i = λiv i, for all i.

If we let V be the matrix whose ith column is v i and Λ be the diagonal matrix whose ith diagonal
is λi, we can write this more compactly as

MV = V Λ.

Multiplying by V T on the right, we obtain the eigen-decompisition of M :

M = MV V T = V ΛV T =
∑
i

λiv iv
T
i .

2.2 The Laplacian Matrix

We will now recall the definition of the Laplacian matrix of a weighted graph, and present it in
a more useful form. Recall that a weighted undirected graph G = (V,E,w) is just an undirected
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graph G = (V,E) along with a function w : E → IR+, where IR+ denotes the set of positive Real
numbers. The adjacency matrix of a weighted graph G will be denoted AG, and is given by

AG(i, j) =

{
w(i, j) if (i, j) ∈ E, and

0 otherwise.

The degree matrix of a weighted graph G will be denoted DG, and is the diagonal matrix such that

DG(i, i) =
∑
j

AG(i, j).

The Laplacian matrix of a weighted graph G will be denoted LG. Last class, we defined it by

LG = DG −AG.

We will now see a more convenient definition of the Laplacian. To begin, let G1,2 be the graph on
two vertices with one edge1 of weight 1. We define

LG1,2

def
=

[
1 −1
−1 1.

]
Note that

xTLG1,2x = (x (1)− x (2))2. (2.1)

For the graph with n vertices and just one edge between vertices u and v, we can define the
Laplacian similarly. For concreteness, I’ll call this graph Gu,v. It’s Laplacian matrix is the n-by-n
matrix whose only non-zero entries are in the intersections of rows and columns u and v. The
two-by-two matrix at the intersections of these rows and columns is, of course,[

1 −1
−1 1

]
.

For a weighted graph G = (V,E,w), we now define

LG
def
=

∑
(u,v)∈E

w(u, v)LGu,v .

You should verify for yourself that this is equivalent to the definition I gave before.

Many elementary properties of the Laplacian follow from this definition. In particular, it is imme-
diate that for all x ∈ IRV

xTLGx =
∑

(u,v)∈E

w(u, v)(x (u)− x (v))2. (2.2)

1Generally, we will view unweighted graphs as graphs in which all edges have weight 1. If I do not mention the
weight of an edge, assume it is 1.
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For an eigenvector v of eigenvalue λ, this tells us that

vTLGv = λvTv ≥ 0.

So, every eigenvalue of a Laplacian matrix is non-negative. That is, the matrix is positive semi-
definite.

Remark Since the vertex set really doesn’t matter, I actually prefer the notation L(E) where
E is a set of edges. Had I used this notation above, it would have eliminated some subscripts. For
example, I could have written L{u,v} instead of LGu,v .

2.3 Connectivity

From (2.2), we see that if all entries of x are the same, then xTLGx equals zero. From the definition
LG = DG −AG, we can immediately see that LGx = 0, so the constant vectors are eigenvectors of
eigenvalue 0.

Lemma 2.3.1. Let G = (V,E) be a graph, and let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of
its Laplacian matrix. Then, λ2 > 0 if and only if G is connected.

Proof. We first show that λ2 = 0 if G is disconnected. If G is disconnected, then it can be described
as the union of two graphs, G1 and G2. After suitably re-numbering the vertices, we can write

LG =

[
LG1 0

0 LG2

]
.

So, LG has at least two orthogonal eigenvectors of eigenvalue zero:[
0
1

]
and

[
1
0

]
.

where we have partitioned the vectors as we did the matrix LG.

On the other hand, assume that G is connected and that x is an eigenvector of LG of eigenvalue 0.
As

LGx = 0,

we have
xTLGx =

∑
(u,v)∈E

(x (u)− x (v))2 = 0.

Thus, for each pair of vertices (u, v) connected by an edge, we have x (u) = x (v). As every pair
of vertices u and v are connected by a path, we may inductively apply this fact to show that
x (u) = x (v) for all vertices u and v. Thus, x must be a constant vector. We conclude that the
eigenspace of eigenvalue 0 has dimension 1.

Of course, the same holds for weighted graphs.
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2.4 Some Fundamental Graphs

We now examine the eigenvalues and eigenvectors of the Laplacians of some fundamental graphs.
In particular, we will examine

• The complete graph on n vertices, Kn, which has edge set {(u, v) : u 6= v}.

• The star graph on n vertices, Sn, which has edge set {(1, u) : 2 ≤ u ≤ n}.

• The path graph on n vertices, Pn, which has edge set {(u, u+ 1) : 1 ≤ u < n}.

• The ring graph on n vertices, Rn, which has all the edges of the path graph, plus the edge
(1, n).

Lemma 2.4.1. The Laplacian of Kn has eigenvalue 0 with multiplicity 1 and n with multiplicity
n− 1.

Proof. The multiplicty of the zero eigenvalue follows from Lemma 2.3.1.

