
Spectral Graph Theory Lecture 9

Tutte’s Theorem

Daniel A. Spielman September 30, 2015

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on September 30, 2015.

9.1 Overview

We prove Tutte’s theorem [Tut63], which says that if one nails down the vertices of a face of a
three-connected planar graph in a convex polygon, and make every other vertex be the center of
gravity of its neighbors, then the result is a planar embedding of the planar graph. The presentation
in this lecture is a based on Tutte’s original paper [Tut63], the descriptions of it by Lovász [LV99]
and Geelen [Gee12], and an alternative proof of Gortler, Gotsman and Thurston [GGT06].

I begin by recalling some standard results about planar graphs that we will assume.

9.2 3-Connected and Planar Graphs

A graph G = (V,E) is 3-connected if there is no set of two vertices whose removal disconnects the
graph. That is, for every S ⊂ V with |S| ≥ |V | − 2, G(S) is connected. In a classical graph theory
course, one usually spends a lot of time studying things like 3-connectivity.

Planar graphs are the special graphs that can be drawn in the plane without crossing edges. That
is, every vertex v can be assigned a point z (v) ∈ IR2. Every edge (u, v) can be drawn as a curve
from z (u) to z (v) so that none of the curves touch except at their endpoints. Such a drawing of
a graph in the plane divides the plane into connected regions called faces. Each face is identified
with the vertices and edges on its boarder.

In a 3-connected planar graph, the vertices and edges identified with each face are fixed. There
are planar graphs that are not 3-connected, like the one shown below, in which different planar
drawings result in combinatorially different faces. We will only consider 3-connected planar graphs.
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In a 3-connected planar graph, the set of faces is uniquely determined and every edge boarders two
different faces. Every planar drawing of such a graph will have one outside face.

insert figure

We will require two important facts about planar graphs in this lecture. The first is Euler’s formula.

Theorem 9.2.1. Let G = (V,E) be a planar graph and let F be the set of faces in a planar drawing
of G. Then,

|V | − |E|+ |F | = 2.

Proof. Let T be a spanning tree of G. The graph T is planar, has vertex set V , |V | − 1 edges, and
just one face (the outside face). So, the theorem is true for T . Now, consider adding the edges of
E back to T one-by-one. Each time you add an edge of E, it will create a cycle that will break one
face into two. As the number of edges increases by one, so does the number of faces.

Another standard fact about planar graphs is that they remain planar under edge contractions.
Contracting an edge (u, v) creates a new graph in which u and v become the same vertex, and all
edges that went from other vertices to u or v now go to the new vertex. Contractions also preserve
3-connectivity.

Finally, we recall the two simplest graphs that are not 3-connected: the complete graph on 5
vertices, K5, and the complete bipartite graph between two sets of 3 vertices, K3,3. If you can
obtain either of these graphs by contracting and deleting edges from a graph G, then G is not
planar.

Claim 9.2.2. Let H = (U,D) be a graph that is not planar. If the vertices of G = (V,E) may
be partitioned into subsets, S1, . . . , Su, one for each vertex of U , so that each subgraph G(Sa) is
connected and so that for every (a, b) ∈ D, there is an edge between Sa and Sb, then G is not planar.

We now know everything we need to prove Tutte’s theorem.

Theorem 9.2.3. Let G = (V,E) be a 3-connected planar graph, and let B be the set of vertices
on a face of G. If we fix the location of the vertices in B so that the edges between them enclose
a strictly convex polygon in IR2 and set every other vertex to the average of its neighbors, then the
resulting embedding of G is planar.

We begin the proof by trying to make it obvious that it must be true. We do this by proving that
it is true when certain degeneracies do not occur. We will then do some work to prove that these
degeneracies in fact do not occur.

Note that if the graph were not 3-connected, then the embedding could be rather degenerate. If
there are two vertices a and b whose removal disconnects the graph into two components, then all
of the vertices in one of those components will embed on the line segment from a to b.
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9.3 Setting up Tutte’s theorem

Let B be a face of G, let f (b) ∈ IR2 be the points to which each vertex b ∈ B is fixed, and assume
that these locations are arranged in a convex polygon with the edges of the face on the outside.

