
Spectral Graph Theory Lecture 12

Iterative solvers for linear equations

Daniel A. Spielman October 12, 2015

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on October 12, 2015.

12.1 Overview

In this and the next lecture, I will discuss iterative algorithms for solving linear equations in positive
semi-definite matrices.

Today’s lecture will cover Richardson’s first-order iterative method and the Chebyshev method.
The next lecture will focus on the Conjugate Gradient method.

When studying Chebyshev’s method, we will encounter Chebyshev polynomials for the second time
(but of the first kind). You first saw them when we computed the characteristic polynomials of
path graphs. Chebyshev polynomials are another one of the “animals in the zoo”. They are one
of the fundamental families of orthogonal polynomials (those satisfying three-term recurrences).
These families of polynomials are the solutions to many problems, and arise naturally in many
situtations. It is worth learning to identify them. We will encounter other families later in the
semester, including Hermite and Laguerre polynomials.

12.2 Why iterative methods?

One is first taught to solve linear systems like

Ax = b

by direct methods such as Gaussian elimination, computing the inverse of A, or the LU factorization.
However, all of these algorithms can be very slow. This is especially true when A is sparse. Just
writing down the inverse takes O(n2) space, and computing the inverse takes O(n3) time if we do

12-1

Lecture 12: October 12, 2015 12-2

it naively. This might be OK if A is dense. But, it is very wasteful if A only has O(n) non-zero
entries.

In general, we prefer algorithms whose running time is proportional to the number of non-zero
entries in the matrix A, and which do not require much more space than that used to store A.

Iterative algorithms solve linear equations while only performing multiplications by A, and per-
forming a few vector operations. Unlike the direct methods which are based on elimination, the
iterative algorithms do not find exact solutions. Rather, they get closer and closer to the solution
the longer they work. The advantage of these methods is that they need to store very little, and
are often much faster than the direct methods. When A is symmetric, the running times of these
methods are determined by the eigenvalues of A.

Throughout this lecture we will assume that A is positive definite or positive semidefinite.

12.3 First-Order Richardson Iteration

To get started, we will examine a simple, but sub-optimal, iterative method, Richardson’s iteration.
The idea of the method is to find an iterative process that has the solution to Ax = b as a fixed
point, and which converges. We observe that if Ax = b, then for any α,

αAx = αb, =⇒
x + (αA− I)x = αb, =⇒

x = (I − αA)x + αb.

This leads us to the following iterative process:

x t = (I − αA)x t−1 + αb, (12.1)

where we will take x 0 = 0. We will show that this converges if

I − αA

has norm less than 1, and that the convergence rate depends on how much the norm is less than 1.
This is analogous to our analysis of random walks on graphs.

As we are assuming A is symmetric, I −αA is symmetric as well, and so its norm is the maximum
absolute value of its eigenvalues. Let 0 < λ1 ≤ λ2 . . . ≤ λn be the eigenvalues of A. Then, the
eigenvalues of I − αA are

1− αλi,

and the norm of I − αA is

max
i
|1− αλi| = |max (1− αλ1, 1− αλn)| .

This is minimized by taking

α =
2

λn + λ1
,

Lecture 12: October 12, 2015 12-3

in which case the smallest and largest eigenvalues of I − αA become

±λn − λ1
λn + λ1

,

and the norm of I − αA becomes

1− 2λ1
λn + λ1

.

While we might not know λn+λ1, a good guess is often sufficient. If we choose an α < 2/(λn+λ1),
then the norm of I − αA is at most

1− αλ1.

To show that x t converges to the solution, x , consider x − x t. We have

x − x t = ((I − αA)x + αb)−
(
(I − αA)x t−1 + αb

)
= (I − αA)(x − x t−1).

So,
x − x t = (I − αA)t(x − x 0) = (I − αA)tx .

and ∥∥x − x t
∥∥ =

∥∥(I − αA)tx
∥∥ ≤ ∥∥(I − αA)t

∥∥ ‖x‖
= ‖(I − αA)‖t ‖x‖

≤
(

1− 2λ1
λn + λ1

)t
‖x‖ .

≤ e−2λ1t/(λn+λ1) ‖x‖ .

So, if we want to get a solution x t with ∥∥x − x t
∥∥

‖x‖
≤ ε,

it suffices to run for
λn + λ1

2λ1
ln(1/ε) =

(
λn
2λ1

+
1

2

)
ln(1/ε).

iterations. The term
λn
λ1

is called the condition number1 of the matrix A, when A is symmetric. It is often written κ(A),
and the running time of iterative algorithms is often stated in terms of this quantity. We see that
if the condition number is small, then this algorithm quickly provides an approximate solution.

1For general matrices, the condition number is defined to be the ratio of the largest to smallest singular value.

