
Spectral Graph Theory Lecture 5

Rings, Paths, and Cayley Graphs

Daniel A. Spielman September 16, 2014

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on September 16, 2015.

5.1 Overview

This lecture is devoted to an examination of some special graphs and their eigenvalues.

5.2 The Ring Graph

The ring graph on n vertices, Rn, may be viewed as having a vertex set corresponding to the
integers modulo n. In this case, we view the vertices as the numbers 0 through n − 1, with edges
(i, i+ 1), computed modulo n.

Lemma 5.2.1. The Laplacian of Rn has eigenvectors

x k(u) = cos(2πku/n), and

yk(u) = sin(2πku/n),

for 0 ≤ k ≤ n/2, ignoring y0 which is the all-zero vector, and for even n ignoring yn/2 for the
same reason. Eigenvectors x k and yk have eigenvalue 2− 2 cos(2πk/n).

Note that x 0 is the all-ones vector. When n is even, we only have xn/2, which alternates ±1.

Proof. We will first see that x 1 and y1 are eigenvectors by drawing the ring graph on the unit
circle in the natural way: plot vertex u at point (cos(2πu/n), sin(2πu/n)).
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(a) The ring graph on 9 vertices.
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(b) The eigenvectors for k = 2.

Figure 5.1:

You can see that the average of the neighbors of a vertex is a vector pointing in the same direction
as the vector associated with that vertex. This should make it obvious that both the x and y
coordinates in this figure are eigenvectors of the same eigenvalue. The same holds for all k.

Alternatively, we can verify that these are eigenvectors by a simple computation.

(LRnx k) (u) = 2x k(u)− x k(u+ 1)− x k(u− 1)

= 2 cos(2πku/n)− cos(2πk(u+ 1)/n)− cos(2πk(u− 1)/n)

= 2 cos(2πku/n)− cos(2πku/n) cos(2πk/n) + sin(2πku/n) sin(2πk/n)

− cos(2πku/n) cos(2πk/n)− sin(2πku/n) sin(2πk/n)

= 2 cos(2πku/n)− cos(2πku/n) cos(2πk/n)− cos(2πku/n) cos(2πk/n)

= (2− 2 cos(2πk/n)) cos(2πku/n)

= (2− cos(2πk/n))x k(u).

The computation for yk follows similarly.

5.3 The Path Graph

We will derive the eigenvalues and eigenvectors of the path graph from those of the ring graph. To
begin, I will number the vertices of the ring a little differently, as in Figure 5.2.

Lemma 5.3.1. Let Pn = (V,E) where V = {1, . . . , n} and E = {(i, i+ 1) : 1 ≤ i < n}. The
Laplacian of Pn has the same eigenvalues as R2n, excluding 2. That is, Pn has eigenvalues namely
2(1− cos(πk/n)), and eigenvectors

vk(u) = cos(πku/n− πk/2n).

for 0 ≤ k < n



Lecture 5: September 16, 2014 5-3

1

23

4

8

7 6

5

Figure 5.2: The ring on 8 vertices, numbered differently

Proof. We derive the eigenvectors and eigenvalues by treating Pn as a quotient of R2n: we will
identify vertex u of Pn with vertices u and u+ n of R2n (under the new numbering of R2n). These
are pairs of vertices that are above each other in the figure that I drew.

Let I n be the n-dimensional identity matrix. You should check that

(
I n I n

)
LR2n

(
I n

I n

)
= 2LPn .

If there is an eigenvector ψ of R2n with eigenvalue λ for which ψ(u) = ψ(u + n) for 1 ≤ u ≤ n,
then the above equation gives us a way to turn this into an eigenvector of Pn: Let φ ∈ IRn be the
vector for which

φ(u) = ψ(u), for 1 ≤ u ≤ n.

Then, (
I n

I n

)
φ = ψ, LR2n

(
I n

I n

)
φ = λψ, and

(
I n I n

)
LR2n

(
I n

I n

)
ψ = 2λφ.

