
Spectral Graph Theory Lecture 15

Properties of Expander Graphs

Daniel A. Spielman October 26, 2015

Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on October 25, 2015.

15.1 Overview

We say that a d-regular graph is a good expander if all of its adjacency matrix eigenvalues are small.
To quantify this, we set a threshold ε > 0, and require that each adjacency matrix eigenvalue, other
than d, has absolute value at most εd. This is equivalent to requiring all non-zero eigenvalues of
the Laplacian to be within εd of d.

In this lecture, we will:

1. Recall that this condition is equivalent to saying that the graph approximates the complete
graph.

2. Prove that this condition implies that the number of edges between sets of vertices in the
graph is approximately the same as in a random graph.

3. Prove Tanner’s Theorem: that small sets of vertices have many neighbors.

4. Derive the Alon-Boppana bound on how small ε can be.

15.2 Expanders as Approximations of the Complete Graph

For this lecture, we define an ε-expander to be a d-regular graph such that |µi| ≤ εd for µi ≥ 2, where
µ1 ≥ · · · ≥ µn are the eigenvalues of the adjacency matrix. As the Laplacian matrix eigenvalues
are given by λi = d− µi, this is equivalent to |d− λi| ≤ εd for i ≥ 2.

15-1
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For this lecture, I define a graph G to be an ε-approximation of a graph H if

(1− ε)H 4 G 4 (1 + ε)H,

where I recall that I say H 4 G if for all x

xTLHx ≤ xTLGx .

I warn you that this definition is not symmetric. When I require a symmetric definition, I usually
use the condition (1 + ε)−1H 4 G instead.

If G is an ε-expander, then for all x ∈ IRV that are orthogonal to the constant vectors,

(1− ε)dxTx ≤ xTLGx ≤ (1 + ε)dxTx .

On the other hand, for the complete graph Kn, we know that all x orthogonal to the constant
vectors satisfy

xTLKnx = nxTx .

Let H be the graph

H =
d

n
Kn,

so
xTLHx = dxTx .

So, G is an ε-approximation of H.

This tells us that LG − LH is a matrix of small norm. Observe that

(1− ε)LH 4 LG 4 (1 + ε)LH implies − εLH 4 LG − LH 4 εLH .

As LG and LH are symmetric, and all eigenvalues of LH are 0 or d, we may infer

‖LG − LH‖ ≤ εd. (15.1)

15.3 Quasi-Random Properties of Expanders

There are many ways in which expander graphs act like random graphs. Conversely, one can prove
that a random d-regular graph is an expander graph with reasonably high probability [Fri08].

We will see that all sets of vertices in an expander graph act like random sets of vertices. To make
this precise, imagine creating a random set S ⊂ V by including each vertex in S independently
with probabilty α. How many edeges do we expect to find between vertices in S? Well, for every
edge (u, v), the probability that u ∈ S is α and the probability that v ∈ S is α, so the probability
that both endpoints are in S is α2. So, we expect an α2 fraction of the edges to go between vertices
in S. We will show that this is true for all sufficiently large sets S in an expander.

In fact, we will prove a stronger version of this statement for two sets S and T . Imagine including
each vertex in S independently with probability α and each vertex in T with probability β. We
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allow vertices to belong to both S and T . For how many ordered pairs (u, v) ∈ E do we expect to
have u ∈ S and v ∈ T? Obviously, it should hold for an αβ fraction of the pairs.

For a graph G = (V,E), define

~E(S, T ) = {(u, v) : u ∈ S, v ∈ T, (u, v) ∈ E} .

We have put the arrow above the E in the definition, because we are considering ordered pairs of
vertices. When S and T are disjoint ∣∣∣ ~E(S, T )

∣∣∣
is precisely the number of edges between S and T , while∣∣∣ ~E(S, S)

∣∣∣
counts every edge inside S twice.

The following bound is a slight extension by Beigel, Margulis and Spielman [BMS93] of a bound
originally proved by Alon and Chung [AC88].

Theorem 15.3.1. Let G = (V,E) be a d-regular graph that ε-approximates d
nKn. Then, for every

S ⊆ V and T ⊆ V , ∣∣∣∣∣∣ ~E(S, T )
∣∣∣− αβdn∣∣∣ ≤ εdn√(α− α2)(β − β2),

where |S| = αn and |T | = βn.

Observe that when α and β are greater than ε, the term on the right is less than αβdn.

In class, we will just prove this in the case that S and T are disjoint.

Proof. The first step towards the proof is to observe

χTSLGχT = d |S ∩ T | −
∣∣∣ ~E(S, T )

∣∣∣ .
Let H = d

nKn. As G is a good approximation of H, let’s compute

χTSLHχT = χTS

(
dI − d

n
J

)
χT = d |S ∩ T | − d

n
|S| |T | = d |S ∩ T | − αβdn.

