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1 Counting Trees

The Laplacian of a graph can be used to easily obtain a wealth of information about its spanning
trees. To talk about this, we will need to recall the elementary symmetric functions: let ek(A)
denote the sum of k−wise products of eigenvalues of A, noting that ek(A) = det(A) for a k × k
matrix and ek(A) = 0 for k > rank(A). Observe that for a connected graph, en−1(LG) is simply
the product of the nonzero eigenvalues. We now have the following celebrated theorem of Kirchoff.

Theorem 1. Let NG denote the number of spanning trees of G. Then

en−1(LG) = n ·NG.

The base case of this theorem is the following. We will use the notation AR,C to denote the
submatrix of A with rows in R and columns in C.

Lemma 2. Suppose L is the Laplacian of a tree T on n vertices. Then

en−1(L) = n.

Proof. Orient the edges of T arbitrarily. Let L = BTB where B is the edge-vertex incidence matrix
and use Lemma 3 to obtain

en−1(L) = en−1(BTB)

=
∑
x∈V

en−1(BT
·,x̄B·,x̄)

We will show that each of the terms in the sum is 1.
Fix x. Take any vertex y 6= x and consider the unique oriented path P ⊂ T from x to y. Then

it is easy to see that

χy − χx =
∑
e∈T

zy(e)be

where

zy(e) =


+1 if e ∈ P with the same orientation
−1 if e ∈ P with the opposite orientation
0 if e /∈ P
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for edges e ∈ T . Writing this fact in matrix notation, we have

χy − χx = BT zy

which upon ignoring the row indexed by x becomes

χy = BT
·,x̄zy.

Thus by expressing the canonical vectors {χy}y 6=x in terms of the columns of BT
·,x̄, we have actually

shown that
BT
·,x̄Z = In−1

where Z has columns zy. But now both Z and BT
·,x̄ have integer entries and

det(In−1) = det(ZB·,x̄) = det(Z) det(B·,x̄) = 1

so we must have det(B·,x̄) = ±1 and consequently

det(B·,x̄B
T
·,x̄) = 1,

as desired.

The following lemma gives the elementary symmetric functions of a matrix in terms of those of
its principal submatrices.

Lemma 3. If A is an n× n matrix then

ek(A) =
∑

S⊂[n],|S|=k

det(AS,S).

Proof. Evaluate det(xI +A) using the formula

det(A) =
∑
σ

sgn(σ)a1σ(1) . . . amσ(m)

where σ ranges over permutations. It is easy to see that the only terms that contain xn−k come
from permutations that are the identity on some n − k indices (since the only terms containing x
lie on the diagonal) and any permutation on the remaining k indices. Since the fixed indices do
not change the signs of permutations, the coefficient of xn−k is just∑

|S|=k

∑
σ:k→k

sgn(σ)AS,S(1, σ(1)) . . . AS,S(k, σ(k))

which is just the sum over all principal k × k determinants. On the other hand, the coefficient of
xn−k is also ek, since det is unitarily invariant.

We can now use the above lemma to “count” the trees in an arbitrary G.
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Proof of Theorem 1. We compute

en−1(L) = en−1(BTB)

= en−1(BBT ) since BBT and BTB are similar

=
∑

T⊂E,|T |=n−1

en−1(BT,·B
T
T,·) by Lemma 3

=
∑

T⊂E,|T |=n−1

en−1(LT )

=
∑

T⊂E,|T |=n−1,connected

en−1(LT ) since disconnected T have rank(LT ) < n− 1

=
∑

T⊂E,|T |=n−1,connected

n by Lemma 2

as desired.

2 Effective Resistances

Identify the graph G with an electrical circuit in which each edge corresponds to a unit resistor.
We will use the following notation to describe electrical flows on G: for a vector iext(u) of currents
injected at the vertices, let i(e) be the currents induced in the edges (in the direction of orientation)
and v(u) the potentials induced at the vertices. By Kirchoff’s current law, the sum of the currents
entering a vertex is equal to the amount injected:

BT i = iext.

By Ohm’s law, the current flow in an edge is equal to the potential difference across its ends:

i = Bv,

Combining these two facts, we obtain

iext = BT (Bv) = Lv.

If iext ⊥ 1 = ker(L), then we can write
v = L+iext

where L+ is the pseudoinverse.
Recall that the effective resistance between two vertices u and v is defined as the potential

difference induced between them when a unit current is injected at one and extracted at the other.
We will derive an algebraic expression for the effective resistance in terms of L+. To inject and
extract a unit current across the endpoints of an edge e = (u, v), we set iext = bTe = (χv−χu), which
is clearly orthogonal to 1. The potentials induced by iext at the vertices are given by v = L+bTe ; to
measure the potential difference across e = (u, v), we simply multiply by be on the left:

v(v)− v(u) = (χv − χu)Tv = beL
+bTe .

It follows that the effective resistance across e is given by beL
+bTe and that the matrix Π = BL+BT

has as its diagonal entries Π(e, e) = Reff(e).
We are now in a position to state the second theorem.
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Theorem 4. If T is a spanning tree of G chosen uniformly at random, then for every edge e ∈ G:

Reff(e) = PT [e ∈ T ].

Proof. It is easy to verify that Π = ΠT and ΠTΠ = Π, so that Reff(e) = Π(e, e) = ‖Πe‖2 where Πe

denotes the eth column of Π. It follows that Π is a projection matrix with exactly n−1 eigenvalues,
all equal to one.

Fix an edge e. Taking a sum over all (n− 1)× (n− 1) submatrices of Π containing e, we find
that ∑

T⊂E,T3e
en−1(ΠT,·Π

T
T,·) =

∑
T⊂E,T3e

en−1(BT,·L
+
GB

T
T,·)

=
∑

T⊂E,T3e
en−1(L+

GLT )

=
∑

T⊂E,T3e
en−1(L+

G)en−1(LT ) since im(LG) = im(LT )

=
∑

T⊂E,T3e

en−1(LT )

en−1(LG)
since en−1(LG)−1 = en−1(L+

G)

=
|{spanning tree T : T 3 e}|

NG
by Theorem 1 and Lemma 2

= PT [e ∈ T ].

On the other hand, we also have∑
T⊂E,T3e

en−1(ΠT,·Π
T
T,·)

=
∑

T⊂E,T3e
‖Πe‖2en−2(Γ⊥eΠT,·Π

T
T,·Γ

T
⊥e) where Γ⊥e is the projection orthogonal to Πe

= ‖Πe‖2
∑

T⊂E\{e},|T |=n−2

en−2(Γ⊥eΠT⊂E,·Π
T
T,·Γ

T
⊥e)

= ‖Πe‖2en−2(Γ⊥eΠΠTΓT⊥e) by Lemma 3

= ‖Πe‖2 · 1 since Γ⊥eΠ has n− 2 nonzero eigenvalues equal to 1

= Reff(e),

as desired.

4