So, if we can find such a vector ψ, then the corresponding φ is an eigenvector of Pn of eigenvalue
λ.

As you’ve probably guessed, we can find such vectors ψ. I’ve drawn one in Figure 5.2. For each of
the two-dimensional eigenspaces of R2n, we get one such a vector. These provide eigenvectors of
eigenvalue

2(1− cos(πk/n)),

for 1 ≤ k < n. Thus, we now know n− 1 distinct eigenvalues. The last, of course, is zero.
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5.4 Cayley Graphs

The ring graph is a type of Cayley graph. In general, the vertices of a Cayley graph are the elements
of some group Γ. In the case of the ring, the group is the set of integers modulo n. The edges of
a Cayley graph are specified by a set S ⊂ Γ, which are called the generators of the Cayley graph.
The set of generators must be closed under inverse. That is, if s ∈ S, then s−1 ∈ S. Vertices
u, v ∈ Γ are connected by an edge if there is an s ∈ S such that

u ◦ s = v,

where ◦ is the group operation. In the case of Abelian groups, like the integers modulo n, this
would usually be written u + s = v. To guarantee that the graph is undirected, we must insist
that the inverse of every s ∈ S also appear in S. In the case of the ring graph, the generators are
{1,−1}.

Many of the most interesting graphs are Cayley graphs. We have seen at least one other: the
hybercube.

Cayley graphs over Abeliean groups are particularly convenient because we can find an orthonormal
basis of eigenvectors without knowing the set of generators. They just depend on the group1.
Knowing the eigenvectors makes it much easier to compute the eigenvalues.

5.5 The Hypercube

The d-dimensional hypercube, Hd, is a Cayley graph over the additive group (Z/2Z)d: that is the
set of vectors in {0, 1}d under addition modulo 2. The generators are given by the vectors in {0, 1}d
that have a 1 in exactly one position. This set is closed under inverse, because every element of
this group is its own inverse.

5.6 Generalizing Hypercubes

To generalize the hypercube, we will consider this same group, but with a general set of generators.
We will call then g1, . . . , gk, and remember that each is a vector in {0, 1}d, modulo 2.

Let G be the Cayley graph with these generators. To be concrete, I set V = {0, 1}d, and note that
G has edge set {

(x ,x + g j) : x ∈ V, 1 ≤ j ≤ k
}
.

We will now check that the eigenvectors of Hd that I described in Lecture 3 are eigenvectors of G
as well. Knowing these will make it easy to describe the eigenvalues.

1More precisely, the characters always form an orthonromal set of eigenvectors, and the characters just depend
upon the group. When two different characters have the same eigenvalue, we obtain an eigenspace of dimension
greater than 1. These eigenspaces do depend upon the choice of generators.



Lecture 5: September 16, 2014 5-5

5.7 Analyzing the Eigenvectors and Eigenvalues

For each b ∈ {0, 1}d, define the function ψb from V to the reals given by

ψb(x ) = (−1)b
T x .

When I write bTx , you might wonder if I mean to take the sum over the reals or modulo 2. As
both b and x are {0, 1}-vectors, you get the same answer either way you do it.

While it is natural to think of b as being a vertex, that is the wrong perspective. Instead, you
should think of b as indexing a Fourier coefficient (if you don’t know what a Fourier coefficient is,
just don’t think of it as a vertex).

The eigenvectors and eigenvalues of the graph are determined by the following theorem. As this
graph is k-regular, the eigenvectors of the adjacency and Laplacian matrices will be the same.

Lemma 5.7.1. For each b ∈ {0, 1}d the vector ψb is a Laplacian matrix eigenvector with eigenvalue

k −
k∑

i=1

(−1)b
T g i .

Proof of Theorem ??. We begin by observing that

ψb(x + y) = (−1)b
T (x+y) = (−1)b

T x (−1)b
T y = ψb(x )ψb(y).

