
Spectral Graph Theory Lecture 2

Essential spectral theory, Hall’s spectral graph drawing, the Fiedler value

Daniel A. Spielman August 31, 2018

2.1 Eigenvalues and Optimization

The Rayleigh quotient of a vector x with respect to a matrix M is defined to be

xTMx

xTx
.

At the end of the last class, I gave the following characterization of the largest eigenvalue of a
symmetric matrix in terms of the Rayleigh quotient.

Theorem 2.1.1. Let M be a symmetric matrix and let x be a non-zero vector that maximizes the
Rayleigh quotient with respect to M :

xTMx

xTx
.

Then, x is an eigenvector of M with eigenvalue equal to the Rayleigh quotient. Moreover, this
eigenvalue is the largest eigenvalue of M .

Proof. We first observe that the maximum is achieved: As the Rayleigh quotient is homogeneous,
it suffices to consider unit vectors x . As the set of unit vectors is a closed and compact set, the
maximum is achieved on this set.

Now, let x be a non-zero vector that maximizes the Rayleigh quotient. We recall that the gradient
of a function at its maximum must be the zero vector. Let’s compute that gradient.

We have
∇xTx = 2x ,

and
∇xTMx = 2Mx .

So,

∇xTMx

xTx
=

(xTx )(2Mx )− (xTMx )(2x )

(xTx )2
.

In order for this to be zero, we must have

Mx =
xTMx

xTx
x .

That is, if and only if x is an eigenvector of M with eigenvalue equal to its Rayleigh quotient.
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Of course, the analogous characterization holds for the smallest eigenvalue. A substantial general-
ization of these characterizations is given by the Courant-Fischer Theorem. We will state it for the
Laplacian, as that is the case we will consider for the rest of the lecture.

Theorem 2.1.2 (Courant-Fischer Theorem). Let L be a symmetric matrix with eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn. Then,

λk = min
S⊆IRn

dim(S)=k

max
x∈S

xTLx

xTx
= max

T⊆IRn

dim(T )=n−k+1

min
x∈T

xTLx

xTx
.

For example, consier the case k = 1. In this case, S is just the span of ψ1 and T is all of IRn. For
general k, the proof reveals that the optimum is achieved when S is the span of ψ1, . . . ,ψk and
when T is the span of ψk, . . . ,ψn.

As many proofs in Spectral Graph Theory begin by expanding a vector in the eigenbasis of a matrix,
we being by carefully stating a key property of these expansions.

Lemma 2.1.3. Let M be a symmetric matrix with eigenvalues µ1, . . . , µn and a corresponding
orthnormal basis of eigenvectors ψ1, . . . ,ψn. Let x be a vector and expand x in the eigenbasis as

x =
n∑

i=1

ciψi.

Then,

xTMx =

n∑
i=1

c2iλi.

You should check for yourself (or recall) that ci = xTψi (this is obvious if you consider the standard
coordinate basis).

Proof. Compute:

xTMx =

(∑
i

ciψi

)T

M

∑
j

cjψj


=

(∑
i

ciψi

)T
∑

j

cjλjψj


=
∑
i,j

cicjλjψ
T
i ψj

=
∑
i

c2iλi,

as ψT
i ψj = 0 for i 6= j.
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Proof of 2.1.2. Letψ1, . . . ,ψn be an orthonormal set of eigenvectors of L corresponding to λ1, . . . , λn.
We will just verify the first characterization of λk. The other is similar.

First, let’s verify that λk is achievable. Let Sk be the span of ψ1, . . . ,ψk. We can expand every
x ∈ Sk as

x =
k∑

i=1

ciψi.

Applying Lemma 2.1.3 we obtain

xTLx

xTx
=

∑k
i=1 λic

2
i∑k

i=1 c
2
i

≤
∑k

i=1 λkc
2
i∑k

i=1 c
2
i

= λk.

To show that this is in fact the maximum, we will prove that for all subspaces S of dimension k,

max
x∈S

xTLx

xTx
≥ λk.