So, ∣∣∣∣∣∣ ~E(S, T )
∣∣∣− αβdn∣∣∣ =

∣∣χTSLGχT − χTSLHχT
∣∣ .

As
‖LG − LH‖ ≤ εd,

χTSLHχT − χTSLGχT = χTS (LH − LG)χT

≤ ‖χS‖ ‖(LH − LG)χT ‖
≤ ‖χS‖ ‖LH − LG‖ ‖χT ‖
≤ εd ‖χS‖ ‖χT ‖

= εdn
√
αβ.
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This is almost as good as the bound we are trying to prove. To prove the claimed bound, recall
that LHx = LH(x + c1) for all c. So, let xS and xT be the result of orthogonalizing χS and χT
with respect to the constant vectors. By Claim 2.4.2 (from Lecture 2), ‖xS‖ = n(α− α2). So, we
obtain the improved bound

xTS (LH − LG)xT = χTS (LH − LG)χT ,

while
‖xS‖ ‖xT ‖ = n

√
(α− α2)(β − β2).

So, we may conclude ∣∣∣∣∣∣ ~E(S, T )
∣∣∣− αβdn∣∣∣ ≤ εdn√(α− α2)(β − β2).

We remark that when S and T are disjoint, the same proof goes through even if G is irregular and
weighted if we replace ~E(S, T ) with

w(S, T ) =
∑

(u,v)∈E,u∈S,v∈T

w(u, v).

We only need the fact that G ε-approximates d
nKn. See [BSS12] for details.

15.4 Vertex Expansion

The reason for the name expander graph is that small sets of vertices in expander graphs have
unusually large numbers of neighbors. For S ⊂ V , let N(S) denote the set of vertices that are
neighbors of vertices in S. The following theorem, called Tanner’s Theorem, provides a lower
bound on the size of N(S).

Theorem 15.4.1 ([Tan84]). Let G = (V,E) be a d-regular graph on n vertices that ε-approximates
d
nKn. Then, for all S ⊆ V ,

|N(S)| ≥ |S|
ε2(1− α) + α

,

where |S| = αn.

Note that when α is much less than ε2, the term on the right is approximately |S| /ε2, which can
be much larger than |S|. We will derive Tanner’s theorem from Theorem 15.3.1.

Proof. Let R = N(S) and let T = V −R. Then, there are no edges between S and T . Let |T | = βn
and |R| = γn, so γ = 1− β. By Theorem 15.3.1, it must be the case that

αβdn ≤ εdn
√

(α− α2)(β − β2).
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The lower bound on γ now follows by re-arranging terms. Dividing through by dn and squaring
both sides gives

α2β2 ≤ ε2(α− α2)(β − β2) ⇐⇒
αβ ≤ ε2(1− α)(1− β) ⇐⇒
β

1− β
≤ ε2(1− α)

α
⇐⇒

1− γ
γ
≤ ε2(1− α)

α
⇐⇒

1

γ
≤ ε2(1− α) + α

α
⇐⇒

γ ≥ α

ε2(1− α) + α
.

If instead of N(S) we consider N(S)−S, then T and S are disjoint, so the same proof goes through
for weighted, irregular graphs that ε-approximate d

nKn.

15.5 How well can a graph approximate the complete graph?

Consider applying Tanner’s Theorem with S = {v} for some vertex v. As v has exactly d neighbors,
we find

ε2(1− 1/n) + 1/n ≥ 1/d,

from which we see that ε must be at least 1/
√
d+ d2/n, which is essentially 1/

√
d. But, how small

can it be?

The Ramanujan graphs, constructed by Margulis [Mar88] and Lubotzky, Phillips and Sarnak [LPS88]
achieve

ε ≤ 2
√
d− 1

d
.

We will see that if we keep d fixed while we let n grow, ε cannot exceed this bound in the limit.
We will prove an upper bound on ε by constructing a suitable test function.

As a first step, choose two vertices v and u in V whose neighborhoods to do not overlap. Consider
the vector x defined by

x (i) =



1 if i = u,

1/
√
d if i ∈ N(u),

−1 if i = v,

−1/
√
d if i ∈ N(v),

0 otherwise.
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Now, compute the Rayleigh quotient with respect to x . The numerator is the sum over all edges
of the squares of differences accross the edges. This gives (1− 1/

√
d)2 for the edges attached to u

and v, and 1/d for the edges attached to N(u) and N(v) but not to u or v, for a total of

2d(1− 1/
√
d)2 + 2d(d− 1)/d = 2

(
d− 2

√
d+ 1 + (d− 1)

)
= 2

(
2d− 2

√
d
)
.