Let L be the Laplacian matrix of the graph. For any vector ψb for b ∈ {0, 1}d and any vertex
x ∈ V , we compute

(Lψb)(x ) = kψb(x )−
k∑

i=1

ψb(x + g i)

= kψb(x )−
k∑

i=1

ψb(x )ψb(g i)

= ψb(x )

(
k −

k∑
i=1

ψb(g i)

)
.

So, ψb is an eigenvector of eigenvalue

k −
k∑

i=1

ψb(g i) = k −
k∑

i=1

(−1)b
T g i .
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5.8 A random set of generators

We will now show that if we choose the set of generators uniformly at random, for k some constant
multiple of the dimension, then we obtain a graph that is a good approximation of the complete
graph. That is, all the eigenvalues of the Laplacian will be close to k. I will set k = cd, for some
c > 1. Think of c = 2 or c = 10.

For b ∈ {0, 1}d but not all zero, and for g chosen uniformly at random from {0, 1}d, bTg modulo
2 is uniformly distributed in {0, 1}, and so

(−1)b
T g

is uniformly distributed in ±1. So, if we pick g1, . . . , gk independently and uniformly from {0, 1}d,
the eigenvalue corresponding to the eigenvector ψb is

λb
def
= k −

k∑
i=1

(−1)b
T g i .

The right-hand part is a sum of independent, uniformly chosen ±1 random variables. So, we
know it is concentrated around 0, and thus λb will be concentrated around k. To determine how
concentrated the sum actually is, we use a Chernoff bound. There are many forms of Chernoff
bounds. I will not use the strongest, but which will give us results that are qualitatively correct.

Theorem 5.8.1. Let x1, . . . , xk be independent ±1 random variables. Then, for all h > 0,

Pr

[∣∣∣∣∣∑
i

xi

∣∣∣∣∣ ≥ h
]
≤ 2e−h

2/2k.

This becomes very small when h is a constant fraction of k. In fact, it becomes so small that it is
unlikely that any eigenvalue deviates from k by more than h.

Theorem 5.8.2. With high probability, all of the nonzero eigenvalues of the generalized hypercube
differ from k by at most

k

√
2

c
,

where k = cd.

Proof. Let h = k
√

2/c. Then, for every nonzero b,

Pr [|k − λb | ≥ h] ≤ 2e−h
2/2k ≤ 2e−k/c = 2e−d.

Now, the probability that there is some b for which λb violates these bounds is at most the sum of
these terms:

Pr [∃b : |k − λb | ≥ h] ≤
∑

b∈{0,1}d,b 6=0d

Pr [|k − λb | ≥ h] ≤ (2d − 1)2e−d,

which is always less than 1 and goes to zero exponentially quickly as d grows.
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I initially suggested thinking of c = 2 or c = 10. The above bound works for c = 10. To get a useful
bound for c = 2, we need to sharpen the analysis. A naive sharpening will work down to c = 2 ln 2.
To go lower than that, you need a stronger Chernoff bound.

5.9 Conclusion

We have now seen that a random generalize hypercube probably has all non-zero Laplacian eigen-
values between

k(1−
√

2/c) and k(1 +
√

2/c).

If we let n be the number of vertices, and we now multiply the weight of every edge by n/k, we
obtain a graph with all nonzero Laplacian eigenvalues between

n(1−
√

2/c) and n(1 +
√

2/c).

Thus, this is a
√

2/c approximation of the complete graph on n vertices. But, the degree of every
vertex is only c log2 n. Expanders are infinite families of graphs like this, but with no dependence
on n in their degrees.

One other useful property of this generalized hypercube is that it has a very compact description.
The number of bits needed to describe its generators is cd2, despite the fact that it has 2d vertices.
This allows us to use it for many applications that require us to implicitly deal with a very large
graph. A few weeks from now, we will see how to use such graphs to construct pseudo-random
generators.

5.10 Acknowledgment

I thank Zeyuan Allen Zhu for pointing out a mistake in my 2009 lecture notes on the path graph.