Lecture 12: October 12, 2015 12-4

12.4 A polynomial approximation of the inverse

I am now going to give another interpretation of Richardson’s iteration. It provides us with a
polynomial in A that approximates A−1. In particular, the tth iterate, x t can be expressed in the
form

pt(A)b,

where pt is a polynomial of degree t.

We will view pt(A) as a good approximation of A−1 if∥∥Apt(A)− I
∥∥

is small. From the formula defining Richardson’s iteration (17.1), we find

x 0 = 0,

x 1 = αb,

x 2 = (I − αA)αb + αb,

x 3 = (I − αA)2αb + (I − αA)αb + αb, and

x t =

t∑
i=0

(I − αA)iαb.

To get some idea of why this should be an approximation of A−1, consider what we get if we let
the sum go to infinity. Assuming that the infinite sum converges, we have

α
∞∑
i=0

(I − αA)i = α (I − (I − αA))−1 = α(αA)−1 = A−1.

So, the Richardson iteration can be viewed as a truncation of this infinite summation.

In general, a polynomial pt will enable us to compute a solution to precision ε if∥∥pt(A)b − x
∥∥ ≤ ε ‖x‖ .

As b = Ax , this is equivalent to ∥∥pt(A)Ax − x
∥∥ ≤ ε ‖x‖ ,

which is equivalent to ∥∥Apt(A)− I
∥∥ ≤ ε

12.5 Better Polynomials

This leads us to the question of whether we can find better polynomial approximations to A−1.
The reason I ask is that the answer is yes! As A, pt(A) and I all commute, the matrix

Apt(A)− I

Lecture 12: October 12, 2015 12-5

is symmetric and its norm is the maximum absolute value of its eigenvalues. So, it suffices to find
a polynomial pt such that ∣∣λipt(λi)− 1

∣∣ ≤ ε,
for all eigenvalues λi of A.

To reformulate this, define
qt(x) = 1− xp(x).

Then, it suffices to find a polynomial qt of degree t+ 1 for which

qt(0) = 1, and∣∣qt(x)
∣∣ ≤ ε, for λ1 ≤ x ≤ λn.

We will see that there are polynomials of degree

ln(2/ε)
(√

λn/λ1 + 1
)
/2

that allow us to compute solutions of accuracy ε. In terms of the condition number of A, this is a
quadratic improvement over Richardson’s first-order method.

Theorem 12.5.1. For every t ≥ 1, and 0 < λmin ≤ λmax, there exists a polynomial qt(x) such
that

1.
∣∣qt(x)

∣∣ ≤ ε , for λmin ≤ x ≤ λmin, and
2. qt(0) = 1,

for
ε ≤ 2(1 + 2/

√
κ)−t ≤ 2e−2t/

√
κ,

where

κ =
λmax
λmin

.

12.6 Chebyshev Polynomials

I’d now like to explain how we find these better polynomials. The key is to transform one of the
most fundamental polynomials: the Chebyshev polynomials. These polynomials are as small as
possible on [−1, 1], and grow quickly outside this interval. We will translate the interval [−1, 1] to
obtain the polynomials we need.

The tth Chebyshev polynomial, written Tt, may be defined as the polynomial such that

cos(tθ) = Tt(cos(θ)).

It might not be obvious that one can express cos(tθ) as a polynomial in cos(θ). To see that one
can, recall the addition formula for cos, which gives

cos(tθ) = cos((t− 1)θ) cos(θ)− sin((t− 1)θ) sin(θ),

Lecture 12: October 12, 2015 12-6

and
cos((t− 2)θ) = cos((t− 1)θ) cos(θ) + sin((t− 1)θ) sin(θ).

Adding these two equalities together gives,

cos(tθ) + cos((t− 2)θ) = 2 cos((t− 1)θ) cos(θ),

which we re-write as
cos(tθ) = 2 cos((t− 1)θ) cos(θ)− cos((t− 2)θ).

This identity tells us two useful things: that cos(tθ) can be expressed as a polynomial in cos(θ) for
integral t, and that the resulting polynomial satisfies a 3-term recurrence of the form

Tt(x) = 2Tt−1(x)− Tt−2(x).

The family of polynomials is uniquely defined once we add the initial conditions

T0(x) = 1 and T1(x) = 2x− 1.

This is very similar to, but not exactly the same as, the recurrence that is satisfied by the charac-
teristic polynomials of path graphs.

Claim 12.6.1. For x ∈ [−1, 1], |Tt(x)| ≤ 1.

Proof. For x ∈ [−1, 1], there is a θ so that cos(θ) = x. We then have Tt(x) = cos(tθ), which must
also be between −1 and 1.

