
Spectral Graph Theory Lecture 2

The Laplacian

Daniel A. Spielman September 4, 2015

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on September 3, 2015.

2.1 What I forgot to say last lecture

There are two important things that I forgot to say last lecture. The first is that, while we study
many abstractly defined graphs to build our intuition, most of the theorems we prove hold in
general.

The second is an extension of the characterization of eigenvalues and eigenvectors as optimization
problems. Using the same reasoning, one can prove the following theorem.

Theorem 2.1.1. Let M be an n× n symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn with
corresponding eigenvectors ψ1, . . . ,ψn. Then,

λi = min
x⊥ψ1,...,ψi−1

xTMx

xTx
,

and the eigenvectors satisfy

ψi = arg min
x⊥ψ1,...,ψi−1

xTMx

xTx
.

2.2 The Laplacian Matrix

Recall that the Laplacian Matrix of a weighted graph G = (V,E,w), w : E → IR+, is designed to
capture the Laplacian quadratic form:

xTLGx =
∑

(u,v)∈E

wu,v(x (u)− x (v))2. (2.1)
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We will now use this quadratic form to derive the structure of the matrix. To begin, consider a
graph with just two vertices and one edge. Let’s call it G1,2. We have

xTLG1,2x = (x (1)− x (2))2. (2.2)

Consider the vector δ1 − δ2, where by δi I mean the elementary unit vector with a 1 in coordinate
i. We have

x (1)− x (2) = δT1 x − δT2 x = (δ1 − δ2)Tx ,

so

(x (1)− x (2))2 =
(
(δ1 − δ2)Tx

)2
= xT (δ1 − δ2) (δ1 − δ2)T x = xT

[
1 −1
−1 1

]
x .

So,

LG1,2 =

[
1 −1
−1 1

]
.

Now, let Gu,v be the graph with just one edge between u and v. It can have as many other vertices
as you like. The Laplacian of Gu,v can be written in the same way: LGu,v = (δu − δv)(δu − δv)T .
This is the matrix that is zero except at the intersection of rows and columns indexed by u and v,
where it looks looks like [

1 −1
−1 1

]
.

Summing the matrices for every edge, we obtain

LG =
∑

(u,v)∈E

wu,v(δu − δv)(δu − δv)T =
∑

(u,v)∈E

wu,vLGu,v .

You should check that this agrees with the definition of the Laplacian from last class:

LG = DG −AG,

where
DG(u, u) =

∑
v

wu,v.

This formula turns out to be useful when we view the Laplacian as an operator. For every vector
x we have

(LGx )(u) = d(u)x (u)−
∑

(u,v)∈E

wu,vx (v) =
∑

(u,v)∈E

wu,v(x (u)− x (v)). (2.3)

2.3 Drawing with Laplacian Eigenvalues

I will now explain the motivation for the pictures of graphs that I drew last lecture using the
Laplacian eigenvalues. Well, the real motivation was just to convince you that eigenvectors were
cool. The following is the technical motivation. It should come with the caveat that it does not
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produce nice pictures of all graphs. In fact, it produces bad pictures of most graphs. But, it is still
the first thing I always try when I encounter a new graph that I want to understand.

This approch to using eigenvectors to draw graphs was suggested by Hall [Hal70] in 1970.

To explain Hall’s approach, I’ll begin by describing the problem of drawing a graph on a line. That
is, mapping each vertex to a real number. It isn’t easy to see what a graph looks like when you do
this, as all of the edges sit on top of one another. One can fix this either by drawing the edges of
the graph as curves, or by wrapping the line around a circle.

Let x ∈ IRV be the vector that describes the assignment of a real number to each vertex. We would
like most pairs of vertices that are neighbors to be close to one another. So, Hall suggested that we
choose an x minimizing (2.1). Unless we place restrictions on x , the solution will be degenerate.
For example, all of the vertices could map to 0. To avoid this, and to fix the scale of the embedding
overall, we require ∑

u∈V
x (u)2 = ‖x‖2 = 1. (2.4)

Even with this restriction, another degenerate solution is possible: it could be that every vertex
maps to 1/

√
n. To prevent this from happening, we add the additional restriction that∑

u

x (u) = 1Tx = 0. (2.5)

On its own, this restriction fixes the shift of the embedding along the line. When combined with
(2.4), it guarantees that we get something interesting.

As 1 is the eigenvector of the 0 eigenvalue of the Laplacian, the nonzero vectors that minimize
(2.1) subject to (2.5) are the eigenvectors of the Laplacian of eigenvalue λ2. When we impose the
additional restriction (2.4), we eliminate the zero vectors, and obtain an eigenvector of norm 1.

Of course, we really want to draw a graph in two dimensions. So, we will assign two coordinates
to each vertex given by x and y . As opposed to minimizing (2.1), we will minimize

∑
(u,v)∈E

∥∥∥∥(x (u)
y(u)

)
−
(
x (v)
y(v)

)∥∥∥∥2 .
This turns out not to be so different from minimizing (2.1), as it equals∑

(u,v)∈E

(x (u)− x (v))2 + (y(u)− y(v))2 = xTLx + yTLy .