Let Tk be the span of ψk, . . . ,ψn. As Tk has dimension n− k + 1, every S of dimension k has an
intersection with Tk of dimension at least 1. So,

max
x∈S

xTLx

xTx
≥ max

x∈S∩Tk

xTLx

xTx
.

Any such x may be expressed as

x =
n∑

i=k

ciψi,

and so
xTLx

xTx
=

∑n
i=k λic

2
i∑n

i=k c
2
i

≥
∑n

i=k λkc
2
i∑n

i=k c
2
i

= λk.

We give one last characterization of the eigenvalues and eigenvectors of a symmetric matrix. Its
proof is similar, so we will save it for an exercise.

Theorem 2.1.4. Let L be an n × n symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn with
corresponding eigenvectors ψ1, . . . ,ψn. Then,

λi = min
x⊥ψ1,...,ψi−1

xTLx

xTx
,

and the eigenvectors satisfy

ψi = arg min
x⊥ψ1,...,ψi−1

xTLx

xTx
.
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2.2 Drawing with Laplacian Eigenvalues

I will now explain the motivation for the pictures of graphs that I drew last lecture using the
Laplacian eigenvalues. Well, the real motivation was just to convince you that eigenvectors are
cool. The following is the technical motivation. It should come with the caveat that it does not
produce nice pictures of all graphs. In fact, it produces bad pictures of most graphs. But, it is still
the first thing I always try when I encounter a new graph that I want to understand.

This approch to using eigenvectors to draw graphs was suggested by Hall [Hal70] in 1970.

To explain Hall’s approach, I’ll begin by describing the problem of drawing a graph on a line. That
is, mapping each vertex to a real number. It isn’t easy to see what a graph looks like when you do
this, as all of the edges sit on top of one another. One can fix this either by drawing the edges of
the graph as curves, or by wrapping the line around a circle.

Let x ∈ IRV be the vector that describes the assignment of a real number to each vertex. We would
like most pairs of vertices that are neighbors to be close to one another. So, Hall suggested that
we choose an x minimizing

xTLx . (2.1)

Unless we place restrictions on x , the solution will be degenerate. For example, all of the vertices
could map to 0. To avoid this, and to fix the scale of the embedding overall, we require∑

a∈V
x (a)2 = ‖x‖2 = 1. (2.2)

Even with this restriction, another degenerate solution is possible: it could be that every vertex
maps to 1/

√
n. To prevent this from happening, we add the additional restriction that∑

a

x (a) = 1Tx = 0. (2.3)

On its own, this restriction fixes the shift of the embedding along the line. When combined with
(2.2), it guarantees that we get something interesting.

As 1 is the eigenvector of the 0 eigenvalue of the Laplacian, the nonzero vectors that minimize (2.1)
subject to (2.2) and (2.3) are the unit eigenvectors of the Laplacian of eigenvalue λ2.

Of course, we really want to draw a graph in two dimensions. So, we will assign two coordinates
to each vertex given by x and y . As opposed to minimizing (2.1), we will minimize

∑
(a,b)∈E

∥∥∥∥(x (a)
y(a)

)
−
(
x (b)
y(b)

)∥∥∥∥2 .
This turns out not to be so different from minimizing (2.1), as it equals∑

(a,b)∈E

(x (a)− x (b))2 + (y(a)− y(b))2 = xTLx + yTLy .
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As before, we impose the scale conditions

‖x‖2 = 1 and ‖y‖2 = 1,

and the centering constraints
1Tx = 0 and 1Ty = 0.

However, this still leaves us with the degnerate solution x = y = ψ2. To ensure that the two
coordinates are different, Hall introduced the restriction that x be orthogonal to y . One can use
the spectral theorem to prove that the solution is then given by setting x = ψ2 and y = ψ3, or by
taking a rotation of this solution (this is a problem on the first problem set).

2.3 Isoperimetry and λ2

Computer Scientists are often interested in cutting, partitioning, and clustering graphs. Their
motivations range from algorithm design to data analysis. We will see that the second-smallest
eigenvalue of the Laplacian is intimately related to the problem of dividing a graph into two pieces
without cutting too many edges.