This is a good time to remind you what exactly a convex polygon is. A subset C ⊆ IR2 is convex
if for every two points x and y in C, the line segment between x and y is also in C. A convex
polygon is a convex region of IR2 whose boundary is comprised of a finite number of straight lines.
It is strictly convex if in addition the angle at every corner is less than π. One can characterize
a strictly convex polygon by a property of its boundary: a polygon is convex if and only if every
line that crosses its boundary intersects the interior of at most two of its edges. I say “interior” to
avoid intersections at vertices.

picture of convex, picture of not convex

We will prove Tutte’s theorem by proving that every face of G is embeded as a convex polygon.
We will also prove that for every vertex v of V , the edges attached to v are aranged around it in
the correct order, a notion that I should now make precise.

Assume that we are given a planar embedding of a 3-connected planar graph. Let v be a vertex,
and let u1, . . . , uk be the neighbors of v. We can label these neighbors so that they appear in order
around v. This means that for each i there is a face that contains the edges (ui, v) and (v, ui+1).
Similarly, there is a face containing (uk, v) and (v, u1).

The embedding also gives an ordering to the vertices and edges arranged around each face. If f is
a face and (u, v) and (v, w) are edges on the face f , then v is between u and w in this ordering.

9.4 Non-degenerate Embeddings and Potentials

I will define an embedding of (G,B) to be a function z that maps the vertices of G to IR2 so that

• the vertices of B lie on the corners of a strictly convex polygon and the edges of G between
the vertices of B lie on the boundary, and

• every vertex not in B is the weighted average of its neighbors.

I will say that an embedding is non-degenerate if

(a) For all (u, v) ∈ E, z (u) 6= z (v), and

(b) For every vertex u 6∈ B and every t ∈ IR2, there is a neighbor v of u so that tT (z (u)−z (v)) > 0.

If the first condition holds, then the second condition can only fail to hold if all of the neighbors of
u are in one line. Thus, the second condition says that u is in the interior of the convex hull of its
neighbors.
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We would expect the embedding we obtain to be non-degenerate, and we will eventually prove that
it is. Tutte’s theorem will be easy to prove if we assume that the embedding is non-degenerate.

We define a potential to be a function x that is harmonic on V − B. Given a potential x , we say
that a vertex v is extreme if

x (v) = min
u

x (u) or x (v) = max
u

x (u).

We say that a potential x is non-degenerate if

(c) For all u 6= v, x (u) 6= x (v), and

(d) For every non-extreme vertex v, v has neighbors u and w so that

x (u) < x (v) < x (w).

We can obtain a non-degenerate potential from a non-degenerate embedding by randomly rotating
the embedding and then projecting it onto the x-axis. Algebraically, this corresponds to choosing
a unit vector t ∈ IR2 and then setting

x (u) = tT z (u), for all u.

If z is a non-degenerate potential, then there are only a finite number of t for which the resulting
potential is degenerate, but there are an infinite number to choose from. For vertices u 6∈ B, the
property (d) follows from property (b) of non-degenerate embeddings. For the vertices u ∈ B that
are not extreme for x it follows from the fact that the vertices in B are arranged in a convex
polygon.

9.5 The proof in the non-degenerate case

We call an ordered triple of vertices (u, v, w) a corner if (u, v) and (v, w) are edges on the same
face. We call the vertex v the apex of the corner. We say that a corner is normal for a potential x
if x (v) is between x (u) and x (w). We say that a corner is extreme for a potential x if either

x (v) > max(x (u),x (w)) or x (v) < min(x (u),x (w)).

If the potential x is non-degenerate, then every corner is either normal or extreme.

If a face f is embedded as a strictly convex polygon, then for every non-degenerate potential f
will have exactly two extreme corners. Conversely, if the embedding of f is not convex, then there
is a non-degenerate potential for which f has at least 4 extreme corners. We will prove that the
embedding of every face is a strictly convex polygon by proving that for every non-degenerate
potential every face has exactly 2 extreme corners.

We can similarly count the extreme and normal corners with a common apex. If the neighbors of
a vertex v 6∈ B are arranged around it in order, then exactly two of the corners will be normal
with respect to a non-degeneral potential. The rest will be extreme. We will prove that for every
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non-degenerate potential, every non-boundary vertex is the apex of exactly two normal corners.
We prove all these assertions in four steps.

For a face f let normal(f) and extreme(f) denote the number of normal and extreme corners around
f . Make the same definitions for vertices v.

Lemma 9.5.1. ∑
v∈V

normal(v) =
∑
f∈F

normal(f).