To compute the non-zero eigenvalues, let v be any non-zero vector orthogonal to the all-1s vector,
so ∑

i

v(i) = 0. (2.3)

Assume, without loss of generality, that v(1) 6= 0. We may now compute the first coordinate of
LKnv , and then divide by v(1) to compute λ. We find

(LKnv) (1) = (n− 1)v(1)−
n∑

j=2

v(j) = nv(1), by (2.3).

So, every vector orthogonal to the all-1s vector is an eigenvector of eigenvalue n.

To determine the eigenvalues of Sn, we first observe that each vertex i ≥ 2 has degree 1, and that
each of these degree-one vertices has the same neighbor. Whenever two degree-one vertices share
the same neighbor, they provide an eigenvector of eigenvalue 1.

Lemma 2.4.2. Let G = (V,E) be a graph, and let i and j be vertices of degree one that are both
connected to another vertex k. Then, the vector v given by

v(u) =


1 u = i

−1 u = j

0 otherwise,

is an eigenvector of the Laplacian of G of eigenvalue 1.

Proof. One can immediately verify that LGv = v .
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The existence of this eigenvector implies that v(i) = v(j) for every eigenvector v of a different
eigenvalue.

Lemma 2.4.3. The graph Sn has eigenvalue 0 with multiplicity 1, eigenvalue 1 with multiplicity
n− 2, and eigenvalue n with multiplicity 1.

Proof. The multiplicty of the eigenvalue 0 follows from Lemma 2.3.1. Applying Lemma 2.4.2 to
vertices i and i+1 for 2 ≤ i < n, we find n−2 linearly independent eigenvectors of eigenvalue 1. To
determine the last eigenvalue, recall that the trace2 of a matrix equals the sum of its eigenvalues.
We know that the trace of LSn is 2n − 2, and we have identified n − 1 eigenvalues that sum to
n− 2. So, the remaining eigenvalue must be n. Knowing this, and the fact that the corresponding
eigenvector must be constant across vertices 2 through n, make it an easy exercise to compute the
last eigenvector.

Lemma 2.4.4. The Laplacian of Rn has eigenvectors

x k(u) = sin(2πku/n), and

yk(u) = cos(2πku/n),

for 1 ≤ k ≤ n/2. When n is even, xn/2 is the all-zero vector, so we only have yn/2. Eigenvectors
x k and yk have eigenvalue 2− 2 cos(2πk/n).

Proof. The best way to see that xk and yk are eigenvectors is to plot the graph on the circle using
these vectors as coordinates. That they are eigenvectors is geometrically obvious. To compute the
eigenvalue, just consider vertex 1, and use the double-angle formula to compute:

(LRnx k) (1) = 2x k(1)− x k(0)− x k(2)

= 2 sin(2πk/n)− sin(2πk2/n)

= 2 sin(2πk/n)− 2 sin(2πk/n) cos(2πk/n)

= (2− cos(2πk/n))x (1).

The computation for cos follows similarly.

Lemma 2.4.5. The Laplacian of Pn has the same eigenvalues as R2n, and eigenvectors

vk(u) = cos(πku/n− πk/2n).

for 0 ≤ k < n

Proof. This is our first interesting example. We derive the eigenvectors and eigenvalues by treating
Pn as a quotient of R2n: we will identify vertex u of Pn with both vertices u and 2n+ 1−u of R2n.
Let z be an eigenvector of R2n in which z (u) = z (2n+ 1− u) for all u. I then claim that the first
n components of z give an eigenvector of Pn.

2the sum of its diagonal entries
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To obtain such an eigenvector z , take

z k(u) = cos (2πk(u− 1/2)/(2n))

= cos (2πku/(2n)) cos (πk/(2n))

+ sin (2πku/(2n)) sin (πk/(2n))

= yk(u) cos (πk/(2n)) + x k(u) sin (πk/(2n)) .

So, z k is an eigenvector of R2n of eigenvalue λk
def
= 2− cos(2πk/2n).

We now set vk(i) = z k(i) for 1 ≤ i ≤ n. To see why vk is an eigenvector of LPn of eigenvalue λk,
note that for 1 < i < n,

(LPnvk) (i) = 2vk(i)− vk(i− 1)− vk(i+ 1)

=
1

2

(
2z k(i)− z k(i− 1)− z k(i+ 1)

+ 2z k(2n+ 1− i)− z k(2n+ 1− (i− 1))− z k(2n+ 1− (i+ 1))
)

=
1

2
(λkz k(i) + λkz k(2n+ 1− i))

= λkvk(i).

For i = 1, we have

(LPnvk) (1) = vk(1)− vk(2)

= 2vk(1)− vk(2)− vk(1)

= 2z k(1)− z k(2)− z k(2n)

= λkz k(1)

= λkvk(1).

Of course, the other end is similar.

The quotient construction used in this proof is an example of a generally applicable technique.

We have now seen that the kth eigenvector of the path graph alternates in sign k−1 times. This is
consistent with our intuition that the Laplacian of the path graph is a discretization of a continuous
string, and that its eigenvectors are approxmations of its fundamental modes of vibration when its
ends are free.

If this intuition is correct, then it should continue to be true even if we discretize a string whose
material changes along its length. This corresponds to a weighted path graph.