As before, we impose the scale conditions

‖x‖2 = 1 and ‖y‖2 = 1,

and the centering constraints
1Tx = 0 and 1Ty = 0.

However, this still leaves us with the degnerate solution x = y = ψ2. To ensure that the two
coordinates are different, Hall introduced the restriction that x be orthogonal to y . One can use
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the characterization of eigenvalues that we derived last lecture to prove that the solution is then
given by setting x = ψ2 and y = ψ3, or by taking a rotation of this solution (this is a problem on
the first problem set).

2.4 Isoperimetry and λ2

Computer Scientists are often interested in cutting, partitioning, and clustering graphs. Their
motivations range from algorithm design to data analysis. We will see that the second-smallest
eigenvalue of the Laplacian is intimately related to the problem of dividing a graph into two pieces
without cutting too many edges.

Let S be a subset of the vertices of a graph. One way of measuring how well S can be separated
from the graph is to count the number of edges connecting S to the rest of the graph. These edges
are called the boundary of S, which we formally define by

∂(S)
def
= {(u, v) ∈ E : u ∈ S, v 6∈ S} .

We are less interested in the total number of edges on the boundary than in the ratio of this number
to the size of S itself. For now, we will measure this in the most natural way–by the number of
vertices in S. We will call this ratio the isoperimetric ratio of S, and define it by

θ(S)
def
=
|∂(S)|
|S|

.

The isoperimetric number of a graph is the minimum isoperimetric number over all sets of at most
half the vertices:

θG
def
= min
|S|≤n/2

θ(S).

We will now derive a lower bound on θG in terms of λ2. We will present an upper bound, known
as Cheeger’s Inequality, in a later lecture.

Theorem 2.4.1. For every S ⊂ V
θ(S) ≥ λ2(1− s),

where s = |S| / |V |. In particular,
θG ≥ λ2/2.

Proof. As

λ2 = min
x :xT 1=0

xTLGx

xTx
,

for every non-zero x orthogonal to 1 we know that

xTLGx ≥ λ2xTx .
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To exploit this inequality, we need a vector related to the set S. A natural choice is χS , the
characteristic vector of S,

χS(u) =

{
1 if u ∈ S
0 otherwise.

We find
χT
SLGχS =

∑
(u,v)∈E

(χS(u)− χS(v))2 = |∂(S)| .

However, χS is not orthogonal to 1. To fix this, use

x = χS − s1,

so

x (u) =

{
1− s for u ∈ S, and

−s otherwise.

We have xT1 = 0, and

xTLGx =
∑

(u,v)∈E

((χS(u)− s)− (χS(v)− s))2 = |∂(S)| .

To finish the proof, we compute

xTx = |S| (1− s)2 + (|V | − |S|)s2 = |S| (1− 2s+ s2) + |S| s− |S| s2 = |S| (1− s).

This theorem says that if λ2 is big, then G is very well connected: the boundary of every small set
of vertices is at least λ2 times something just slightly smaller than the number of vertices in the
set.

We will use the computation in the last line of that proof often, so we will make it a claim.

Claim 2.4.2. Let S ⊆ V have size s |V |. Then

‖χS − s1‖2 = s(1− s) |V | .

2.5 The Animals in the Zoo

We now examine the eigenvalues and eigenvectors of the Laplacians of some fundamental graphs.
It is important to see many examples like these. They will help you develop your intuition for how
eigenvalues behave. As you encounter new graphs, you will compare them to the graphs that you
already know and hope that they behave similarly.

Today we will examine
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• The complete graph on n vertices, Kn, which has edge set {(u, v) : u 6= v}.

• The star graph on n vertices, Sn, which has edge set {(1, u) : 2 ≤ u ≤ n}.

• The hypercube, which we defined last lecture.

As all these graphs are connected, they all have eigenvalue zero with multiplicity one.

Lemma 2.5.1. The Laplacian of Kn has eigenvalue 0 with multiplicity 1 and n with multiplicity
n− 1.

Proof. To compute the non-zero eigenvalues, let ψ be any non-zero vector orthogonal to the all-1s
vector, so ∑

u

ψ(u) = 0. (2.6)

We now compute the first coordinate of LKnψ. Using (2.3), we find

(LKnψ) (1) =
∑
v≥2

(ψ(1)−ψ(v)) = (n− 1)ψ(1)−
n∑

v=2

ψ(v) = nψ(1), by (2.6).

As the choice of coordinate was arbitrary, we have Lψ = nψ. So, every vector orthogonal to the
all-1s vector is an eigenvector of eigenvalue n.

Alternative approach. Observe that LKn = nI − 11T .

To determine the eigenvalues of Sn, we first observe that each vertex i ≥ 2 has degree 1, and that
each of these degree-one vertices has the same neighbor. Whenever two degree-one vertices share
the same neighbor, they provide an eigenvector of eigenvalue 1.

Lemma 2.5.2. Let G = (V,E) be a graph, and let v and w be vertices of degree one that are both
connected to another vertex z. Then, the vector ψ = δv − δw is an eigenvector of LG of eigenvalue
1.

Proof. Just multiply LG by ψ, and check vertex-by-vertex that it equals ψ.