To compute the values of the Chebyshev polymomials outside [−1, 1], we use the hyperbolic cosine
function. Recall that

cosh(θ + φ) = cosh(θ) cosh(φ)− sinh(θ) sinh(φ),

and so
cosh(tθ) = 2 cosh((t− 1)θ) cosh(θ)− cosh((t− 2)x).

That is, we could also have defined the tth Chebyshev polynomial as the expansion of cosh(tθ) in
cosh(θ). This expansion allows us to evaluate Tt(x) for |x| ≥ 1.

Recall that hyperbolic cosine maps the real line to [1,∞] and is symmetric about the origin. So,
the inverse of hyperbolic cosine may be viewed as a map from [1,∞] to [0,∞]. The following are
the fundamental facts about hyperbolic cosine that we require:

cosh(x) = cos(ix)

cosh(x) =
1

2

(
ex + e−x

)
, and

acosh(x) = ln
(
x+

√
x2 − 1

)
, for x ≥ 1.

Lecture 12: October 12, 2015 12-7

Claim 12.6.2. For γ > 0,
Tt(1 + γ) ≥ (1 +

√
2γ)t/2.

Proof. Setting x = 1 + γ, we compute

Tt(x) =
1

2

(
et acosh(x) + e−t acosh(x)

)
≥ 1

2

(
et acosh(x)

)
=

1

2
(x+

√
x2 − 1)t

=
1

2
(1 + γ +

√
(1 + γ)2 − 1)t

=
1

2
(1 + γ +

√
2γ + γ2)t

≥ 1

2
(1 +

√
2γ)t.

12.7 Proof of Theorem 17.6.1

We will exploit the following properties of the Chebyshev polynomials:

1. Tt has degree t.

2. Tt(x) ∈ [−1, 1], for x ∈ [−1, 1].

3. Tt(x) is monotonically increasing for x ≥ 1.

4. Tt(1 + γ) ≥ (1 +
√

2γ)t/2, for γ > 0.

To express qt(x) in terms of a Chebyshev polynomial, we should map the range on which we want
p to be small, [λmin, λmax] to [−1, 1]. We will accomplish this with the linear map:

l(x)
def
=

λmax + λmin − 2x

λmax − λmin
.

Note that

l(x) =

−1 if x = λmax

1 if x = λmin
λmax+λmin
λmax−λmin

if x = 0.

So, to guarantee that the constant coefficient in qt(x) is one, we should set

qt(x)
def
=

Tt(l(x))

Tt(l(0))
.

Lecture 12: October 12, 2015 12-8

We know that |Tt(l(x))| ≤ 1 for x ∈ [λmin, λmax]. To find q(x) for x in this range, we must compute
Tt(l(0)). We have

l(0) ≥ 1 + 2/κ(A),

and so by properties 3 and 4 of Chebyshev polynomials,

Tt(l(0)) ≥ (1 + 2/
√
κ)t/2.

Thus,
q(x) ≤ 2(1 + 2/

√
κ)−t,

for x ∈ [λmin, λmax], and so all eigenvalues of I −Aq(A) will have absolute value at most 2(1 +
2/
√
κ)−t.

12.8 Laplacian Systems

One might at first think that these techniques do not apply to Laplacian systems, as these are
always singular. However, we can apply these techniques without change if b is in the span of
L. That is, if b is orthogonal to the all-1s vector and the graph is connected. In this case the
eigenvalue λ1 = 0 has no role in the analysis, and it is replaced by λ2. One way of understanding
this is to just view L as an operator acting on the space orthogonal to the all-1s vector.

By considering the example of the Laplacian of the path graph, one can show that it is impossible
to do much better than the

√
κ iteration bound that I claimed at the end of the last section. To

see this, first observe that when one multiplies a vector x by L, the entry (Lx)(i) just depends on
x (i−1),x (i), and x (i+1). So, if we apply a polynomial of degree at most t, x t(i) will only depend
on b(j) with i− t ≤ j ≤ i+ t. This tells us that we will need a polynomial of degree on the order
of n to solve such a system.

On the other hand,
√
λn/λ2 is on the order of n as well. So, we should not be able to solve the

system with a polynomial whose degree is significantly less than
√
λn/λ2.

12.9 Warning

The polynomial-based approach that I have described here only works in infinite precision arith-
metic. In finite precision arithmetic one has to be more careful about how one implements these
algorithms. This is why the descriptions of methods such as the Chebyshev method found in Nu-
merical Linear Algebra textbooks are more complicated than that presented here. The algorithms
that are actually used are mathematically identical in infinite precision, but they actually work.
The problem with the naive implementations are the typical experience: in double-precision arith-
metic the polynomial approach to Chebyshev will fail to solve linear systems in random positive
definite matrices in 60 dimensions!