Proof. In a 3-connected planar graph, every corner (u, v, w) lies on one exactly one face f and has
exactly one apex. So, every normal corner contributes to both sums once.

Note: this statement can be made true even if the graph is not 3-connected. You just need to count
each corner once for each face in which it appears.

Lemma 9.5.2. Every face has at least two extreme corners with respect to a non-degenerate po-
tential.

Proof. The vertices of the face that are the maxima and minima for the potential are the apexes
of extreme corners.

Lemma 9.5.3. Every vertex v 6∈ B is the apex of at least two normal corners in a non-degenerate
potential.

Proof. Let u1, . . . , uk be the neighbors of v, in order. As x (v) is strictly between the maximum
and minimum of x (ui), there must be at least two normal corners at which v is the apex.

Lemma 9.5.4. ∑
v∈V

normal(v) +
∑
f

extreme(f) = 2 (|V |+ |F | − 2) .

Proof. By Lemma 9.5.1,∑
v∈V

normal(v) +
∑
f

extreme(f) =
∑
v∈V

normal(v) +
∑
f

(sides(f)− normal(f))

=
∑
f

sides(f)

= 2 |E| .

The lemma now follows from Theorem 9.2.1.

Lemma 9.5.5. For every non-degenerate potential x , every face has exactly two extreme vertices
and every non-extreme vertex is the apex of exactly two normal corners.
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Proof. From Lemmas 9.5.3 and 9.5.2,∑
non-extreme v

normal(v) +
∑
f

extreme(f) ≥ 2(|V | − 2) + 2 |F | = 2 (|V |+ |F | − 2) .

As the extreme vertices do not have any normal corners, Lemma 9.5.4 implies that this inequality
must be tight. So, it must be the case that for every face, extreme(f) = 2 and for every non-extreme
vertex v, normal(v) = 2.

9.6 Degeneracy

We will now show that an embedding z of a 3-connected planar graph cannot have a vertex v whose
neighbors all lie in one line. This will guarantee condition (d). We will assume that condition (c)
holds in our proof—that is, that all pairs of vertices connected by an edge are mapped to distinct
points. We will justify that later.

We know from last lecture that every internal vertex must lie in the interior of the convex hull of
B.

Assume by way of contradiction that there is an internal vertex v so that all of its neighbors lie in
a line with v. Then, there is a potential x so that x (v) = 0 and x (u) = 0 for all neighbors u of v.
You can obtain it by projecting orthogonal to the line. We will obtain a contradiction by proving
that G contains a K3,3 minor. That is, we can contract and remove vertices of G to obtain K3,3.
By Claim 9.2.2, this would contradict the planarity of G.

Let L be the set of vertices w for which x (w) = 0. If w ∈ L has a neighbor on which x is negative,
then it must have a neighbor on which x is positive. This is true for the internal vertices, because
x is harmonic at those vertices. You can prove it for the vertices in B by using the fact that there
is some vertex in B for which x is negative and another for which it is positive, as v is internal.

Now, let S− be the set of all vertices for which x is negative, and let S+ be the set of all vertices
for which x is positive. I claim that both S− and S+ are connected. For S+, you can show this by
proving that there is a path from every vertex in S+ to each vertex at which x is maximized on
which x never decreases. Note that a vertex at which x is maximized must lie on B. To show this,
it suffices to prove that there is a path from every vertex in S+ to a vertex with a higher value of
x , and so that x never decreases on that path. Let u ∈ S+ and let U be the set of all vertices w
reachable from u for which x (u) = x (w). As G is connected, if x (u) is not maximal, there must be
some vertex in U with a neighbor not in U . This vertex will have a neighbor for which x is larger.

Let C be the subset of vertices in L that have neighbors that are not in L. Finally, let S0 be the
component of v in G(L− C). That is, S0 is the set of vertices that you can reach from v without
touching a vertex that has a neighbor that is not on L.

As S0 is a subgraph of G, and as G is 3-connected, there must be at least 3 vertices on the boundary
of S0. These will be vertices that are in L, but which have neighbors that are not, and which are
neighbors of vertices in S0. Let w1, w2 and w3 be three such vertices.

We will obtain our K3,3 minor by letting S0, S+ and S− be the subsets of vertices on one side of the
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graph. We then let w1, w2 and w3 be the other 3. This is a K3,3 because each wi has a neighbor
in S0, S+ and S−.

9.7 The other degeneracy

Is easy, and will be finished later.
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