On the other hand, the denominator is 4, so we find

xTLx

xTx
= d−

√
d.

If we use instead the vector

y(i) =



1 if i = u,

−1/
√
d if i ∈ N(u),

−1 if i = v,

1/
√
d if i ∈ N(v),

0 otherwise,

we find
yTLy

yTy
= d+

√
d.

This is not so impressive, as it merely tells us that ε ≥ 1/
√
d, which we already knew. But, we can

improve this argument by pushing it further. We do this by modifying it in two ways. First, we
extend x to neighborhoods of neighboods of u and v. Second, instead of basing the construction
at vertices u and v, we base it at two edges. This way, each vertex has d − 1 edges to those that
are farther away from the centers of the construction.

The following theorem is attributed to A. Nilli [Nil91], but we suspect it was written by N. Alon.

Theorem 15.5.1. Let G be a d-regular graph containing two edges (u0, u1) and (v0, v1) that are at
distance at least 2k + 2. Then

λ2 ≤ d− 2
√
d− 1 +

2
√
d− 1− 1

k + 1
.

Proof. Define the following neighborboods.

U0 = {u0, u1}
Ui = N(Ui−1)− ∪j<iUj , for 0 < i ≤ k,
V0 = {v0, v1}
Vi = N(Vi−1)− ∪j<iVj , for 0 < i ≤ k.

That is, Ui consists of exactly those vertices at distance i from U0. Note that there are no edges
between any vertices in any Ui and any Vj .
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Our test vector for λ2 will be given by

x (a) =


1

(d−1)−i/2 for a ∈ Ui
− β

(d−1)−i/2 for a ∈ Vi

0 otherwise.

We choose β so that x is orthogonal to 1.

We now find that the Rayleigh quotient of x with respect to L is at most(∑k−1
i=0 |Ui| (d− 1)

(
1−1/

√
d−1

(d−1)−i/2

)2
+ |Uk| (d− 1)−k+1

)
+ β2

(∑k−1
i=0 |Vi| (d− 1)

(
1−1/

√
d−1

(d−1)−i/2

)2
+ |Vk| (d− 1)−k+1

)
∑k

i=0 |Ui| (d− 1)−i + β2
∑k

i=0 |Vi| (d− 1)−i
.

By my favorite inequality, it suffices to prove upper bounds on the left and right-hand terms in
these fractions. So, consider∑k−1

i=0 |Ui| (d− 1)
(
1−1/

√
d−1

(d−1)−i/2

)2
+ |Uk| (d− 1)−k+1∑k

i=0 |Ui| (d− 1)−i
.

For now, let’s focus on the numerator,

k−1∑
i=0

|Ui| (d− 1)

(
1− 1/

√
d− 1

(d− 1)−i/2

)2

+ |Uk| (d− 1)(d− 1)−k

=
k−1∑
i=0

|Ui|
(d− 1)i

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(d− 1)

=

k−1∑
i=0

|Ui|
(d− 1)i

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(2
√
d− 1− 1)

=
k∑
i=0

|Ui|
(d− 1)i

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(2
√
d− 1− 1).

To upper bound the Rayleigh quotient, we observe that the left-most of these terms contributes∑k
i=0

|Ui|
(d−1)i (d− 2

√
d− 1)∑k

i=0 |Ui| (d− 1)−i
= d− 2

√
d− 1.

To bound the impact of the remaining term,

|Uk|
(d− 1)k

(2
√
d− 1− 1),

note that
|Uk| ≤ (d− 1)k−i |Ui| .
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So, we have

|Uk|
(d− 1)k

≤ 1

k + 1

k∑
i=0

|Ui|
(d− 1)i

.

Thus, the last term contributes at most
2
√
d− 1

k + 1

to the Rayleigh quotient.

15.6 Open Problems

What can we say about λn? In a previous iteration of this course, I falsely asserted that the same
proof tells us that

λn ≥ d+ 2
√
d− 1− 2

√
d− 1− 1

k + 1
.

But, the proof did not work.

Another question is how well a graph of average degree d can approximate the complete graph.
That is, let G be a graph with dn/2 edges, but let G be irregular. While I doubt that irregularity
helps one approximate the complete graph, I do not know how to prove it.

We can generalize this question further. Let G = (V,E,w) be a weighted graph with dn/2 edges.
Can we prove that G cannot approximate a complete graph any better than the Ramanujan graphs
do? I conjecture that for every d and every β > 0 there is an n0 so that for every graph of average
degree d on n ≥ n0 vertices,

λ2
λn
≤ d− 2

√
d− 1

d+ 2
√
d− 1

+ β.
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