Let S be a subset of the vertices of a graph. One way of measuring how well S can be separated
from the graph is to count the number of edges connecting S to the rest of the graph. These edges
are called the boundary of S, which we formally define by

∂(S)
def
= {(a, b) ∈ E : a ∈ S, b 6∈ S} .

We are less interested in the total number of edges on the boundary than in the ratio of this number
to the size of S itself. For now, we will measure this in the most natural way–by the number of
vertices in S. We will call this ratio the isoperimetric ratio of S, and define it by

θ(S)
def
=
|∂(S)|
|S|

.

The isoperimetric number of a graph is the minimum isoperimetric number over all sets of at most
half the vertices:

θG
def
= min
|S|≤n/2

θ(S).

We will now derive a lower bound on θG in terms of λ2. We will present an upper bound, known
as Cheeger’s Inequality, in a later lecture.

Theorem 2.3.1. For every S ⊂ V
θ(S) ≥ λ2(1− s),

where s = |S| / |V |. In particular,
θG ≥ λ2/2.
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Proof. As

λ2 = min
x :xT 1=0

xTLGx

xTx
,

for every non-zero x orthogonal to 1 we know that

xTLGx ≥ λ2xTx .

To exploit this inequality, we need a vector related to the set S. A natural choice is χS , the
characteristic vector of S,

χS(a) =

{
1 if a ∈ S
0 otherwise.

We find
χT
SLGχS =

∑
(a,b)∈E

(χS(a)− χS(b))2 = |∂(S)| .

However, χS is not orthogonal to 1. To fix this, use

x = χS − s1,

so

x (a) =

{
1− s for a ∈ S, and

−s otherwise.

We have xT1 = 0, and

xTLGx =
∑

(a,b)∈E

((χS(a)− s)− (χS(b)− s))2 = |∂(S)| .

To finish the proof, we compute

xTx = |S| (1− s)2 + (|V | − |S|)s2 = |S| (1− 2s+ s2) + |S| s− |S| s2 = |S| (1− s).

This gives

λ2 ≤
χT
SLGχS

χT
SχS

=
|∂(S)|

|(S)| (1− s)
.

This theorem says that if λ2 is big, then G is very well connected: the boundary of every small set
of vertices is at least λ2 times something just slightly smaller than the number of vertices in the
set.

We will use the computation in the last line of that proof often, so we will make it a claim.

Claim 2.3.2. Let S ⊆ V have size s |V |. Then

‖χS − s1‖2 = s(1− s) |V | .
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2.4 Exercises

The following exercises are for your own practice. They are intended as a review of fundamental
linear algebra. I will put the solutions in a separate file that you can find on Canvas. I recommend
that you try to solve all of these before you look at the solutions, so that you can get back in
practice at doing linear algebra.

1. Characterizing Eigenvalues.

Prove Theorem 2.1.4.

2. Traces.

Recall that the trace of a matrix A, written Tr (A), is the sum of the diagonal entries of A. Prove
that for two matrices A and B ,

Tr (AB) = Tr (BA) .

Note that the matrices do not need to be square for this to be true. They can be rectangular
matrices of dimensions n×m and m× n.

Use this fact and the previous exercise to prove that

Tr (A) =

n∑
i=1

λi,

where λ1, . . . , λn are the eigenvalues of A. You are probably familiar with this fact about the trace,
or it may have been the definition you were given. This is why I want you to remember how to
prove it.

3. The Characteristic Polynomial

Let M be a symmetric matrix. Recall that the eigenvalues of M are the roots of the characteristic
polynomial of M :

p(x)
def
= det(xI −M ) =

n∏
i=1

(x− µi).

Write

p(x) =

n∑
k=0

xn−kck(−1)k.

Prove that
ck =

∑
S⊆[n],|S|=k

det(M (S, S)).

Here, we write [n] to denote the set {1, . . . , n}, and M (S, S) to denote the submatrix of M with
rows and columns indexed by S.

4. Reversing products.

Let M be a d-by-n matrix. Prove that the multiset of nonzero eigenvalues of MM T is the same
as the multiset of nonzero eigenvalues of M TM .
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