As eigenvectors of different eigenvalues are orthogonal, this implies that ψ(u) = ψ(v) for every
eigenvector with eigenvalue different from 1.

Lemma 2.5.3. The graph Sn has eigenvalue 0 with multiplicity 1, eigenvalue 1 with multiplicity
n− 2, and eigenvalue n with multiplicity 1.

Proof. Applying Lemma 2.5.2 to vertices i and i+1 for 2 ≤ i < n, we find n−2 linearly independent
eigenvectors of the form δi − δi+1, all with eigenvalue 1. As 0 is also an eigenvalue, only one
eigenvalue remains to be determined.
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Recall that the trace of a matrix equals both the sum of its diagonal entries and the sum of its
eigenvalues. We know that the trace of LSn is 2n− 2, and we have identified n− 1 eigenvalues that
sum to n− 2. So, the remaining eigenvalue must be n.

To determine the corresponding eigenvector, recall that it must be orthogonal to the other eigen-
vectors we have identified. This tells us that it must have the same value at each of the points of
the star. Let a be this value, and let b be the value at vertex 1. As the eigenvector is orthogonal
to the constant vectors, it must be that

(n− 1)a+ b = 0.

It is now a simple exercise to compute the last eigenvector.

2.6 The Hypercube

The hypercube graph is the graph with vertex set {0, 1}d, with edges between vertices whose names
differ in exactly one bit. The hypercube may also be expressed as the product of the one-edge graph
with itself d− 1 times, with the proper definition of graph product.

Definition 2.6.1. Let G = (V,E) and H = (W,F ) be graphs. Then G×H is the graph with vertex
set V ×W and edge set (

(v, w), (v̂, w)

)
where (v, v̂) ∈ E and(

(v, w), (v, ŵ)

)
where (w, ŵ) ∈ F .

Let G be the graph with vertex set {0, 1} and one edge between those vertices. It’s Laplacian
matrix has eigenvalues 0 and 2. You should check that H1 = G and that Hd = Hd−1 ×G.

Figure 2.1: An m-by-n grid graph is the product of a path on m vertices with a path on n vertices.
This is a drawing of a 5-by-4 grid made using Hall’s algorithm.
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Theorem 2.6.2. ?? Let G = (V,E) and H = (W,F ) be graphs with Laplacian eigenvalues
λ1, . . . , λn and µ1, . . . , µm, and eigenvectors α1, . . . ,αn and β1, . . . ,βm, respectively. Then, for
each 1 ≤ i ≤ n and 1 ≤ j ≤ m, G×H has an eigenvector γi,j of eigenvalue λi + µj such that

γi,j(v, w) = αi(v)βj(w).

Proof. Let α be an eigenvector of LG of eigenvalue λ, let β be an eigenvector of LH of eigenvalue
µ, and let γ be defined as above.

To see that γ is an eigenvector of eigenvalue λ+ µ, we compute

(Lγ)(u, v) =
∑

(û,v):(u,û)∈E

(γ(u, v)− γ(û, v)) +
∑

(u,v̂):(v,v̂)∈F

(γ(u, v)− γ(u, v̂))

=
∑

(û,v):(u,û)∈E

(α(u)β(v)−α(û)β(v)) +
∑

(u,v̂):(v,v̂)∈F

(α(u)β(v)−α(u)β(v̂))

=
∑

(û,v):(u,û)∈E

β(v) (α(u)−α(û)) +
∑

(u,v̂):(v,v̂)∈F

α(u) (β(v)− β(v̂))

=
∑

(û,v):(u,û)∈E

β(v)λα(u) +
∑

(u,v̂):(v,v̂)∈F

α(u)µβ(v)

= (λ+ µ)(α(u)β(v)).

From the fact that the non-zero eigenvalue of LG is 2, one can conclude that Hd has eigenvalues 2i
for i ∈ {0, 1, . . . , d}, and that the eigenvalue 2i has multiplicity

(
d
k

)
. I recommend that you prove

this yourself.

Using the fact that the non-zero eigenvector of LG is (1,−1), one can prove that Hd has a basis of
eigenvectors of the form

ψa(b) = (−1)a
T b,

where a ∈ {0, 1}d, and we view vertices b as elements of {0, 1}d too. The eigenvalue of which ψa is
an eigenvector is the number of ones in a.

Using Theorem 2.4.1 and the fact that λ2(Hd) = 2, we can immediately prove the following isoperi-
metric theorem for the hypercube.

Corollary 2.6.3.
θHd
≥ 1.

In particular, for every set of at most half the vertices of the hypercube, the number of edges on the
boundary of that set is at least the number of vertices in that set.

This result is tight, as you can see by considering one face of the hypercube, such as all the vertices
whose labels begin with 0. It is possible to prove this by more concrete combinatorial means. But,
this proof is simpler.
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2.7 Exercises

1. The eigenvalues of Hd Prove that 2i is an eigenvector of Hd of multiplicity
(
d
i

)
.

2. The eigenvectors of Hd

Prove that for each a ∈ {0, 1}d,

ψa(b) = (−1)a
T b,

is an eigenvector of Hd.
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